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SUMMARY Inrecent data centers, large-scale storage systems storing
big data comprise thousands of large-capacity drives. Our goal is to es-
tablish a method for building highly reliable storage systems using more
than a thousand low-cost large-capacity drives. Some large-scale storage
systems protect data by erasure coding to prevent data loss. As the redun-
dancy level of erasure coding is increased, the probability of data loss will
decrease, but the increase in normal data write operation and additional
storage for coding will be incurred. We therefore need to achieve high re-
liability at the lowest possible redundancy level. There are two concerns
regarding reliability in large-scale storage systems: (i) as the number of
drives increases, systems are more subject to multiple drive failures and
(ii) distributing stripes among many drives can speed up the rebuild time
but increase the risk of data loss due to multiple drive failures. If data
loss occurs by multiple drive failure, it affects many users using a storage
system. These concerns were not addressed in prior quantitative reliabil-
ity studies based on realistic settings. In this work, we analyze the relia-
bility of large-scale storage systems with distributed stripes, focusing on
an effective rebuild method which we call Dynamic Refuging. Dynamic
Refuging rebuilds failed blocks from those with the lowest redundancy and
strategically selects blocks to read for repairing lost data. We modeled the
dynamic change of amount of storage at each redundancy level caused by
multiple drive failures, and performed reliability analysis with Monte Carlo
simulation using realistic drive failure characteristics. We showed a failure
impact model and a method for localizing the failure. When stripes with
redundancy level 3 were sufficiently distributed and rebuilt by Dynamic
Refuging, the proposed technique turned out to scale well, and the proba-
bility of data loss decreased by two orders of magnitude for systems with
a thousand drives compared to normal RAID. The appropriate setting of a
stripe distribution level could localize the failure.

key words: erasure coding, highly redundant storage systems, reliability,
rebuild, Monte Carlo simulation

1. Introduction
1.1 Background

The amount of digital data worldwide is exponentially in-
creasing; it is expected to reach 40 zeta (10%!) bytes in
2020 [1]. In recent data centers, it is not uncommon to have
large-scale storage systems storing petabytes of data. In ad-
dition, high-density platter technology will increase the ca-
pacity of hard disk drives at the rate of 1.4 times per year [2].
Hard disk drives will continue to be used as low-cost media
to store a large amount of data.
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On the other hand, as the capacity of drives increases,
two problems arise regarding data reliability: (i) increase
in rebuild time and (ii) increase in the unrecoverable read
error rate. For (i), an increase in rebuild time contributes
to an increase in the probability of data loss due to multiple
drive failures. For (ii), if the amount of data that are read
in the rebuild process increases, so does the probability of
unrecoverable read errors.

Some recent storage systems use highly redundant
techniques, such as erasure coding [3], to prevent data loss.
Erasure coding can decrease the probability of data loss by
increasing the redundancy level, but normal data write op-
eration will incur a performance penalty known as write
penalty. It also requires additional storage capacity when
the redundancy level is increased, albeit to a lesser degree
than mirroring techniques.

There is a technique to distribute the set of redundant
code and data (stripes) to a large number of drives [4]-[6]
for load balancing. This makes it possible to exploit paral-
lelism, i.e., to read data simultaneously from many drives
and reduce rebuild time compared to other techniques such
as traditional RAID. However, there are concerns regarding
reliability. Although the rebuild time is reduced, when the
number of drives in storage systems is large, say more than
a thousand, multiple drive failures may hit a single stripe
distributed to a large number of drives.

This paper focuses on highly redundant storage sys-
tems that use erasure coding. To achieve high reliability at
the lowest possible redundancy level, we introduce an effec-
tive rebuild method called Dynamic Refuging. This method
(i) rebuilds failed blocks from those with the lowest redun-
dancy level for reliability and (ii) strategically selects blocks
to read for repairing lost data. In the analysis of its reliabil-
ity, we take into account that the redundancy of each block
dynamically changes due to multiple drive failure. Quan-
titative evaluation of the characteristics and techniques de-
scribed above could not be found in previous reliability stud-
ies. We carried out extensive quantitative evaluation through
Monte Carlo simulation, modeling the realistic characteris-
tics of drives by using Weibull distribution, and evaluated
the effect of distributed stripes and Dynamic Refuging on
reliability.

We have already published the initial version of relia-
bility analysis of Dynamic Refuging [19]. The present paper
expands these results by showing a failure impact model and
the method for localizing the failure.
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Distributing stripes to a large number of drives makes
it possible to balance I/O not only for rebuilding but also
for normal processing. However, if data loss is caused by
multiple drive failure, it affects many users who use a stor-
age system. For example, in cloud data centers, stripes with
data loss area are distributed to many logical volumes and it
will affect many users who use virtual machines. We carried
out extensive quantitative evaluation through simulation and
modeling of these characteristics and studied how to achieve
both I/O load balancing and the localization of the failure.

1.2 Related Work

Mean time to data loss (MTTDL) is a reliability index of
storage systems that can easily be calculated and has been
widely used in the field[7]. However, some authors re-
port discrepancies between the actual rate of data loss and
MTTDL[7], [8].

Recently, there have been studies on reliability analy-
sis of storage systems with high redundancy [9], [10] and on
the reliability of RAID6 (dual parity) storage systems on the
basis of actual failure patterns of field storage systems [11].
Compared with earlier work, MTTDL provides an approxi-
mate expression with higher accuracy. However, it was as-
sumed that RAIDG stripes were not distributed among many
drives, and higher redundancy beyond level 2 was not con-
sidered.

The reliability achieved by distributing stripes to many
drives was also studied [12], [13]. The effect of the dynam-
ically changing redundancy of each block due to multiple
drive failure was not considered, as well as an appropriate
rebuild method for that situation. In addition, the mapping
of stripes was calculated using fully static expressions, and it
was difficult to add drives dynamically. In our study, we take
a hybrid approach in which data stripes are randomly and
evenly distributed but their mapping can be calculated using
a unique small static mapping table that is shared among
nodes.

There are storage systems in which stripes are ran-
domly distributed, called “distributed file systems”. For
such systems, e.g., HDFS and GFS, data protection methods
for distributing stripes among a server cluster have been de-
veloped. These systems employ erasure coding to improve
storage capacity efficiency compared to replication [3], [14].
However, methods such as Dynamic Refuging have not been
implemented, and there had been no quantitative evaluation
of reliability.

2. Distributed Storage Systems
2.1 System Overview

We assume distributed storage systems in which data stripes
are distributed across many drives of a system. Figure 1
shows an example of a storage system’s configuration.

A storage system consists of (i) several processor nodes
to handle I/O from host computers, (ii) drives for storing
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data, and (iii) expander switches to connect processor nodes
with multiple drives. The network between the processor
nodes is assumed to be a high-speed network, e.g., 10-Gbit
Ethernet commonly used in data centers. We also assume
that the bandwidth of an expander switch is sufficiently high
compared with that of connected drives. Each node provides
storage volume to the host computers, encodes data by era-
sure coding, and distributes stripes among all drives of the
system. If drive failure occurs, each processor node of the
entire system reads blocks that are necessary to repair the
data of the failed drive. We do not consider node failure
because it will not immediately cause data loss as long as
the drives are normal. However, since node failure affects
system availability, we discuss a data placement method to
minimize data unavailability.

2.2 Data Striping

Figure 2 shows the stripe data structure in the storage system
we assume for this study. Host computers access user data
that are divided into chunks. A chunk is further divided into
a group of data blocks. A small box, denoted as x_yz, repre-
sents an individual block that is either a data block or a re-
dundancy block. The letter x represents the identifier of the
stripe, y represents the type of the block (D: data block, C:
redundancy block), and z is the order index of the data block
or the redundancy block. A chunk is divided into d pieces,
and the storage system generates p redundancy blocks from
the data blocks and writes them to the drives. Erasure cod-
ing is a method for generating redundancy blocks. By using
an erasure coding method with p redundant blocks and the
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Fig.1  Storage system overview.
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Fig.2  Stripe data structure in storage system.
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maximum distance separable (MDS) property, it is possible
to recover up to p of any data blocks that were lost.

When p is increased, the performance penalty of stor-
age systems increases. We show two characteristics of per-
formance penalty: (i) cost of calculating redundancy blocks,
and (ii) drive access cost.

For (i), erasure coding called Cauchy Reed Solomon
(CRS) which has the MDS property is used commonly in
many implementations. Its encoding cost (number of XOR
operations) is O(d X p X L?) and the decoding cost is O(d X
kxL?*)[18], where L represents the Galois field parameter of
GF[2"], and k represents the number of redundancy blocks
available for repairing data blocks. The condition of L is
(d + p) < 2%, soif d/(d + p) is constant and p is increased,
L increases and the encoding and decoding cost increases.
Even if L is assumed to be constant, the cost of encoding
and decoding increases in proportion to p.

For (ii), in a general storage system, the performance is
degraded by read-modify-write in case of small-size random
write access. In the case of simple replication, p additional
write accesses are necessary. In the case of parity-based
methods, 2p + 1 additional accesses (p + 1 read accesses
and p write accesses) are necessary to modify redundancy
blocks by XOR difference.

From (i) and (ii), the increase of the redundancy level
leads to the increase of performance penalty. We need to
achieve high reliability at the lowest possible redundancy
level.

‘We now explain the stripe distribution method. We dis-
tribute blocks in an essentially random fashion because it
is generally necessary to dynamically increase or decrease
the storage capacity of the set of drives in storage systems.
In our study, we took the hybrid approach in which blocks
are distributed randomly under the following rules: (i) Data
blocks and redundancy blocks of the same stripe are dis-
tributed to all different drives. (ii) Each row of a mapping
arrangement pattern is cyclically repeated with a fixed pe-
riod (= ¢). (iii) The blocks in the same stripe must be placed
evenly between the nodes.

Figure 3 shows data mapping with the above rules us-
ing a specific example.

A large cylinder in Fig.3 represents a logical parti-
tion. A logical partition is a set of stripes (red rectangle
in Fig.3). Storage systems provide data blocks to hosts in
the form of logical volumes that are sets of data blocks from
the same logical partition. A small cylinder in Fig. 3 repre-
sents a physical drive. The stripes consisting of data blocks
and redundancy blocks are mapped to one or more physical
drives.

In Fig. 3, it is assumed that a node uses only one logical
partition for simplicity, but a node can use multiple logical
partitions.

The number of logical partitions in the storage system
is equal to g. In cloud data centers, each node provides log-
ical volumes that belong to logical partitions; and hosts use
the logical volumes for running virtual machines.

The upper half of Fig. 3 corresponds to normal RAID
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Fig.3  Data striping with different stripe distribution levels (= ¢).

with ¢ = 1, where the set of stripes whose blocks belong to
a certain logical volume are mapped to a small, fixed num-
ber of physical drives. In the example shown in the lower
half of Fig. 3, with ¢ = 4, the same pattern is repeated ev-
ery four rows. When c is increased, reads for rebuilding are
distributed to a larger number of drives, improving the de-
gree of parallelism. Furthermore, by placing the blocks in
the same stripe evenly between the nodes, it is possible to
perform data access continually during node failure.

In Sect. 4, we evaluate data loss probability at varying
stripe distribution levels.
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Table 1

Name Definition
Number of redundancy blocks in stripe, which represents

Parameter definitions.

P redundancy level of the entire storage system

d Number of data blocks in stripe

D Number of drives in entire storage system

s Number of blocks in stripe (= p + d)

g Number of parity groups in entire storage system (= D /s)

Number of distribution levels, which represents number
of rows of random distribution pattern of stripes
Current redundancy of entire storage system (minimum
redundancy level of all stripes in entire storage system)
k Number of failed drives
MTTRp4s. | Basic rebuild time (Rebuild time of the ¢ = 1 case)
Ofait (£) Drive operational failure probability distribution at time ¢

o

r

Opaile (f) Cumulative drive operational failure probability at time #
S Mean time to scrubbing of drive
E Mean time to unrecoverable error of drive
Flk ) Number of drives containing stripes of redundancy r
’ when £ drives fail
L Ideal data transfer throughput of rebuilding
C Capacity of drive
N Average number of logical partitions which have data loss
blocks

2.3 Dynamic Refuging

Dynamic Refuging is an efficient method of rebuilding for
highly redundant storage systems in which stripes are dis-
tributed among the drives. It combines the following two
ideas: (i) rebuild failed blocks from those with the lowest
redundancy level and (ii) strategically select blocks to read
for repairing lost data.

(i) If stripes are distributed, the redundancy of each area
changes dynamically when multiple drive failures oc-
cur. Figure 4 shows an example redundancy map af-
ter three drive failures, where the configuration is set to
p =3,d =13, and g = 8. Each of the 128 columns rep-
resents a single drive, and each row represents the ad-
dressing of data placement of each drive (i.e., Logical
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Failed drive This drive could be bottleneck if used for rebuilding.
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Fig.5 Strategically selecting stripe data in rebuild process.

Algorithm 1: Stripe data set selection for rebuilding

1 | for stripeid=0to gc —1 do
2 level = get stripe_redundancy level (stripeid)
3 if (level =r) do
4 clear (IgnoreList)
5 forj=0tos —1do
6 drive = get_drive (stripeid, j)
7 for w =0 to level do
8 if (size(IgnoreList) < level) then
9 insert (IgnoreList, drive)
10 break
11 else if (PrefetchCount[IgnoreList[w]] <
PrefetchCount[drive]) then
12 IgnoreList{w] = drive
13 break
14 end if
15 end for
16 end for
17 forj=0tos —1do
18 drive = get drive (stripeid, j)
19 if drive & IgnoreList then
20 insert (RebuildDriveList[stripeid), drive)
21 PrefetchCount[drive] = PrefetchCount[drive] + 1
22 end if
23 end for
24 end if
25 | end for

Block Address). The color of each point represents the
redundancy level (0-3) of each block. Since the number
of black areas is small, rebuilding lost data with low re-
dundancy first makes it possible to efficiently maintain
the redundancy of the entire storage system.

(i) During the rebuild process, the drive that is most heav-
ily accessed will become a bottleneck. Therefore, we
select blocks to read for repairing lost data in such
a way that the bottleneck (dashed circle in Fig.5) is
avoided and the amount of access will be balanced.

Algorithm 1 describes how to select stripe blocks for
rebuilding. For each stripe being restored, IgnoreList repre-
sents the set of drives not read for recovering the lost data,
PrefetchCount[i] represents the number of blocks read from
drive i, and RebuildDriveList[j] is the final output of the al-
gorithm, which represents an array of drives to be read for
repairing stripe j.

This algorithm runs when new drive failure occurs and



AKUTSU et al.: RELIABILITY AND FAILURE IMPACT ANALYSIS OF DISTRIBUTED STORAGE SYSTEMS WITH DYNAMIC REFUGING

the redundancy of the entire system (= r) is changed. The
algorithm checks each stripe, and if the redundancy level of
the stripe is equal to that of the entire storage system, lost
blocks are restored. When level > 0, the rebuild process
can omit reading level blocks, so the drives whose Prefetch-
Count are among the top r are selected in a greedy approach
and are placed in IgnoreList. Finally, the set of drives to be
read for repairing is given in RebuildDriveList.

Next, we analyze the cost of identifying stripes that
need to be recovered. In general methods like Consistent
hashing, the cost depends on drive capacity because it is
necessary to search the whole drives to identify stripes that
have the maximum number of lost blocks as in the Dynamic
Refuging approach. Recently, the drive capacity is on the
order of terabytes, and the number of stripes in a storage
system is on the order of megabytes. Thus, reducing the
cost of stripe identification becomes a challenge.

Since our algorithm reuses the same pattern cyclically
for mapping stripes to physical blocks as described in Fig. 3,
so the calculation cost of stripe identification does not de-
pend on the drive capacity. The calculation cost of stripe
identification is O(g X ¢ X p X (p + d)) that is proportional to
the number of drives (D = g X (p + d)) and the distribution
level (= ¢). Actually, it will take only seconds to calculate
for each drive failure even assuming thousands of drives and
a high level of stripe distribution (e.g. ¢ = 1024).

3. Reliability Model
3.1 Drive Failure Model

There are two major types of drive failure:

1. operational failure of the entire drive due to mechanical
failure of components such as the seek head, and
2. unavailability of only a part of the drive data.

For the type-1 failure, failure probability is time-
dependent (e.g., due to initial failure) [11], [15]. We assume
the Weibull distribution and use the parameters given by El-
erath and Schindler [11], [16]. For the type-2 failure, we can
reduce the chance of data loss by disk scrubbing of the stor-
age system. We use the parameters provided by the same
authors for the mean time to the occurrence of the unrecov-
erable read error area and the mean time to detect and re-
cover the error area. Table 2 lists these parameters obtained
from [16].

Table2  Drive parameters.

Operational Read error rate with Disk

Rebuild Time

failure rate Scrubbing
Weibull Constant Uniform
(n = 12584 days, (20.3 hours) (Mean time of disk scrubbing =
B =1.13) 186.0 hours, Mean time of read

error occurrence = 514.0 days)
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3.2 System State Transition Model

Figure 6 shows the state transition diagram of storage
systems with Dynamic Refuging. Because drive failure
probability related to the individual transition probabilities
changes over time, it is not strictly a Markov model. The
state of the entire storage system can be defined by two pa-
rameters, one is the number of failed drives (= k) and the
other is the minimum redundancy level of all stripes in the
entire storage system (= r). Each state is denoted as “k, r”
in Fig. 6. The state O, represents the case in which drive
failure occurs when the redundancy level of the system is 0,
resulting in data loss. The state U, represents the case in
which the redundancy level of the system is O and unrecov-
erable read error occurs in the read data in rebuilding. There
is a difference between the damage of data loss of the state
Oy, and of the state Uj,s,. The state Oy, represents the case
in which multiple data blocks are lost, while U, represents
the case in which a single data block is lost. The probability
of Uy, is much higher than that of Oy, in realistic condi-
tions as described later.
Each state transition is labeled as follows.

FF: System redundancy level decreases due to operational
drive failure

BF: The system redundancy level does not decrease due to
operational drive failure

UF: The stripe of redundancy level O cannot be restored be-
cause of unrecoverable read error in rebuilding

R: The system redundancy level increases by rebuilding

We now define the transition probabilities of FF, BF,
UF, and R.

The transitions FF and BF shown in Fig. 6 occur when
operational drive failure occurs. If the failed drive contains
the stripe that is at the minimal redundancy level (= r), it
corresponds to FF, otherwise it corresponds to BF. Each
transition probability is expressed by the following equa-
tions:

Fig.6  State transition model of system redundancy with Dynamic
Refuging.
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FF(t,k,r) = Opi(t) - F(k, 1) (1
BF(t,k,r) = Op(t) - (D — k — F(k, 1)) 2)

where Oy,;/(?) is the probability density of operational fail-
ure when time ¢, and F(k, r) represents the number of drives
that contain stripes with redundancy level r or less when the
number of failed drives is k. These transition probabilities
change over time () and depend on the degree of distribution
(c) and the system scale (g). Although this time dependency
is implicit in Fig. 6, our simulation takes it into account, as
we discuss in Sect. 4.

In UF, strictly speaking, it is possible that multiple read
errors overlap in the same stripe. However, since the af-
fected area of error is very small relative to the capacity of
the entire drive, the possibility of multiple occurrences of
the affected area in a stripe is negligibly small compared
with the assumed failure rate of the other failure patterns,
and is ignored for this study. Thus, UF is assumed to occur
only when the storage system has no redundancy (r = 0).
We define w(k, r); to be the number of blocks to read for
rebuild in each cycle (of size c) for each drive i when the
current redundancy level is r and the number of currently
failed drives is k. Then the transition probability of UF is
represented by the following equation.

s k, 0),
UF(k0) = 7 - > W(C) 3)

i€Drives

Finally, R is determined by the following two factors:
(i) the drive with the largest amount of blocks to read be-
comes a bottleneck and (ii) data transfer throughput in the
rebuild process will not exceed the upper limit (= L). Then
R is expressed by the following equation.

C
MTTRpue - max wk,r);’
ieDrivers
R (k,r) = min L 4
w(k, r);
C- ZieDrives —

We evaluate this transition probability in Sect.4.
Strictly speaking, depending on the state transition path, the
number of blocks that have been rebuilt may change. It may
happen that the redundancy of a stripe once repaired is re-
duced by another drive failure. Our model and the simula-
tion took this possibility into account and let the parameters
F(k,r) and w(k, r); count stripes at redundancy levels lower
than r (as well as those at level r) to simplify the state tran-
sition model. Thus our reliability analysis is slightly con-
servative but this will not have a significant effect on our
simulation results.

Refuged data in a rebuild process can be saved in the
spare area of a drive which did not fail and in which another
block of the same stripe is not already stored. Alternatively,
they can be saved in other storage systems. After refuging,
data are restored to spare drives (or replaced drives) asyn-
chronously by the hot spare mechanism. The size of the
refuge area is considered to be negligible compared with the

IEICE TRANS. INF. & SYST., VOL.E99-D, NO.9 SEPTEMBER 2016

entire storage, and it does not greatly affect the probability
of data loss. Therefore, for simplicity, the refuge area and
the sparing process are not reflected in the state transition
model of this paper.

3.3 Failure Impact Model

Now we model the number of logical partitions which have
data loss blocks (= N) when O, occurs. First, we formu-
late the number of logical partitions affected by failed drives.

Since w(k, r); stripes are randomly mapped to logical
partitions, N can be formulated by the same approach as the
general stochastic problem like the dice problem [20].

Firstly, let E(n) be the probability that, when we ran-
domly choose logical partitions n times from g logical par-
titions, the n-th partition is a partition chosen for the first
time.

g- 1 n—1
E(n) = (—) ®)
8

Then, let X(n) be the average number of selected log-
ical partitions when we randomly select logical partitions n
times.

n _1 n
X(n) =y EG) = (1 —(gT) )g (©6)
i=1

N(k) represents the average number of logical parti-
tions which have data loss blocks when k drives fail. From
X(n), we can calculate N(k) as

w(k,0);
g—1 ’
ZieDrives (1 - (T) )g

N(k) = D )

And we can calculate N as a weighted average of
Oj,5:(k) which represents the probability of Oy, occurring
when kdrives fail as

S (N() - Opose(u))
N = D—d
Zu:p (Olost(u))

®)

3.4 Approximation Closed Formula of Reliability

We derive a simplified, approximated formula of data loss
probability and analyze the characteristics of data loss prob-
ability with Dynamic Refuging. First, assuming the degree
of distribution is sufficiently large, the probability of BF
transitions can be regarded as nearly equal to zero. As can
be seen from the parameters in Table 2, the probability of
the state transition is considered to enjoy R > FF. Thus
data loss occurs mainly along the topmost state transition
sequence of the diagram shown in Fig. 6. Furthermore, from
the assumption that the degree of stripe distribution is suf-
ficiently large, rebuild throughput is approximately g times
of the case without stripe distribution, and the rebuild tar-
get area is approximately reduced to 1/g*"! due to Dynamic
Refuging. Therefore, we can approximate the number of
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blocks to read as w(k,p—k); = c-1/g-1/g&" = ¢/gk.
We also approximate the FF transition probability using
an approximate hazard function Op()/t (approximated
by a straight line for lifetime period and find the slope of
the line), which is the approach mentioned by Elerath and
Schindler [11]. Figure 7 shows two main types of failure
state transitions, in which R, can be calculated by Eq. (4) as

L
£ —) ©)

R; = min| ———
L=m (MTTRbW C-d

From this model, we can calculate the approximate
probability of data loss in time ¢ with the following equa-
tions.

OLost(t)
.1 (Ofailc(f) : D)
t
Ofailc(t) . (D - l)
t
Ofailc(t) . (D - l)

i=1 R g

(Ofallc(t)) Hp O(g s—i)

(10)

g
ULost(t)
~1- (Ofailc(l) : D)
t

Ofaite(t) - (D — i)
p-1 -

1
l—l A Oritc(t) - (D — i
i=1 | R, - g1 + fl()t( )

S 1
-2 —
E gr!

Oite (1) - .

(%) 4T s =)

Xt > (11)
g%-RLP—1

Lost(t) = Opos(t) + Urosu(t) (12)

Equation (10) represents the probability of data loss
due to multiple drive operational failure, resulting in data
loss. Equation (11) represents the probability of data loss

Ofite(D) - (D —p)

Osaiteh) - D

Opui®) - (D~ 1)
t

t

L, p-1

Opit(H) - D
/

Opit® - (D~ 1) S-d

21, p-1

Fig.7  Main failure state transition of two failure types.
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due to unrecoverable read error occurring in rebuilding. We
approximate D — i as D for simplicity in Eqgs. (10) and (11).
The probability of data loss of the storage systems is given
by (12), which is the sum of (10) and (11).

In these equations, parameters that relate to scalabil-
ity (i.e., the number of drives) are g and R;. For R;, it is
assumed that the read throughput of rebuild data increases
by at most g times but does not exceed L. In Eq.(11),
]’[f;ol (g-s—1i) ~ g, so Eq.(11) is O(g*"7") with respect
to g. We can see that when p > 3, U, is constant or im-
proves even if the number of drives is increased and net-
work bandwidth is limited. This is the Dynamic Refuging
effect. When p > 4, Oy, is constant or improves even if
the number of drives increases. Since U, is two orders of
magnitude higher than O, assuming the parameters in Ta-
ble 2, the probability of data loss in the case of p = 3 can
be maintained at a constant level under realistic conditions.
We discuss this property in further detail based on realistic
simulation in Sect. 4.

Next, we derive an approximation formula of the num-
ber of nodes affected by data loss. From the assumption of
approximation described in Fig.7 (topmost state transition
sequence of diagram), we consider only the case of k = p
The number of blocks to read in a cycle, w(p, 0);, is larger
than 1 because data loss occurs. We can approximate the
number of blocks prioritized for rebuild by dynamic refug-
ing by c¢/g”, so we can approximate w(p,0); by max(1, g%,).
From the above, N is represented by the following formula,

N =~ [1 - (1 - é)w)) g (13)

4. Simulation Results

Monte Carlo simulation that simulates the reliability of
highly redundant storage systems is very time consuming
because many runs are required to obtain adequate accuracy.
We implemented a simulator and calculated the reliability
under multiple redundancy levels and multiple distribution
levels using GNU Scientific Library [17]. For redundancy
level 3, we needed to run a 48-core x86-64 cluster server
for several weeks to calculate the probability of data loss for
five years of operation. We assume eight nodes in the stor-
age system. We also assume that rebuilding does not use
I/O bandwidth so much as to affect normal I/O processing.
Specifically, we assume L = 1GB/s, which is about 10%
(125 MB/s in each node) of the 10-Gbit Ethernet maximum
bandwidth commonly used in many data centers.

The simulator runs in two phases. In the first phase, the
simulator generates a mapping table according to the rules
described in Sect. 2, selects k drives randomly, and calcu-
lates w(k, r); and F(k,r) by counting blocks whose redun-
dancy levels do not exceed r. The generation of the mapping
table and the calculation are repeated multiple times, and we
take their average value. In the second phase, the simulator
determines the lifetime of the drives based on Weibull dis-
tribution and computes state transitions over the 5-year life-
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Fig.8 Simulation results of probability of redundancy decrease and re-
build time (p = 3, d = 21, D = 384).

time period of systems. The two phases are repeated until
the probability of data loss lies within a certain confidence
interval.

Figure 8 shows the results of simulating state transi-
tions assuming p = 3, d = 21, D = 384. The upper-left
graph shows the average reduction of redundancy during
drive failure (= FF/(BF + FF)). In the graph, x — y rep-
resents the state transition from redundancy level x to level
y when the number of failed drives is p — x. Increasing the
degree of stripe distribution tended to decrease system re-
dundancy. This is a penalty of stripe distribution. When the
current system’s redundancy level (= r) is low, the proba-
bility of decrease in redundancy is low because the num-
ber of drives storing the stripes of that redundancy level
is small. The upper right graph shows the average redun-
dancy recovery time with Dynamic Refuging. We can see
that increasing the degree of distribution of the stripes re-
duces the rebuild time. The rebuild time under a lower sys-
tem redundancy level is shorter. The reason for this is that a
small amount of stripes with the minimum redundancy level
are rebuilt with higher priority. The bottom graph shows
the rebuild-time simulation results that compare application
or non-application of the two key techniques of Dynamic
Refuging: (i) rebuild from the stripes with the lowest re-
dundancy level and (ii) strategically select blocks to read.
Without (i), the redundancy level goes directly back to nor-
mal, e.g., 0 — 3. With (i), the redundancy level is recovered
incrementally, e.g., 0 — 1, 1 — 2, and then 2 — 3. This
dramatically reduces time for recovering redundancy from
level O to nonzero, as shown in the graph. When applying
both (i) and (ii), the rebuild time can be reduced further. For
example, rebuild time for the 1 — 2 transition is reduced by
28% in case of ¢ = 128.

To see the overall properties of the probability of data
loss under the two trade-off factors (higher redundancy re-
duction rate due to drive failure and shorter rebuild time at
higher stripe distribution levels), we simulated the probabil-
ity of data loss. Figure 9 shows the probability of data loss
of redundancy level-3 storage systems. The 95% confidence
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Fig.10  Simulation results on probability of data loss of multiple drive
types of redundancy level 2 (d = 14, p = 2).

interval of the simulation results was +10%. We found that
by increasing the degree ¢ of stripe distribution, reliability
greatly improved. When stripes are distributed (without Dy-
namic Refuging, dashed lines in Fig.9), the probability of
data loss was about 40 times less than the non-distributed
case when D = 1536. With Dynamic Refuging (solid lines),
the probability of data loss was about 10 times less than
without Dynamic Refuging when D = 1536. Interestingly,
Dynamic Refuging was significantly more effective in larger
systems with higher distribution levels. A somewhat sur-
prising result is that, under the identical policy, a system
with more drives can attain a lower data loss probability
than a smaller system, as shown by three solid-line plots
(for D = 48, 384, 1536) in Fig. 9.

Next, Fig. 10 shows the probability of data loss with
initial redundancy level 2. The 95% confidence interval of
the simulation results was +5%. We compared the simula-
tion results of ¢ = 1 (no distribution) with the RAIDG6 reli-
ability calculator [16] results and those were approximately
the same. We used the same capacity ratio (= 1:7) of re-
dundant blocks and data blocks as the simulation with re-
dundancy level 3. The results show that by increasing the
degree of stripe distribution, the probability of data loss de-
creased by about 5 times when D = 384. The “reliability
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inversion” phenomenon observed in Fig. 9 was not observed
in this redundancy level.

To justify our simulation results, we compared them
with the values of Eq. (12) (short horizontal dotted lines in
Fig.9 (¢ = 1024) and Fig. 10 (¢ = 128)). The error was
8% on average and at most 22%. This seems to support the
simulation results.

Figure 11 shows the probability of data loss for vari-
ous numbers of drives. We compared Dynamic Refuging
(with stripe distribution) with triple-parity RAID (no stripe
distribution). When D is increased, the probability of data
loss increases with triple-parity RAID but decreases with
Dynamic Refuging because of the reduction of block to be
repaired.

Figure 12 shows the number of logical partitions that
contain data loss blocks when data loss occurs by multiple
drive failures, computed using the approximating formula
(Eq. (13)) and by simulation. We can see that the values of
the approximation formula and simulation results are almost
the same. This also supports the simulation results.

The approximate formula (13) shows that the average
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Fig.11  Comparison of data loss rate with various numbers of drives (p =
3,d =21,c=1024).
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number of logical partitions that contain data loss blocks
(= N)is only 1 when ¢ < g”, which means we can localize
the failure impact. From Figs.9 and 10, if the number of
drives is larger than hundreds and c is larger than g”~!, data
loss probability is close to the theoretical limit value. So,
it is recommended that c is set to g?~! to minimize the data
loss probability and the effect of data loss if network band-
width is unlimited. Since our simulation considers the limit
of network bandwidth, stripe distribution effect of reducing
data loss probability is limited. So it is recommended that ¢
is set to a value smaller than g”~'.

5. Conclusion

For highly redundant storage systems using erasure coding
and distributed stripes, we have built a reliability model that
reflects the behavior of dynamically changing redundancy
of the blocks by multiple drive failure, and introduced an ef-
ficient rebuild method called Dynamic Refuging. We evalu-
ated data loss probability and the impact of failure by Monte
Carlo simulation with a realistic drive failure characteristics.
We also derived an approximate closed formula of data loss
possibility and failure impact. The findings we obtained are
summarized as follows:

i. For redundancy level 2, we have quantitatively shown
that distributing stripes over many drives lowers data
loss probability of the whole system compared to the
non-distributed case (as in normal RAID (¢ = 1)).
The result was obtained by simulation under realis-
tic settings which assume a modest use of network
bandwidth for rebuilding and take into account the dy-
namic change of drive failure rates and of the number
of blocks at individual redundancy levels.

ii. For redundancy level 3, we have quantitatively shown
that aggressive stripe distribution combined with Dy-
namic Refuging allows us to scale the system up to
more than a thousand drives in the sense that it main-
tains or even lowers data loss probability in this scale
range. This was confirmed both by simulation under re-
alistic settings and approximate closed formulas. Sim-
ilar phenomena were not observed with redundancy
level 2, suggesting the importance of careful analysis
of different individual cases.

iii. For systems with a thousand drives, it is recommended
that ¢ is set to g”~! to minimize the data loss probability
and the effect of data loss, or to a value smaller than
g”~! when we consider network bandwidth.

In summary, even with more than a thousand drives
and assuming limited network bandwidth in data centers, a
high level of stripe distribution and Dynamic Refuging will
jointly make highly redundant storage systems more reliable
and viable.
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