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A Configuration Management Study to Fast Massive Writing for
Distributed NoSQL System

Xianqiang BAO†a), Student Member, Nong XIAO†b), Yutong LU††c), and Zhiguang CHEN††d), Nonmembers

SUMMARY NoSQL systems have become vital components to deliver
big data services due to their high horizontal scalability. However, existing
NoSQL systems rely on experienced administrators to configure and tune
the wide range of configurable parameters for optimized performance. In
this work, we present a configuration management framework for NoSQL
systems, called xConfig. With xConfig, its users can first identify perfor-
mance sensitive parameters and capture the tuned parameters for different
workloads as configuration policies. Next, based on tuned policies, xConfig
can be implemented as the corresponding configuration optimiaztion sys-
tem for the specific NoSQL system. Also it can be used to analyze the
range of configurable parameters that may impact the runtime performance
of NoSQL systems. We implement a prototype called HConfig based on
HBase, and the parameter tuning strategies for HConfig can generate tuned
policies and enable HBase to run much more efficiently on both individual
worker node and entire cluster. The massive writing oriented evaluation
results show that HBase under write-intensive policies outperforms both
the default configuration and some existing configurations while offering
significantly higher throughput.
key words: configuration management, optimization, massive writing,
HBase, NoSQL

1. Introduction

NoSQL systems have become vital components for many
scale-out enterprises, due to their high horizontal scalability
(also called scale-out scalability). NoSQL systems are typ-
ically key-value stores with nothing shared among the key-
value pairs. This enables a large dataset of key-value pairs
to be partitioned into independent subsets according to keys
and key ranges, which can be distributed across a cluster
of servers independently. Thus, NoSQL systems can pro-
vide high throughput (a large number of Get/Put operations
per second) through massive parallel processing. Success-
ful examples include Bigtable [3] at Google; Dynamo [4] at
Amazon; HBase [5] at Facebook and Yahoo!; Voldemort [6]
at Linkedin and so forth. Among these NoSQL systems, the
open-source HBase is a truly distributed, versioned, non-
relational database modeled after Bigtable and widely used
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by many Internet enterprises. Instead of using Google File
System (GFS) [7] as the distributed storage system, HBase
is developed on top of the open source Hadoop Distributed
File System (HDFS) [9], [10] and can inherently support
MapReduce [11] to handle big data processing. For ex-
ample, Facebook Messages [12] is a typical application at
Facebook that handles millions of messages daily through
HBase.

However, existing popular NoSQL systems, e.g. [5],
[13], [14], rely on experienced system administrators to con-
figure and tune the wide range of system parameters in or-
der to achieve high performance under tuned configurations.
While current big data management rely heavily on effi-
cient access to their own NoSQL systems. For leading en-
terprises such as Google, Amazon and Facebook, they can
afford researchers and experts to develop NoSQL systems,
and tune the NoSQL systems for their own Internet ser-
vices handing big data. However, it can be beyond buget
for small companies to do so. Furthermore, some top en-
terprises such Google and Amazon do performance tuning
efforts for their NoSQL systems as in-house projects, even
the NoSQL systems such as Bigtable [3] and Dynamo [4]
are not open source. Although there are many database tun-
ing work such as [28]–[31], [40]–[42], but they focus on
SQL based RDBMS systems and can not apply to NoSQL
directly. As a result, a majority of NoSQL users without
expert experience just use the default configuration for av-
erage performance. It is much more daunting challenge for
developers and users with limited experience on NoSQL to
be truly familiar with the large set of parameters and un-
derstand how they should interact to bring out the optimal
performance of a NoSQL system for different types of work-
loads. For example, very few can answer some of the most
frequently asked configuration questions: When will the de-
fault configuration no longer be effective? What side effect
should one watch out for when changing the default set-
ting of specific parameters? Which configuration parame-
ters can be tuned to speed up the runtime performance of
the read/write-intensive applications? With the increased
popularity of NoSQL systems, the problem of how to set
up NoSQL clusters to provide good load balance, high ex-
ecution concurrency and resource utilization becomes one
significant challenge for NoSQL system administrators, de-
velopers and users [16].

In this paper, we present a general configuration man-
agement framework for NoSQL systems, called xConfig.
First, we argue that it is essential to understand how
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different settings of parameters may influence the runtime
performance of NoSQL system under different workloads.
We identify workload sensitive configurable parameters and
capture the tuned parameters for a classification of work-
loads as configuration policies. Next, we analyze the im-
pact of a range of configuration parameters and their inter-
actions on the runtime performance of NoSQL systems in
terms of write-intensive workloads. We show that simply
changing some parameters from the default settings may not
bring out the optimal performance. And the tuned parame-
ter settings have complex dependencies among configurable
parameters. Last but not the least, we discuss configuration
tuning strategies for typical distributed NoSQL system such
as HBase with specific performance related parameters. We
conclude our work in three aspects as follows:

• Several inherent configuration problems are observed
(Sect. 3) and we give out three main problem observa-
tions focus on typical workloads with detailed experi-
mental results.
• A configuration management framework (xConfig) for

NoSQL systems is designed (Sect. 4). And we present
corresponding configuration tuning strategies for typi-
cal NoSQL system such as HBase which also apply to
other distributed NoSQL systems (Sect. 5).
• A prototype called HConfig from xConfig framework is

implemented based on HBase system. We accomplish
a extensive evaluation of HConfig and the experimental
results show the validity of our configuration manage-
ment design of xConfig (Sect. 6).

The rest of the paper is organised as follows: Sect. 2
gives out an overview of NoSQL systems and then focus on
the typical NoSQL system HBase; Related works are ana-
lyzed in Sect. 7 and Sect. 8 concludes the whole paper.

2. Overview

We give out the overview focusing on NoSQL concepts and
a typical distributed NoSQL system–HBase first. Then we
describe the main idea of our configuration management
work.

2.1 NoSQL Concept and Typical System: HBase

Over the past decade, NoSQL systems have become the vi-
tal components for many scale-out enterprises due to the
high horizontal scalability. NoSQL systems are typically
key-value stores such that nothing will be shared among
the key-value pairs. This enables a large dataset of key-
value pairs to be partitioned into independent subsets ac-
cording to keys and key ranges, which can be distributed
across a cluster of servers independently. Thus, NoSQL
systems can provide high throughput through massive par-
allel processing. And these advantages of NoSQL can well
handle the some challenges of SQL facing today. Specifi-
cally, behind the debate of NoSQL (Non-relational DBMSs)

Fig. 1 HBase architecture overview.

vs. SQL (RDBMSs) [17], [18] is the ACID vs. BASE argu-
ment [19], [20]. Although RDBMS with SQL can achieve
complex transactions and queries, but in many scale-out In-
ternet services these features are not the requirements and
simple Get/Put operations are enough (e.g., social network
applications, the scalability and flexibility in data structure
are the most important requirements). Moreover, when turn
to the Internet services consistency, the complete form of
ACID consistency guaranteed by RDBMSs is not required
and only weak consistency (e.g., eventual consistency) is
needed [21], [22]. So NoSQL systems are always developed
to achieve some specific goals for big data and real-time ori-
ented Internet services.

During our research, we have experimented with many
open source NoSQL systems, and in this work we mainly
choose the typical distributed NoSQL system HBase for the
discussion of its system design and data model. HBase [5]
is an open source distributed key-value store developed on
top of the Hadoop distributed file system HDFS [9], [10],
and can inherently support MapReduce [11] to handle big
data processing. For example, Facebook Messages [12] is
a typical application at Facebook that handles millions of
messages daily through HBase. As shown in Fig. 1, HBase
consists of four major components: HMaster, ZooKeeper-
cluster, RegionServers (RSs), and HBaseClient (HTable).
HMaster is responsible for monitoring all RS instances in
the cluster, and is the interface for all metadata manage-
ment. ZooKeeper [23] cluster maintains the concurrent ac-
cess to the data stored in the HBase cluster. HBaseClient
is responsible for finding the RSs that are serving the par-
ticular row (key) range called a region. After locating the
required region(s) by querying the metadata tables (.MATA.
and -ROOT-), the client can directly contact the correspond-
ing RegionServer to issue read or write requests over that
region without going through the HMaster. Each RS is re-
sponsible for serving and managing the regions those are as-
signed to it through server side log buffer, memstore (write
buffer for HBase) and block cache (read cache for HBase).
HBase supports two file types through the RSs: the write-
ahead log and the actual data storage (HFile), and all the
files are stored in HDFS.
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2.2 Configuration Management Overview

Current existing popular NoSQL systems, such as [5], [13],
[14], rely on experienced system administrators to configure
and tune the wide range of system parameters. Furthermore,
most performance tuning efforts for NoSQL systems are
done as in-house projects. As a result, a majority of NoSQL
users just use the default configuration to only achieve the
average performance during the big data processing. Also it
is much more daunting challenge for developers and users
with limited experience on NoSQL systems to be truly fa-
miliar with the large set of parameters and understand how
they should interact to bring out the optimal performance of
a NoSQL system.

Our configuration management approach is to generate
optimal configuration cases with tuned parameters to out-
perform the default configuration of NoSQL systems and
then share the tuning experience. Base on our experience,
usually different workloads need different parameters tun-
ing to achieve adaptive optimal configurations. And the op-
timal configuration for a certain workload is called a con-
figuration policy of the target NoSQL system. Then these
policies from expert NoSQL administrators are captured as
tuned parameters in individual configuration files and stored
in the configuration management system. So when the tar-
get NoSQL system is running under a certain type of work-
load, the configuration management system can setup the
corresponding policy to configure the NoSQL system with
tuned parameter to achieve improved performance. Then
the beginners of NoSQL systems can quickly obtain the per-
formance improvements from these policies. Also, experts
can generate configuration policies from their own target
NoSQL systems and share the experience by the configu-
ration management system easily.

3. Problems Statement: An Configuration View

Here we list our main problem observations focus on write-
intensive workloads such as bulk loading with detailed ex-
perimental results and analysis as follows. We give out more
details about the workloads in Sect. 5.2 and experimental
setup in Sect. 6.1.

3.1 Unbalanced Workloads across RSs

The first observation from our experiments is the unbal-
anced workloads across the cluster of RegionServers when
using the default configuration for bulk loading. Con-
cretely, we bulk load 10 million records (1KB/record,
10fields/record, so 10GB total raw dataset) with default con-
figuration. And we also complete a larger dataset case with
100 million records. Table 1 shows the file sizes distributed
across all the RSs upon the completion of the bulk load-
ing. In the scenario of loading 10 million records, there
are only four RSs used for handling bulk loading during
the whole data loading process and other five RSs are idle

Table 1 Region and HFile details on each RS.

RS/Dataset 10 Million Records 100 Million Records
#Region File Size (MB) #Region File Size (MB)

RS-1 2 3,641 4 22,474

RS-2
1

0
4

11,197
(.MATA.) (.MATA.)

RS-3 0 0 4 18,028
RS-4 0 0 4 17,941
RS-5 2 3,615 4 11,202
RS-6 0 0 4 18,078
RS-7 2 3,618 4 18,060

RS-8
1

0
4

8,917
(-ROOT-) (-ROOT-)

RS-9 2 3,639 4 18,100

Fig. 2 CPU trace on 9RSs of bulk loading 10 million records.

with no records stored. Clearly, the default configuration
of HBase aims at loading data region by region and region
server by region server through a conservative region split
policy for data distribution. Thus, a region split will be trig-
gered only when the data loaded to a region exceeds some
default threshold. In the scenario of loading 100 million
records, we observe that all 9RSs are loaded with some por-
tions of the input dataset but the data loading remains not
well balanced across the cluster of 9 RSs (see Table 1).

To further study this result, from Fig. 2, we measure
the CPU utilization for each of the four busy RSs which are
loaded with input data for the 10 million records scenario.
In addition, we also measure the real-time throughput (#op-
erations/sec) for both scenarios in Fig. 3. Moreover, from
Fig. 3 (a), the throughput is unbalanced during the whole
bulk loading process and the process can be divided into
three stages. Meantime, we observe some short pauses dur-
ing each of the three throughput stages, which lead to un-
stable throughputs in every stage. By examining the CPU
utilization trace data collected by SYSSTAT [24] on the
number of busy RSs, during each of the three throughput
stages. From Fig. 2, initially there is only one single busy RS
(RS-1). Then during the stage 2, there are two busy RSs
(RS-1 & RS-5). During the stage 3, there are four busy
RSs (RS-1, RS-5, RS-7 & RS-9). When the bulk loading
dataset is increased to the 100 million records, we observe
from Fig. 3 (b) that the low throughput during the initial
stage for the first 10 million records still exists, but the peak
throughput for inserting later 90 million records is much
more higher. This shows two facts: (1) When the dataset for
bulk loading is big enough, the generated key-range based
regions will be distributed across all the RSs after the initial
stage and the records can be concurrently routed to all the
RSs. (2) Moreover, the average throughput of bulk loading
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Fig. 3 Real-time throughput of bulk loading with default configuration

Fig. 4 Throughput with different heapsize.

larger dataset case is 37% higher, which is benefited from
the concurrent data loading across all the RSs introduced by
the incremental region splits and region reassignment.

3.2 Inefficient Resource Utilization on RSs

The second observation from our experimental results is the
inefficient resource utilization across RSs and also on in-
dividual RS. First, from Fig. 3 (a), the bulk loading of 10
million records (1KB/record) is dealing with the raw dataset
of 10GB (actual storage file size is a bit more than 14GB
on HDFS), and the HBase cluster using a total RAM capac-
ity of 72GB RAM from all nine RSs (8GB*9=72GB, see
Sect. 6.1). However, there are only four out of nine RSs
active and the average throughput of a single active RS is
only about 5,000 ops/sec using 5MB/sec bandwidth, this is
much less than the disk I/O bandwidth (50–100MB/sec) and
network I/O bandwidth (peak value around 120MB/sec).
When the bulk loading dataset is increased to 100 millions
of records (about 140GB actual data, larger than the total
RAM size), we still observe the unstable throughputs in
Fig. 3 (b) characterized by different throughput stages and
the short pauses that leads to frequent oscillation in through-
puts during each stage. We already know one main cause is
the incremental region split policy in default configuration.

To further understanding the cause for short pauses
which lead to throughput oscillation, we per-split the tar-
get table in order to distribute records across all the RSs
evenly, and prepare balanced workloads. Then, we perform
some in-depth experimental measurements by varying cer-
tain heapsize and disk I/O related parameters. For bulk load-
ing, Fig. 4 shows the throughput with the different heapsize
used by each RS ranging from 1GB, 2GB to 4GB, the dif-
ferent client side threads ranging from 1, 2, 4, 8, 10, 20 to
40. And 4 threads case is better than 1, 2, 20 and 40 threads

Fig. 5 Trace results on client node with varied key-value size.

cases. Furthermore, the frequent flushes from MemStore to
store (HFile) and consequently frequent minor compactions
can be triggered due to non-tuned parameters of default con-
figuration on individual RSs, which leads to bigger heapsize
is useless or even hurt performance. These analysis results
motive us to study the set of configuration parameters which
can be turned out according to cluster resource and node
resource.

3.3 Inefficient Resource Utilization on Client and Network

Both of the above two observations are focused on server
side, while client side based parameters tuning also has sig-
nificant impact on resource utilization on client node and
network. And the third observation is from client and net-
work under default or improper configurations. During
these bulk loading tests with varied key-value size, from de-
fault 1KB to 5KB, 10KB, 50KB, 100KB and 500KB. From
Fig. 5 (a), We sequentially bulk load target dataset with 1KB
to 500KB key-value sizes and use horizontal axis “1KB” to
“500K” to mean each test case. The CPU utilization of client
node that hosts application and generates key-value records
is significantly influenced by key-value size. And when the
key-value size becomes bigger than 5KB, the CPU utiliza-
tion becomes very inefficient. Meantime, from Fig. 5 (b), the
network I/O speed can also be significantly influenced by
key-value size. And when the key-value size is smaller than
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5KB, the network utilization becomes inefficient, such as the
“1KB” case, the network utilization only achieves around
half of the full utilization such as “10KB” case. Then, con-
sidering both Fig. 5 (a) and Fig. 5 (b), we need to find out
well trade-off among resources such as CPU and network:
when key-value size is smaller than 1KB, CPU has full uti-
lization but network has only half of full utilization; when
key-value size is bigger than 10KB, network achieves full
utilization while CPU has only around 60% of full utiliza-
tion. While the “5KB” case can achieve optimal trade-off
to make both almost full utilization of CPU and network re-
sources, also our evaluation results in Sect. 6 verify that well
trade-off among client node and network resources achieves
much better throughput speedup compared with default con-
figuration. Moreover, besides key-value size and client run-
ning threads, other client side configuration related to write
buffer size, doing batch or not and request distribution also
have significant impact on the client and network resource
utilization. And more details about the client side base tun-
ing is discussed in Sect. 5.

4. Configuration Optimization Framework

In this section, a detailed configuration optimization frame-
work (called xConfig) for NoSQL systems is given out with
the following three aspects:

4.1 Design Objectives

xConfig is a general framework for NoSQL systems to man-
age their configurations setup and parameters tuning. Here
the x of xConfig is used to denote a certain NoSQL sys-
tem (e.g., for HBase is called HConfig). We focus on the
following two design objectives: (1) Uniform configura-
tion management for NoSQL, currently there are plenty of
NoSQL systems [25], and many have their individual con-
figuration files with lots of parameters. Here the uniform
configuration management means that administrators with
rich experiences can use xConfig framework to implement
configuration management system for a target system, then
other NoSQL users can use this system to manage configu-
ration tuning for their running system. So xConfig is flexible
to use the already implemented configuration management
systems or integrate your own system into xConfig to share
your tuning contribution. (2) Adaptability to workload vari-
ety, the adaptability is described as the recommended tuned
configurations by xConfig can always match well with the
running workloads and the tuned configurations can have
better throughput performance compared with default con-
figuration, no matter changing the workload runtime fea-
tures from sever or client side.

4.2 System Architecture

Figure 6 shows the xConfig system architecture and the
detailed design discussion about the six main components
is based on HBase, also we believe the design experience

Fig. 6 Configuration management: system architecture.

can also apply to other distributed key-value based NoSQL
systems.

(1) Workload Monitor (Monitor), periodically gathers
workload state statistics from worker nodes or databases of
a NoSQL system, and the cluster state statistics from the
master node of the running cluster. As the statistics can be
gathered by Monitor are depended on certain workload and
system state trace components of specific NoSQL systems.
For HBase system, there are always two types of workload
statistics collected in the form of workload requests statis-
tics, such as requests per second, read/write request counts;
And the workload runtime environment, such as used heap
(max heap), number of living worker nodes (here are RSs),
number of online regions, number of store files and com-
paction progress (if LSM-Tree based).

(2) Configuration Manager (Manager), determines the
workload type and which policy with tuned parameters to
be used according to the workload type. Manger of xConfig
needs to finish two main tasks during the decision-making
process: (a) Determine the current workload type of the tar-
get NoSQL system. After Monitor periodically collects the
workload state statistics and delivers to Manager, Manger
picks out read/write requests statistics and calculates out
the read/write ratio to determine the current workload type
based on initial defined read/write ratio for typical work-
loads. (b) Determine the adaptive configuration policy for
current workload. After working out the current workload
type, and if the workload type switches to another different
one, then Manger fetches the adaptive configuration policy
from the prepared configuration polices.

(3) Policy Executor (Executor), setups and reconfigures
the configuration for the target NoSQL system according to
the applied policy. After Manager fetches the adaptive con-
figuration policy and send it to Executor, Executor selects
the target NoSQL system and distributes tuned configuration
file or parameters to the related worker nodes. It is responsi-
ble for certain database schema changing or worker node
reconfiguration. If the NoSQL system supports dynami-
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cal database schema changing, Executor can re-setup the
configurable parameters of certain database without stop-
ping the data processing or rebooting the NoSQL system.

(4) NoSQL Interface (Interface), enables Monitor and
Executor to directly interact with NoSQL systems. As there
are lots of NoSQL systems and each system can have indi-
vidual access interface, xConfig system needs to encapsulate
the target NoSQL system interface and to be implemented
as mainly two separated sub-components for Monitor and
Executor. Interface for Monitor focuses on integrating the
NoSQL system master interface to gather workload state
statistics and target cluster running statistics. And interface
for Executor focuses on invoking the database schema alter-
ing interface of the NoSQL systems with dynamical schema
alteration support, and worker node daemon reboot as well
as configuration file distribution interface.

(5) Tuned Configurations and xConfig User, Tuned
Configurations are generated by target NoSQL system ad-
ministrators with expert experience. And xConfig Users can
be certain NoSQL system beginners who want to get bene-
fits from existing tuned configurations or experts who want
to share the tuning experience. In this work, Tuned Configu-
rations are manually generated by xConfig Users. The main
task of xConfig Users is to pick up the performance related
configurable parameters and tune out these parameters for
certain NoSQL system under different runtime.

4.3 Configuration Management Workflow

The functional components in xConfig cooperatively accom-
plish the following five steps as a tuning cycle: (1) Cluster
state collection, the Monitor gathers the cluster state form
the target running cluster; If the target database is empty,
then the Manager setups the database with bulk loading pol-
icy to prepare bulk load the target empty database. (2) Work-
load state collection, after the target database is loaded, the
Monitor starts to collect the workload state statistics and pe-
riodically delivers the collected data statistics to the Man-
ager for further decision making. (3) Workload characteri-
zation, when the Manager has received the statistics, it will
characterize the workload based on the workload state statis-
tics. Specifically, the read/write request ratios can be used to
categorise the current workload into one of the typical work-
load types. (4) Configuration policy adaptation, based on
workload state statistics collected periodically by the Mon-
itor, the policy adaptation manager identifies the workload
type and create new policy or refine existing policy. (5) Con-
figuration refinement, when Executor detects new policy up-
dates arrives, it will execute the new or updated configura-
tion with the recommended parameter values. Then a whole
tuning cycle is completed with the above five steps and the
following tuning cycles are completed with four steps from
step (2), until the database reloading happens and the tuning
cycle restarts from step (1).

5. HConfig Implementation with Tuning Strategies

In this section, we give out the configuration tuning
strategies based on our experience. Each NoSQL system has
its own implementation from xConfig framework and can be
integrated into current xConfigs system and co-existed with
other implementations.

5.1 Scope-Based Configuration Tuning Strategy

5.1.1 Performance Related Parameters

For key-value based distributed NoSQL systems, we pick
out the performance related parameters from the following
experience: (1) Pick out the parameters those have impact
on memory, disk and network I/O performance of the whole
I/O stack from applications using NoSQL system client li-
brary to NoSQL system server. Usually, memory related
parameters focus on write buffer and read cache, and the
total memory size can be used by NoSQL system such as
heap size for JVM based NoSQL systems. Disk related pa-
rameters focus on how to flush the write buffer to disk, also
the data structure used in NoSQL systems, such as LSM-
Tree [26] based NoSQL system should consider the com-
paction processing related parameters which significantly
impact the disk I/O performance. Network related parame-
ters usually focus on records processing model such as batch
or not, as well as key-value record size; (2) Clearly distin-
guish the scopes of configurable parameters and pick out
performance related parameters from big to small scope. In
this work, the scopes are first distinguished as server/client,
then server scope can be further divided into four levels
from big to small as cluster/worker/region/store (region is
based on a sub key range of the whole key space, and re-
gion split related parameters has significant impact on per-
formance for distributed NoSQL systems), also client scope
can be further divided into two parallel levels as client li-
brary/application.

With these guidelines we pick out the performance re-
lated parameters from HBase system configuration file [5]
as follows: The client requests from HTable are directly
handled by the corresponding regions hosted on certain RSs
of a HBase cluster. Thus, performance related server side
based parameters are focused on RS scope parameters. And
more details are listed in Table 2 (see Server Side) with
mainly four scopes such as the whole cluster scope, a worker
scope, a certain region scope as well as a specific store
scope. Specifically, region.split.policy is an important pa-
rameter to determine the data layout across all RSs, which
has significant impact on load balance. HBase currently has
four split policies available for configuration: (1) Increas-
ingToUpperBound split policy, the default policy for HBase
version 0.94 and later, which triggers region splits when re-
gion size meets the following threshold (called Split Point):
Split Point = min(N3 ∗2∗α, β), N: the region number of a re-
gion server; α: the value of configured memstore.flush.size;
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Table 2 HBase related configurable parameters.

Scope Server Side Description
Cluster region.split.policy To determine when a region to split.

heapsize The maximum amount of heap to use.
Maximum occupancy size of all

memstore.upperLimit memstores in a RS before new updates
Worker are blocked and flushes are forced.

(RS)
memstore.lowerLimit

Minimum occupancy of all memstores
in a RS before flushes are forced.

handler.count
Count of RPC Listener instances spun
up on RegionServers

memstore.flush.size
Memstore is flushed to disk if size of the
memstore exceeds this number of bytes.
Block updates if memstore occupancy

Region
memstore.multiplier has reached memstore.multiplier

∗ memstore.flush.size bytes.

block.cache.size
Percentage of maximum heap to allocate
to block cache used by HFiles.

max.filesize Maximum HStoreFile size.
If more than #HFiles in any one

blockingStoreFiles Store then updates are blocked for the
Region until a compaction is completed.

Store
When the #HFiles in any HStore exceeds

compactionThreshold this threshold, a minor compaction is
triggered to merge all HFiles into one.

compaction.kv.max
How many KVs to read and then write
in a batch when do flush or compaction.

Scope Client Side Description

ClientLib
AutoFlush To do batch processing or not.

(HTable) WriteBufferSize
Both client side and server side use the
same write-buffer size to transfer data.

KeyValueSize
The size of a record with N fields and
each field is M bytes = N∗M (Bytes).

Apps Key ranges generated in order by sort or
KeysDistribution hash function. Default is hash way with

key ranges split uniformly by #RSs.

β: the value of configured max.filesize of a region. For
example, in the default configuration, α is 128MB and β
is 10GB, so the region split process can be carried out as
follows:
{Initial: new table allocates only one region by default;
Split Point1:min(13*2*128MB,10GB)=256MB;
Split Point2:min(23*2*128MB,10GB)=2,048MB;
Split Point3:min(33*2*128MB,10GB)=6,912MB;
Split Point4:min(43*2*128MB,10GB)=10GB;. . . . . . ;
The following Split Points all are 10GB.}
(2) ConstantSize split policy, which triggers region

splits when the total data size of one store in the region ex-
ceeds the configured parameter max.filesize. (3) KeyPrefix
split policy, which groups the target row keys with config-
ured length of prefix such that rows with the same key pre-
fix are always assigned to the same region. (4) Disabled
split policy (also called Manual split policy), which disables
the auto split process so that region splits only happen by
manual split operations. Besides, some important HBase
client side based parameters can also have significant im-
pact on system performance. We dig into some details about
HBaseClient (HTable). And more details about client side
parameters are in Table 2 (see Client Side).

5.1.2 Scope-Based Parameters Tuning

Distributed NoSQL systems are designed to run on a clus-
ter of nodes. We argue that the configuration tuning strate-
gies should be scope-based as cluster-aware and node-aware
tuning. And we discuss the scope-based parameters tuning

from the following three aspects with considering the imple-
mentation of HConfig:

(1) Cluster-aware tuning strategies: focus on tun-
ing the configurable parameters which can improve the
overall performance of the cluster. For HConfig system,
we first identify a set of parameters those can be tuned to
improve concurrency and load balance across the worker
nodes (RSs). For example, the PreSplit strategy is designed
to pre-split the target table to be loaded into independent
and well balanced regions according to the number of RSs
in the cluster, then distribute the data across the RSs based
on the keys distribution. In addition, we need to further im-
prove concurrent execution at each RS through multiple re-
gions, we pre-split the large input dataset into P regions,
P = N × #RSs. So that each RS will have N regions to con-
currently handle read/write processes. During bulk loading,
we use PreSplit with ConstantSize split policy to reduce the
high cost of both region splits and re-assignment cost oc-
curred in default configuration. Moreover, after bulk load-
ing for write-most or mixed read/write workloads, we use
the IncreasingToUpperBound split policy to further split the
regions when the max.filesize exceeds its threshold to han-
dle these write-intensive workloads. And this enables high
concurrency across RSs. While for read-intensive work-
loads, the concurrency is based on data distribution accom-
plished by write processes, so the well balanced regions dis-
tributed across RSs from PreSplit strategy still benefits read
processes. Also read processes cause no region splits and
other region reassignment activities so we just ignore the
region assignment balance in cluster-aware tuning for read-
intensive workloads.

(2) Node-aware tuning strategies: focus on tuning the
parameters related to per-worker node resource utilization
to improve the runtime performance of individual worker
node. For the write-intensive workloads, we can delay the
update blocking and the LSM-tree [26] related minor com-
paction. In order to perform memory related tuning, we
use adaptive heap size in each RS (around 1/2–3/4 of the
total memory size based on our experience), which allows
us to buffer more records and give priority to batch disk
I/Os in order to flush more records for each disk I/O. In
HConfig system, the following four are the most impor-
tant memstore related parameters: upperLimit, lowerLimit,
flush.size, block.multiplier, to achieve more efficient use of
the bigger heap per-RS. Similarly, for disk I/O related tun-
ing, frequent flushes and minor compactions can lead to
higher disk I/O cost. One way is to let the disk I/O utilization
for flushes from MemStores to HFiles stored on disk always
come first by increasing the compactionThreshold to delay
compactions which consume disk I/O much, and increase
the threshold of blockingStoreFiles to delay the blocking of
new updates whenever possible. However, a careful trade-
off is required here, as too big compactionThreshold and
blockingStoreFiles may lead to unacceptable compaction
delay and high memstore heap contention. In contrast, for
the read-intensive workloads, the tuning strategy focuses on
cache hit ratio which has significant influence on read per-
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formance. For RAM related tuning, we can increase the
heapsize and block.cache.size to allow read-intensive work-
loads to load more records into heap after all the meta data
(such as index and bloom filter data) has been loaded into
memory. For disk I/O related tuning, the parameter hfile
block size is very important. A smaller block size is more
efficient for point read workload and a bigger block size is
better for range read workload. Also adequate configuration
of major compactions can be beneficial, especially for range
reads. Next, to design the read/write mixed tuning strategy,
we focus on tuning the competitive parameters between read
and write, such as the heap proportion assignment for write
workload (e.g., memstore.upperLimit&lowerLimit) and read
workload (e.g., block.cache.size) according to the read/write
proportion in the mixed workloads.

(3) Application-aware tuning strategies: In order to
further improve performance based on application specific
features, we can also take into account a set of client-side
parameters, such as key-value size, write buffer size and
workload running setup parameters. Our experimental re-
sults from HConfig show that these application specific fea-
tures such as key-value size also play an important role in
tuning out the optimal configurations. In this work, we focus
on tuning the workload running pattern and the following
parameters: KeyValueSize, the number of concurrent run-
ning threads on client side as well as the client nodes, and
WriteBufferSize. The default batch loading pattern is cho-
sen to generate the loading workload with high client re-
source utilization. The number of concurrently running
client nodes is determined by the number of RSs. The other
parameters are determined by the resources at the client
node(s) and the number of RSs, including network I/O.

5.2 Write-Intensive Configuration Policies

First, we define the write-intensive workloads in this work as
following: Bulk loading (BL) workload loads the prepared
dataset to an empty target database. BL requests are imple-
mented as Insert operations (each Insert inserts a key-value
record with a primary string ‘Key’ and a number of string
fields as ‘Value’); Write-Only (WO) workloads are further
characterized into WO-Insert (Insert ratio=WO Ratio, sim-
ilar to BL) and WO-Update (Update ratio =WO Ratio, each
Update updates a key-value record by replacing one or sev-
eral fields of the ‘Value’). Write-Mostly (WM) workloads
refer to the workloads with a small amount of read work-
loads (less than WM Ratio) added into the WO workloads.

Then we give out the tuned policies for write-intensive
workloads: Table 3 (Write-intensive Policies) shows an ex-
ample set of parameters which are critical for performance
tuning of write-intensive workloads. We provide the recom-
mended settings by HConfig under the PCM-BL/WO/WM
column for three subcategories of write-intensive work-
loads: PCM-BL (Bulk Loading), PCM-WO (Write Only)
and PCM-WM (Write Mostly). PCM-BL and PCM-WO
use very similar parameter settings in HBase due to the fact
that HBase implements Insert and Update with same API

Table 3 Tuned policies for HBase

Write-write-intensive Policies
Parameters Default PCM-BL/WO/WM

heapsize 1GB (0.5-0.75)×RAM=X GB
memstore.upperLimit 0.4 0.6/0.6/0.5
memstore.lowerLimit 0.38 0.58/0.58/0.48

block.cache.size 0.4 0.1/0.1/0.2
memstore.flush.size 128MB 128MB × X

memstore.block.multiplier 2 max(2, X)
compactionThreshold 3 3 × X

blockingStoreFiles 10 (5 − 10) × X

region.split.policy
IncreaseTo PreSplit / PreSplit+

UpperBound IncreaseToUpperBound

max.filesize 10GB
max(10GB, dataset/(#reg))/

10GB/10GB

(Put). For PCM-WM, as a small proportion read workload
is added, we increase the heap size for read from 0.1 to 0.2
and decrease the same amount of heap for write to maintain
the total heap for memstore and cache to be under 80% of
the max heap size to avoid out of memory error.

5.3 HConfig System Implementation

We develop the prototype HConfig system with about 1,500
lines mainly in Python from xConfig framework. The pro-
totype is based on HBase system as it is widely supported
from both the community and enterprises for handling big
data processing. HConfig has three main parts during the
implementation and we develop the prototype into a Python
part, a Linux shell part and a HBase shell part. And the
Python part is the main one to implement xConfig frame-
work into HConfig system that comprises the core of the
Monitor, Manager, Executor, Tuned Configurations mod-
ules. Meanwhile, each functional module has its own setup
file to control the runtime parameters by HConfig User.
Then we implement the Interface module that relates to the
policy execution for certain NoSQL system HBase based
on Linux shell and HBase shell, instead of using HBase
HMaster API to achieve the lowest code changes.

6. Evaluation

We first give out the details about the experimental setup
(Sect. 6.1). Then we focus on answering two main ques-
tions: (1) What is the speedup when we apply the parame-
ters tuning under our strategies from server to client (appli-
cation) side? (See Sect. 6.2). (2) Can the tuned configuration
policies still work efficiently when workload scenario such
as datasets and the number of databases (including database
block size)? (See Sect. 6.3).

6.1 Experimental Setup

Each Node Setup: Each node of the cluster has single core
(Dual socket) CPU operating at 2.6GHz with 4GB RAM per
core (total 8GB RAM per node), and two SATA 7200rpm
HDD. All nodes are connected with 1Gigabit Ethernet, run
Ubuntu12.04-64bit OS with kernel version 3.2.0, and the
Java Runtime Environment with version 1.7.0 45.
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Fig. 7 Parameters tuning for write workloads (Bulk Loading).

HBase and HDFS Cluster Setup: We use HBase with
version 0.96.2 and Hadoop with version 2.2.0 (including
HDFS) in all the following experiments. And run HBase
and HDFS in the same cluster to achieve data locality
(HMaster and NameNode on manager node, RegionServer
and DataNode on each worker node). We use a clus-
ter during our evaluation works with 13 nodes: 1 node
hosts both HMaster and NameNode as the master, 3 nodes
host ZooKeeper cluster as coordinators and 9 nodes host
RegionServers and DataNodes as the workers.
YCSB Benchmark: In our experiments, workloads
are generated by Yahoo! Cloud Serving Benchmark
(YCSB) [27], and it is a framework for evaluating and com-
paring the performance of different NoSQL data stores.
There are four baseline data manipulation operations of the
workload generator YCSB: Insert, Update, Read and Scan,
and here we focus on the write operations: each Insert oper-
ation inserts a key-value record with a primary string ‘Key’
and a number of string fields as ‘Value’; each Update up-
dates a record by replacing one field of the ‘Value’. During
our tests, we generate target datasets with hash-based insert
order, run all the workloads with unlimited target number of
operations per second, and we set WO Ration=100% and
WM Ratio=90%.

6.2 Configuration Parameters Tuning

We use a 10GB dataset with 10 million KV records (1KB
per record) and uniform request distribution to identify the
tuned parameters by default.

6.2.1 Server Side Parameters Tuning

We first focus on cluster-aware tuning strategy. Specifi-
cally, we pre-split the target table into 9 regions as there
are 9 RSs in our cluster and set the region split policy to
ConsistantSizeRegionSplitPolicy to generate PreSplit policy
for further tuning out PCM-BL policy in HConfig system.
From Fig. 7 (b), we can see the PreSplit significantly accel-
erates the throughput compared with Default configuration,
the speedup is from 1.9x to 3.6x with different client threads.

Then we focus on node-aware tuning strategy, and the
following four tuning steps are based on PreSplit: (1) PCM-
BL1: memstore.flush.size (memstore), we configure the

Fig. 8 Recommended concurrent #threads for typical workloads.

heapsize from default 1GB to 4GB, then change the mem-
store.flush.size from default 128MB to 256MB, 512MB.
Here we need to find out whether small heapsize with bigger
memstore.flush.size can work well (in Sect. 3.2, we see per-
formance reduction when using bigger heapsize with small
memstore size) and the adaptive memstore.flush.size for big-
ger heapsize. From Fig. 7 (a), the small heapsize with big-
ger memstore.flush.size ({1GB, 512MB} case) leads to per-
formance loss, and bigger heapsize with adapative mem-
store.flush.size ({4GB, 512MB} case) improves the perfor-
mance and partly resolves the bigger heapsize hurting per-
formance problem. Figure 7 (b) shows that the adaptive
memstore.flush.size for bigger heapsize (4GB) is 512MB,
and the improvement is 40-50% compared with just sim-
ply setting 4GB bigger heapsize cases, and also better
than PreSplit. (2) PCM-BL2: blockingStoreFiles (BF) &
compactionThreshold (CT), we increase blockingStoreFiles
from default 10 to 20, 30 to delay updates blocking and then
increase compactionThreshold from default 3 to 6, 12 to
delay LSM-Tree caused compactions. From Fig. 7 (c), we
can see the optimal blockingStoreFiles is 20, while too big-
ger blockingStoreFiles (e.g. 30 in this experiment) leads to
throughput decrease as later blocking new updates causes
memstores too stressful to do flushes rather than to han-
dle new arrived records. And from Fig. 7 (d), the opti-
mal compactionThreshold is 12 as expect, while too bigger
compactionThreshold can cause unacceptable compaction
delay risk, we just use 12 as the optimal parameter. And
speedup now becomes 2.81x (select the best through-
put case) compared with Default. (3) PCM-BL3: com-
paction.kv.max (CKVMax), from Fig. 7 (e), there is only a
tiny speedup when increasing compaction.kv.max from the
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Fig. 9 Real-time throughput of bulk loading 100 million records.

default 10 to 20, the bigger setting with 40 even decreases
the throughput, so we use 20 as the optimal setting. (4)
PCM-BL4: memstore.block.multipiler (multiplier), disk I/O
resources are already full used during the above three tun-
ing steps. And when target loading dataset becomes much
larger, although compaction is delayed, but it should not be
delayed too much to cause unacceptable compaction delay
risk. And during doing compactions and periodic memstore
flushes at the same time, new updates blocking occurs due
to shortage of disk I/O as well as too stressful memstore also
shows as periodic pauses (see PCM-BL3 in Fig. 9). So we
increase the global memstore heap of one region to further
delay updates blocking based on PCM-BL3 by using bigger
memstore.block.multiplier and change it from Default 2 to
3, 4. From Fig. 7 (f), the optimal memstore.block.multiplier
is 4 and achieves 46% throughput improvement compared
with PCM-BL3, and we can see single periodic pause time
is significantly decreased in Fig. 9 (see PCM-BL4). Similar
tuning steps to generate PCM-WO/WM focusing on these
write-sensitive parameters.

6.2.2 Application Features Based Tuning

First, we focus on getting the optimal benchmark running
threads. Figure 8 (a) measures the bulk loading throughput
by varying the number of client threads. When the #threads
for WO-BL is 4, the throughput is the highest and the aver-
age latency is good compared to other settings. Figure 8 (b)
shows that when the #threads for WO-Update is set to 4, the
throughput is the best with good average latency. Thus, we
set 4 client threads as the HConfig recommended #threads
for write workloads (BL, WO, WM) on the cluster in the
rest of the experiments.

Then we turn to other client parameters. And in the
above tuning experiments, we use uniform requests distri-
bution, so the main performance influence from benchmark
setup is the key-value size (KV size). Here we change the
KV size from 1KB to 5KB, 10KB, 50KB, 100KB, 500KB,
and each record has 10 fields, also we use the default 12MB
WriteBufferSize set by YCSB and batch way to handle re-
quests. As all the records are real-time generated by client
threads, so we analysis the client node resources and net-
work I/O utilization first. From the trace results in Fig. 5
(Sect. 3.3), when the records generated by the application
hosted on HBase are always ≤ 5KB, the bulk loading (batch
model) is more CPU sensitive than network I/O and big-
ger WriteBufferSize can make full use of the network I/O.

Fig. 10 Speedup for varied KV size.

Fig. 11 Evaluation results with different datasets.

And when the records are > 5KB, better network I/O im-
proves the loading performance. So we should increase the
WriteBufferSize to 2-3x to get the optimal configuration for
the cluster here. Moreover, from Fig. 10, HConfig system
works well from 1KB to 500KB cases as maintaining with
3-4x speedup. And the 5KB KV size case gets the high-
est speedup due to both full utilization of network I/O and
CPU, it also verifies that we can still improve write per-
formance by improving network I/O utilization with bigger
WriteBufferSize based on PCM-BL4 of the server side.

6.3 Tuning Adaptability

We verify the configuration tuning adaptability of HConfig
with different datasets and multiple databases.

6.3.1 Different Datasets

We vary the target dataset from 1 million to 10 million and
100 million records. Figure 11 shows that the HConfig of-
fers consistently higher throughput compared with default
configuration. Figure 11 (a) shows that for write-intensive
polices of HConfig achieve significantly better throughput
than default with all the target datasets. Specifically, PCM-
BL gets 5.2x, 2.9x and 2.4x speedup in 1 million, 10 mil-
lion and 100 million cases respectively compared with the
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default (IncreasingToUpperBound region split policy). The
reason is somewhat complex, one important objective for ef-
ficient bulk loading is to load the whole dataset into all the
worker nodes (RSs) evenly. An obvious optimization is to
enable parallel processing and good load balance through-
out bulk loading. However, the default policy implements
the dynamic, threshold controlled incremental load balanc-
ing by IncreasingToUpperBound region split policy. Ini-
tially, only one initial region will handle bulk loading, and if
all records can be loaded into a single RS without reaching
IncreasingToUpperBound region split point, the default pol-
icy will load all data to only one region. Even when the re-
gion split is triggered, if the balancer is not invoked, new
coming records are still loaded to the current RS until new
generated regions have been assigned to other RS by bal-
ancer. Thus, when the dataset is small or medium compared
to the split point in the NoSQL cluster, a good portion of
the cluster nodes are not used even the bulk loading has fin-
ished. This is why default configuration lacks of parallelism
and load balance during bulk loading.

Concretely, using the default configuration, BL-
1Million case only uses 1 RS and BL-10Million case only
uses 4 RSs out of 9 RSs in this cluster. Only when the
dataset is much larger, such as BL-100Million case, data
is distributed to all 9 RSs with reasonable balance at the
completion of the bulk loading. However, the throughput
of bulk loading remains to be low for BL-100Million case
due to imbalance at start stage and memory utilization in-
efficiency. In contrast, HConfig recommends using PreSplit
policy to bulk load the target dataset across all RSs in the
given cluster by distributing data to pre-split regions on all
the RSs from the initial stage, and setting bigger heapsize
with tuned parameters to achieve high memory utilization.
Figure 11 (b) shows that the speedups are 2.1x/1.5x/1.6x for

Fig. 12 Evaluation results on multiple databases.

Fig. 13 Store file distribution details for multiple databases.

PCM-Update-1Million, 10Million, 100Million respectively.

6.3.2 Multi-Databases with Variable Blocks

For multiple databases scenario, we create three databases
with different data block sizes from 32KB (Table 1) to 64KB
(Table 2) and 128KB (Table 3), and the target dataset for
each table is 10 million records with a total of 30 million
records. We run workloads on three separate YCSB client
nodes concurrently, with each sends uniform requests to
one target table. We compare the throughput of each client
and the total combined throughput of the three client nodes
running with Default and the policies of HConfig. From
Fig. 12 (a) and Fig. 12 (b), HConfig outperforms Default on
each client node and the total throughput achieves 2.5x/1.8x
speedup for BL and Update respectively. This indicates that
write-intensive policies of HConfig for single database also
works well for multiple databases.

As multiple databases are more close to real produc-
tion scenario in industry, then we dig into some more details
behind the throughput results for the above multi-databases
based experiments. As we discussed in Sect. 3.1 (see Ta-
ble 1), there are only partial RSs are used during the single
database bulk loading case that leads to unbalanced work-
loads across RSs. When turn to bulk load multiple databases
currently, from Fig. 13 (a) (three tables and each hosts 10
million records), we can see default configuration also leads
to very unbalanced store file distribution. Moreover, when
we bulk load each table with 100 million records, from
Fig. 13 (d), similar unbalanced workloads across RSs still
exists, and the RS-2 almost hosts half of the whole dataset
of Table 1 (100 million 1 KB KV records leads to a total
≈ 140 GB store file size and RS-2 hosts more than 70GB).
While from Fig. 13 (b) and Fig. 13 (d), HConfig with PreS-
plit can leads to much better load balance for both small and
large dataset cases, but the default hash function FNVhash64
with KeyPrefix split policy still has inherent defects and can
lead to lightweight unbalanced worker nodes such as RS-3
(Table 1 & Table 3) and RS-7 (Table 2) in Fig. 13 (b), also
RS-1 (Table 1) and RS-3 (Table 2) and RS-8 (Table 3) in
Fig. 13 (d). However, the unbalance in current HConfig is
much more lightweight than Default. And one more in-
teresting thing is that the key range generated by YCSB
is uniform, when turn to highly skewed key range distribu-
tion, a more carefully PreSplit design is critical to achieve
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load balance. In HConfig system, we allow external data
partitioning algorithms such as [32] to be plugged into the
PreSplit policy.

7. Related Works

Ambari [1] is a project to achieve simplicity of Hadoop [9]
management by developing a component for provisioning,
managing and monitoring Hadoop cluster. Cloudera Man-
ager [2] is a solution to get quickly automated deployment
and configuration for Hadoop cluster. Also there are other
tools such as [8] that developed in script to perform primary
configuration tuning ([8] just focuses on memory resource
tuning, and currently the users can use the Python script of
[8] to calculate the memory related parameters in YARN,
MapReduce 2 and Hive [9], [15]). These softwares and tools
can significantly enables system administrators to manage
Hadoop based cluster much simpler and quicker. Our work
has the similar start point with [1], [2], [8], but we focus on
the NoSQL layer systems and not the whole hadoop ecosys-
tem. The prototype HConfig is similar to the subsystem
for HBase of [1], [2], [8], and we focus on the holistic pa-
rameters tuning to form workload-aware optimal policies,
while the script of [8] mainly focuses on the parameters
tuning for memory. Moreover, the xConfig is a general de-
sign for the NoSQL systems with numerous configurable pa-
rameters. Administrators can implement RConfig based on
xConfig framework for Redis [13] as future work.

Cruz et al. [37] present a framework to achieve auto-
mated workload-aware elasticity for NoSQL systems based
on HBase and OpenStack. This work only considers very
limited HBase parameters tuning such as heap and cache
size. As we have shown in the bulk loading evaluation, sim-
ply increasing heap and cache size without memstore related
parameters tuning (e.g. memstore.upperLimit&lowerLimit,
memstore.block.multiplier, et al.) will not help write-
intensive workloads and can even hurt massive write
throughput. Das et al. [38] implements G-Store based on
HBase to provide efficient transactional multi-key access
with low overhead. Nishimura et al. [39] proposed MD-
HBase to extend HBase to support advanced features such
as multi-dimensional query processing. These functionality
optimizations are orthogonal to our work on configuration
optimization. Harter et al. [12] present a detailed study of
the Facebook Message stack to analyze HDFS and HBase,
and suggest to add a small flash layer between RAM and
disk to get performance improvement. This kind of im-
provement can also be helpful to our system.

YCSB framework [27] is designed to generate rep-
resentative synthetic workloads to compare the perfor-
mance of NoSQL data stores for HBase [5], Cassandra [33],
PNUTS [35], and a simple shared MySQL [18] implemen-
tation. The evaluation results in [27] are just use default
configuration of mentioned NoSQL systems and only com-
pare their average performance. Patil et al. [36] extends
YCSB and builds YCSB++ to support advanced features
for more complex evaluation of NoSQL systems, such as

eventual consistency test. Also YCSB++ use the default
configuration to evaluate the target NoSQL systems, instead
of focusing on optimizing the configuration of underlying
target systems. Our work focuses on configuration manage-
ment for distributed NoSQL systems under write-intensive
workloads.

Before NoSQL movement, there are many SQL based
RDBMS tuning related work [28]–[31], [40]–[42]. Storm
et al. [29] focus on self-tuning memory management in
database system and propose workload-aware adaptive
memory allocation in DB2 [43]. Also some products such
as Oracle [30] and SQL Server [42] have implemented self-
tuning memory management for high performance. Tran
et al. [31] focus on database buffers self-tuning by using
calculations with their proposed analytically-derived equa-
tion for buffer allocation. Wiese et al. [41] focus on the
development of autonomic database tuning framework for
RDBMS based on DB2 [43]. Cao et al. [28] propose a tool
at the application code level to reengineer application code
and table design to achieve additional tuning performance.
Though our tuning work focuses on NoSQL systems, the
above SQL based RDBMS tuning work has the guiding sig-
nificance for our work. Such as the memory management in-
cluding write/read buffer allocation related parameters tun-
ing is still one of the most important tuning step for NoSQL
systems. Also the application features based tuning can sig-
nificantly impact the performance of NoSQL systems. The
results from HConfig based on HBase give the verification
for this viewpoint.

8. Conclusion

We have presented a configuration management framework
named xConfig for disk-resident NoSQL systems such as
HBase. With xConfig, its users analyse the range of config-
uration parameters related to the runtime performance, and
then xConfig system makes the parameter tuning recommen-
dations for different workloads in the form of tuned poli-
cies. Our HBase based prototype HConfig verifies that the
tuning strategies work effectively, the tuned configurations
for write-intensive workloads outperform the default con-
figuration while offering significantly speedup. Although
this paper uses HBase as the main example to illustrate the
xConfig design and the tuning strategies related to the ef-
ficiency of memory, storage and network, but the config-
uration management framework also applies to other dis-
tributed NoSQL systems.
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Gibson, A. Fuchs, and B. Rinaldi, “Ycsb++: Benchmarking and
performance debugging advanced features in scalable table stores,”
Proc. 2nd ACM Symposium on Cloud Computing, SOCC ’11, New
York, NY, USA, pp.9:1–9:14, ACM, 2011.

[37] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. Paulo, J. Pereira, and
R. Vilaça, “Met: Workload aware elasticity for nosql,” Proc. 8th
ACM European Conference on Computer Systems, EuroSys ’13,
NY, USA, pp.183–196, 2013.

[38] S. Das, D. Agrawal, and A. El Abbadi, “G-store: A scalable data
store for transactional multi key access in the cloud,” Proc. 1st
ACM Symposium on Cloud Computing, SoCC ’10, NY, USA,
pp.163–174, 2010.

[39] S. Nishimura, S. Das, D. Agrawal, and A.E. Abbadi, “Md-hbase:
A scalable multi-dimensional data infrastructure for location aware
services,” A scalable multi-dimensional data infrastructure for loca-
tion aware services,” 12th IEEE International Conference on Mobile
Data Management (MDM’11), pp.7–16, June 2011.

[40] B. Baryshnikov, C. Clinciu, C. Cunningham, et al., “Manag-
ing Query Compilation Memory Consumption to Improve DBMS
Throughput,” Proc. 3rd International Conference on Innovative Data
Systems Research, CIDR’07.

[41] D. Wiese, G. Rabinovitch, M. Reichert, and S. Arenswald, “Auto-
nomic Tuning Expert: A Framework for Best-practice Oriented Au-
tonomic Database Tuning,” Proc. 2008 Conference of the Center for
Advanced Studies on Collaborative Research: Meeting of Minds,
CASCON ’08, Ontario, Canada, pp.3:27–3:41, ACM, 2008.

[42] Microsoft Corporation, “SQL Server 2008 R2 Books Online: Mem-
ory Management Architecture,” “https://msdn.microsoft.com/en-us/
library/cc280359(v=sql.105).aspx,” May 2015.

[43] IBM DB2, “https://www.ibm.com/analytics/us/en/technology/db2/”

http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/1721654.1721659
http://dx.doi.org/10.1145/1394127.1394128
http://dx.doi.org/10.1109/mc.2011.389
http://dx.doi.org/10.1016/j.is.2013.05.002
http://dx.doi.org/10.1007/s002360050048
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/2452376.2452445
http://dx.doi.org/10.1145/1353452.1353455
http://dx.doi.org/10.14778/2556549.2556571
http://dx.doi.org/10.1145/1583991.1584009
http://dx.doi.org/10.14778/1454159.1454167
http://dx.doi.org/10.1145/2038916.2038925
http://dx.doi.org/10.1145/2465351.2465370
http://dx.doi.org/10.1145/1807128.1807157
http://dx.doi.org/10.1109/mdm.2011.41
http://dx.doi.org/10.1145/1463788.1463792


2282
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

Xianqiang Bao received his B.S. degree
from Huazhong University of Science and Tech-
nology (HUST) and M.S. degree from National
University of Defense Technology (NUDT)
both in Computer Science, China, in 2009 and
2012, respectively. During 2013–2015, he has
been a joint Ph.D. student in College of Com-
puting, Georgia Institute of Technology, USA.
He is now a Ph.D. candidate in Computer Sci-
ence, NUDT. His research interest includes
data management and storage systems, network

computing.

Nong Xiao received his B.S., M.S.
and Ph.D. degrees in Computer Science from
National University of Defense Technology
(NUDT), China. He is now a professor in State
Key Laboratory of High Performance Comput-
ing (HPCL), NUDT. He has been awarded the
“Chang Jiang Scholars Program” professor by
Ministry of Education of China, and the Distinct
Young Scholar by the NSF of China. His cur-
rent research interest includes large-scale stor-
age system, network computing, and computer

architecture.

Yutong Lu received his B.S., M.S.
and Ph.D. degrees in Computer Science from
National University of Defense Technology
(NUDT), China. She is now a professor in
School of Computer, NUDT. Her current re-
search interest includes large-scale storage sys-
tem, high performance computing, and com-
puter architecture.

Zhiguang Chen received his B.S. de-
gree in Computer Science from Harbin Insti-
tute of Technology (HIT), China, in 2007 and
M.S. and Ph.D degree in Computer Science
from National University of Defense Technol-
ogy (NUDT), China, in 2009 and 2013, re-
spectively. Now he is an assistant professor
in the State Key Laboratory of High Perfor-
mance Computing (HPCL), NUDT. His current
research interest includes parallel file system
and solid state storage system.


