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PAPER

Semi-Supervised Clustering Based on Exemplars Constraints

Sailan WANG†a), Member, Zhenzhi YANG††, Jin YANG†††, and Hongjun WANG††††, Nonmembers

SUMMARY In general, semi-supervised clustering can outperform un-
supervised clustering. Since 2001, pairwise constraints for semi-supervised
clustering have been an important paradigm in this field. In this paper, we
show that pairwise constraints (ECs) can affect the performance of clus-
tering in certain situations and analyze the reasons for this in detail. To
overcome these disadvantages, we first outline some exemplars constraints.
Based on these constraints, we then describe a semi-supervised clustering
framework, and design an exemplars constraints expectation–maximization
algorithm. Finally, standard datasets are selected for experiments, and ex-
perimental results are presented, which show that the exemplars constraints
outperform the corresponding unsupervised clustering and semi-supervised
algorithms based on pairwise constraints.
key words: semi-supervised clustering, mixture model, pairwise con-
straints, exemplars constraints

1. Introduction

Clustering is an important aspect of unsupervised learn-
ing and can be regarded as an independent tool or pre-
processing step for other learning models. Clustering is
a totally unsupervised learning method, but in real situa-
tions, some degree of prior knowledge about the data can
often be obtained. Naturally, if this prior knowledge can
be integrated into the algorithm, the performance will im-
prove. In the past decade, semi-supervised clustering has
become an important variant of the traditional clustering
paradigm [1], [2]. Of the existing semi-supervised cluster-
ing methods, the instance levels of must-link and cannot-
link constraints are very popular because they are simple,
effective, and interpretable. Wagstaff [3] defined a must-link
(ML) constraint as one in which two data points must be
in the same cluster, whereas a cannot-link (CL) constraint
states that two data points must not be placed in the same
cluster. Moreover, she proposed a typical constrained k-
means algorithm based on these constraints. These advances
led to many semi-supervised clustering methods based on
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pairwise constraints, such as constrained complete-link [4],
constrained expectation–maximization (EM) [5], HMRFK-
means [6], MPCKmeans [7], kernel methods [8]–[13], ma-
trix factorization-based methods [14], and constraint projec-
tion [15]–[18]. Kulis et al. [8] reported a kernel algorithm
to minimize a semi-supervised clustering objective function.
Their method can cluster both vector-based and graph-based
data. Shental et al. [5] developed a framework to incorpo-
rate MLs and CLs into the mixture model estimation pro-
cedure. Pairwise constraints on the original data points can
be projected to a low-dimensional space for ensemble learn-
ing [16]. The new data points in the low-dimensional space
contain additional information about the original data that
can be used for semi-supervised learning. Pairwise con-
straints can also be transformed into a sequence of con-
vex quadratic programming problems under a constrained
concave–convex procedure [18]. A sub-gradient projection
optimization algorithm can then be used to solve the prob-
lems. Constraint clustering can also be employed to find a
set of features in scene images [19], and this set can then be
integrated using pairwise constraints to enable scene classi-
fication. Elite pairwise constraints are suitable in each op-
timal partition, and do not present any conflicts [20]. Pair-
wise constraints can be constructed according to labels, but
they can also be generated independently. Based on labels
and constraints, the reproduction of constraints can be in-
ferred and propagated [21]. Online constraint clustering al-
gorithms [22] are designed to handle large datasets while
preserving their simplicity and effectiveness. For sparse
data, a genetic algorithm can be applied to preserve the pair-
wise constraints while simultaneously completing the di-
mensionality reduction procedure.

Furthermore, the neighbors of constraint data points
can be considered as potential constraints, which is effec-
tively propagating additional information [23], [24]. Mo-
tivated by active learning, both Xu et al. [25] and Basu
et al. [26] used the active selection of pairwise constraints
to achieve improved clustering performance, and Basu
et al. [26] extended the pairwise constraints for active semi-
supervised clustering. An alternative approach is to view
clustering as a form of generative modeling, and learn a
semi-supervised generative model [27] using approximate
Bayesian posterior inference in the paper, where a function
is learned from class labels and latent variables associated
with the data.

Most methods consider the positive side of pairwise
constraints. One exception is a paper by Davidson [28], who

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



1232
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

considered their negative influence. Motivated by this, we
consider the following:

1. Pairwise constraints have a negative influence, decreas-
ing the accuracy of clustering and, in some cases, in-
creasing the runtime. To some extent, the model pro-
posed in this paper solves these problems.

2. What are the optimal pairwise constraints? and how
can we find them and improve the clustering results?

In this paper, we address these two motivations and illus-
trate ECs in detail. There are two main contributions of this
paper.

1. We discover that not all constraints improve the cluster-
ing accuracy, and in some cases, they decrease the ac-
curacy and increase the computational load. We study
the problem of selecting good data points to form con-
straints. This is the first attempt to state ECs for the
improvement of clustering performance. We also ex-
plain why ECs improve clustering performance. The
reason is that ECs can reduce the ambiguousness and
increase the coherence [28] of the constraints.

2. A semi-supervised clustering framework based on ECs
is designed, and an ECs mixture model (ECMM) is
proposed for semi-supervised clustering. Furthermore,
the difference between ECMM and constrained EM is
illustrated, and the reason why ECMM improves the
clustering results is discussed.

The remainder of this paper is organized as follows. ECs are
illustrated in detail in Sect. 2. In Sect. 3, a semi-supervised
clustering framework based on ECs is proposed, and a mix-
ture model is formulated using these ECs. Experimental re-
sults are presented in Sect. 4. The paper ends with our con-
clusions in Sect. 5.

2. Exemplars Constraints

In this work, we propose a new constrained clustering
method as an extension of pairwise constraint clustering.
The disadvantages are illustrated in detail using examples.
We will show that, compared with pairwise constraints clus-
tering, ECs clustering improves performance, reduces com-
putational complexity, and requires far fewer labeled data
points. The notations used in the paper are summarized in
Table 1.

Table 1 Notations

Symbol Explanation

K the number of clusters
N the number of data points
X the set of data points
M the set of must-links
C the set of cannot-links
L(ε) lower bound function of ε
i,j,k,e the variables for count
π the mixing coefficients
Θ the set of parameters of a mixture model
Σ, μ variance and mean of a Gaussian distribution

2.1 Pairwise Constraints

Pairwise constraints [3] consist of ML and CL constraints.
An ML constraint is one in which two data points must be
in the same cluster, and a CL constraint states that two data
points must be in different clusters. These are simple but ef-
fective statements, and have therefore received considerable
attention. However, there are four disadvantages of pairwise
constraints.

1. Semi-supervised clustering based on pairwise con-
straints cannot guarantee improved clustering accuracy,
and may even decrease the accuracy of clustering com-
pared with the corresponding unsupervised clustering
algorithm.

2. The runtime is long, because the algorithms consider
many pairs in dealing with pairwise constraints. Fur-
thermore, the algorithms may not converge if there are
conflicts between constraints.

3. Generally, many constraints are needed to achieve good
performance, but labels are often unavailable and com-
putationally expensive. Even when labeled data are
available, they may conflict with one another and af-
fect the results of clustering.

4. Some data points with pairwise constraints are ambigu-
ous within a cluster, such as data point B in Fig. 1 (a),

Fig. 1 Pairwise constraints vs. exemplars constraints
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Table 2 The average micro-precision (MP) of different algorithms on
each dataset. Semi-supervised clustering algorithms of COP-kmeans and
constrained EM cannot always outperform the corresponding unsupervised
clustering algorithms, such as kmeans and EM. Num denotes the number
of pairwise constraints for semi-supervised clustering.

Dataset Num Kmeans COP-Kmeans EM Constrained EM

haberman 30 0.5121±0.0254 0.5852±0.0216 0.6667±0.0234 0.6729±0.0421
iris 15 0.8933±0.0015 0.9067±0.0012 0.9667±0.0000 0.9660±0.0009
wdbc 50 0.8541±0.0002 0.8489±0.0023 0.9554±0.0008 0.9513±0.0021
wine 17 0.6632±0.0122 0.7130±0.0042 0.7528±0.0024 0.7752±0.0087
ionosphere 35 0.7123±0.0006 0.7068±0.0026 0.8168±0.0034 0.8324±0.0031
bupa 35 0.4840±0.0012 0.5569±0.0122 0.5072±0.0055 0.4991±0.0080
balance 60 0.5158±0.0048 0.5506±0.0016 0.5186±0.0042 0.5280±0.0016
heart 28 0.5926±0.0221 0.5926±0.0042 0.7148±0.0025 0.7259±0.0034

Table 3 Computation time (s) of different algorithms on each dataset. It
is clear that the semi-supervised clustering algorithms of COP-kmeans and
constrained EM take longer than unsupervised clustering algorithms.

Dataset Num kmeans COP-kmeans EM Constrained EM

Haberman 30 0.0031 0.0375 0.0500 0.2781
iris 15 0.0047 0.0187 0.0437 0.7688
wdbc 50 0.0047 0.0938 0.1250 0.3312
wine 17 0.0016 0.0297 0.0938 0.7641
ionosphere 35 0.0652 0.2316 0.0984 0.2568
bupa 35 0.0078 0.0359 0.1047 0.4625
balance 60 0.0078 0.1672 0.1094 0.7344
heart 18 0.1652 0.3473 0.2023 0.3021

which may cause a constraint conflict.

For an experimental test, COP-kmeans [3], kmeans, con-
strained EM [5], and EM algorithms were applied to sev-
eral UCI datasets. The accuracies and runtime are listed in
Tables 2 and 3, respectively. There are positive and nega-
tive results; the negatives are more interesting. The algo-
rithms based on pairwise constraints can have lower cluster-
ing accuracy (Table 2). Additionally, the time complexities
of Cop-kmeans and kmeans are O(nkct) and O(nkt), respec-
tively. Thus, more constraints will lead to increased compu-
tation time. From Table 3, it is clear that semi-supervised
clustering algorithms require more computation time than
the corresponding unsupervised clustering algorithms.

2.2 Exemplars Constraints

Exemplars are the center objects that represent a group in
a dataset [29]. For example, consider two clusters of 1000
data points generated by four Gaussian distributions, as
shown in Fig. 1. In Fig. 1 (b), A, C, D, and E are exem-
plars of data points. In this example, there are a total of∑1000−1

i=1 i = 499500 pairwise constraints. If exemplars were
used to represent all the other data points in the same Gaus-
sian distribution, there would be a total of only

∑4−1
i=1 i = 6

pairwise constraints. These are known as ECs. From this
point of view, ECs are special cases of pairwise constraints.

We consider ECs for two reasons: the disadvantages
of pairwise constraints, and the advantages of ECs. There
are generally too many pairwise constraints within a dataset,
and using them is therefore time-consuming, as can be in-
ferred from Table 3. Moreover, semi-supervised learning

based on pairwise constraints cannot always improve the
clustering performance, and is sometimes worse than un-
supervised learning (see Table 2). Finally, ECs are less
likely to cause conflicts. ECs can be split into two cate-
gories: exemplar-must-link (EML) denotes that the two ex-
emplars must be in the same cluster, and exemplar-cannot-
link (ECL) implies that the two exemplars must be in differ-
ent clusters.

In practice, clustering has no ground-truth label infor-
mation with which to judge the correctness of prior knowl-
edge. Indeed, the prior knowledge could be uncertain and
affect the clustering accuracy. If prior knowledge is used
to generate the ECs, then these constraints may conflict.
In this paper, we use coherence [28] to avoid conflicting
constraints. Coherence measures the degree of agreement
within the constraints themselves, with respect to a given
distance metric [28].

Another measure, ambiguousness, can be defined to
evaluate the quality of the ECs and pairwise constraints.
Ambiguousness refers to the normalized distance to the
cluster center. If the distance of a point to its two nearest
cluster centers is the same, the ambiguousness of the point
is 1. The ambiguousness can be measured by

Λ(xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|xi−μk |
|xi−μ j | if |xi − μk | ≤ |xi − μ j|
|xi−μ j |
|xi−μk | if |xi − μk | > |xi − μ j|

(1)

where μk and μ j are the two nearest cluster centers to xi;
Λ(xi) takes values from 0 to 1. More ambiguousness leads
to less coherence, and less coherence is an important fac-
tor in decreasing the clustering performance. In contrast,
less ambiguousness is likely to lead to better performance.
Thus, ECs are better than pairwise constraints in improv-
ing the clustering performance. For example, in Fig. 1 (a),
Λ(A) = 0.68, Λ(B) = 0.97, and Λ(C) = 0.06. Point B
has the most ambiguousness of these three data points, and
will thus degrade the clustering performance. In Fig. 1 (b),
Λ(A) = 0.05, Λ(C) = 0.03, and Λ(D) = 0.02; all ambigu-
ousness values are close to zero, which suggests high coher-
ence in the constraint set. High coherence in the constraint
set will improve the clustering performance, as shown in
[28].

2.3 Finding Exemplars

In this subsection, we address the problem of finding a good
exemplar that represents the other data points in a group.
Formally, an objective function is defined as follows:

�(xe) =
1
N

K∑
e=1

N∑
{xi→xe,i=1}

|xi − xe|2, {iN
1 , e

K
1 }, (2)

where xe is an exemplar and xi → xe means that xe can
represent the data point xi. There are a number of methods
for deriving objective functions to find the exemplars [30].
Exemplar-based clustering is the task of not only partition-
ing each group, but also of identifying its most representa-
tive member [30]. Affinity propagation (AP) [31], density
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peak (DP) [32], and k-centroid algorithms have been devel-
oped to find exemplars. In this paper, we do not place any
requirement on the number of exemplars to be found, al-
though this is commonly greater than the number of classes
(the ground truth).

2.4 Exemplars Constraints Propagation

EML constraints are those that require two exemplars to be
in the same cluster. EML constraints are positively transitive
as pairwise constraints [33]. Let xi, x j, and xk be exemplars
such that

(xi, x j) ∈ M, (xi, xk) ∈ M =⇒ (x j, xk) ∈ M, (3)

where M is the set of EMLs. ECL constraints specify that
two exemplars must be placed in different clusters. Let xi,
x j, and xk be exemplars such that

(xi, x j) ∈ C, (xi, xk) ∈ M =⇒ (x j, xk) ∈ C, (4)

where C is the set of ECLs. Let xi, x j be the exemplars, and
let xk be a neighbor of xi. Then,

(xi, x j) ∈ C =⇒ (x j, xk) ∈ C, (5)

(xi, x j) ∈ M =⇒ (x j, xk) ∈ M. (6)

For different types of dataset, neighbors are selected
in different ways. Given the data X = {x1, x2, . . . , xN} with
m dimensions, let ki and k j be two connected components,
M = {(xi, x j)|xi ∈ ki; x j ∈ ki} be the EML constraint set,
C = {(xi, x j)|xi ∈ ki; x j ∈ k j; ki � k j} be the ECL con-
straint set, and μ = {xl|ρ ≥ d(xe); xl ∈ X; l = (1, . . . , L)}
be the set of neighbors of xi. The simplest approach is
to use the Euclidean distance to choose the neighbors, so
d(xe) =

√||xi − xe||2. The geodesic distance can also be used
to select neighbors. We use a Gaussian function centered at
the given constraint xA, xB to determine the weight of xi, x j,
because a Gaussian function can propagate constraints that
are closest to the source ECs and will fall off smoothly. If
the dataset is in discrete space, we can use the normalized
mutual information (NMI) NMI(xi, x j) =

I(xi,x j)√
H(xi)H(x j)

[34]

for constraint propagation to select neighbors.

3. A Semi-Supervised Clustering Framework Based on
Exemplars Constraints

3.1 Framework Description

In this subsection, we describe a framework based on ECs
for semi-supervised clustering. The framework proceeds as
follows.

Framework 1: (A semi-supervised learning framework
based on ECs [SSL-EC])
Input: Dataset {xi}Ni=1, where xi denote data points.
Output: Cluster membership of every point.

1. Select one algorithm to find exemplars in a dataset:

a. k-centroid is used to find exemplars in the dataset;
b. Or AP is used to find exemplars in the dataset;
c. Or DP is used to find exemplars in the dataset.

2. The set of EMLs and ECLs is generated according to
the labels of the exemplars.

3. Avoid EC conflicts: the coherences of M and C are
calculated. coh(M) =

∑NM

i=1
NM−con(mi)

NM
where con(mi) is

a function that returns 1 if mi is not a conflict pair, ac-
cording to the pair’s true labels; otherwise, the function
returns 0. coh(C) is calculated in the same way.

4. If coh(M) < ω or coh(C) < ω, then the conflict con-
straints are deleted one by one until coh(M) ≥ ω and
coh(C) ≥ ω (generally, if we want to delete all conflict-
ing constraints, ω = 1).

5. Select one constraint-based algorithm (clustering algo-
rithms based on ML and CL) for clustering:

a. COP-kmeans is used for clustering;
b. Or constrained EM is used for clustering;
c. Or constrained FCM is used for clustering.

In this framework, the EC conflicts are detected and
avoided.

3.2 An Exemplars Constraints Mixture Model

In statistical machine learning, mixture models are very
popular for unsupervised learning problems, as they can
sample data from a weighted sum of several distributions.
Gaussian mixture models (GMMs) are usually applied to
process continuous data that is assumed to follow a Gaus-
sian distribution. Let X = {xi}, i ∈ (1, . . . ,N)} be the set of
all data points, C = {(xa, xb), (a, b) ∈ (1, . . . , S ), S ≤ N} be
the set of ECs, and Y = {yi, . . . , yN} be the assignment of the
original data points. Finally, let E denote the event. More
formally, a GMM is given by:

P(x|Θ) =
N∑

i=1

πi p(x|θi), (7)

where πi is the weight of each Gaussian distribution and θi
is its corresponding parameter. The expectation of the log-
likelihood is the following:

E[log(p(X,Y |Θ(t+1), E))|XΘt, E]

=
∑

Y

log(p(X,Y |Θ(t+1), E))P(Y |X,Θt, E). (8)

Using Bayesian rules,

P(Y |X,Θ, E) =

∏S
j=1 δy j p(yi|x j,Θ)∑

Y
∏S

j=1 δy j p(yi|x j,Θ)
. (9)

The points in the set of ECs depend on one another. Thus,

P(X,Y |Θ(t+1), E) =
S∏

j=1

πy j

N∏
i=1

p(xi, yi|Θ(t+1)). (10)
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Hence, the log-likelihood is:

log P(Y |X,Θ, E)

=

S∑
j=1

∑
xi∈M

log P(xi|yi,Θ
(t+1)) +

S∑
j=1

log(πy j ), (11)

and hence the posterior probability is:

P(y j = S |x j,Θ) =
πk
∏

xi∈M p(xi|y j
i = k,Θ)∑K

k=1 πk
∏

xi∈M P(xi|yi,Θ)
. (12)

Commonly, EM is used to obtain the probability by estimat-
ing the parameters as follows.

π(t+1) =
1
N

N∑
i=1

P(yi = k|xi,Θ
t), (13)

μ(t+1)
k =

∑N
i=1 XiP(yi = k|xi,Θ

t)|xi|∑K
i=1 P(yi = k|xi,Θt)|xi|

, (14)

Σ
(t+1)
k =

∑N
i=1 Σ

t
ikP(yi = k|xi,Θ

t)|xi|∑K
i=1 P(yi = k|xi,Θt)|xi|

. (15)

In the original EM algorithm, the E-step sums all of the
probabilities of different assignments. However, in this
modified EM, the E-step only sums the probabilities that
comply with the constraints.

3.3 EM Algorithm Procedure

In this subsection, the EM algorithm for ECs is described in
detail according to the above inference. The proposed algo-
rithm requires the initial parameters (π0, μ0,Σ0). It can be
started from a random guess, with each data point in each
constituent distribution computed by calculating the expec-
tation values for the membership variables. The algorithm
alternates between the E-step and M-step until convergence,
and the optimal parameters (π∗, μ∗,Σ∗) can be found for the
proposed model.

Exemplars Constraints EM Algorithm:
Input: Dataset and random parameters: {xi}Ni=1 and
(π0, μ0,Σ0)
Output: (π∗, μ∗,Σ∗), where π∗ is the probability of cluster
membership of every point.

1. AP is used to find exemplars according to the parameter
(πt). The sets M and C can be changed in each iteration
according to (πt).

2. Avoid EC conflicts according to the third and fourth
steps of Framework 1.

3. E-Step: Calculate the expectation of the log-likelihood
over all possible assignments of data points that com-
ply with the given constraints.

π(t+1) =
1
N

N∑
i=1

P(yi = k|xi,Θ
t).

4. M-Step: Maximize the expectation by differentiating
with respect to the current parameters.

μ(t+1)
k =

∑N
i=1 XiP(yi = k|xi,Θ

t)|xi|∑K
i=1 P(yi = k|xi,Θt)|xi|

,

Σ
(t+1)
k =

∑N
i=1 Σ

t
ikP(yi = k|xi,Θ

t)|xi|∑K
i=1 P(yi = k|xi,Θt)|xi|

.

After t iterations, the expectation value is πt. In the (t + 1)th

iteration,

N∑
i=1

L(πt, μt,Σt) ≤
N∑

i=1

L(πt, μ(t+1),Σ(t+1)) (16)

≤
N∑

i=1

L(π(t+1), μ(t+1),Σ(t+1)). (17)

The first inequality holds because, in the E-step, (16) is
the maximum of L(πt, μ(t+1), Σ(t+1)). The second inequal-
ity holds because, in the M-step, (17) is the maximum of
lower bound function L(π(t+1), μ(t+1),Σ(t+1)). Therefore, the
objective function is non-decreasing until convergence [35],
which means that the proposed algorithm can be conver-
gence step by step on the condition without any constraint
conflicts. We discovered that the algorithm in the pa-
per [5] oscillated in the E- and M-steps because of con-
straints conflict. So in this paper, the avoiding EC conflicts
steps are added before E-step, which can solve the vibrat-
ing problem among E- and M-steps. Bruneau et al. [36]
proved that the EM algorithm framework can be conver-
gence if the data points follow exponential families distri-
bution. ECEM is designed according to the EM algorithm
framework, moreover, the data points follow a Gaussian dis-
tribution which belongs to exponential families. More re-
cently, Wu et al. [37] use oracle convergence theorem, em-
pirical convergence theory, optimal empirical convergence
theorem and optimal rate convergence theorem to formulate
a theoretical framework to prove the convergence of EM al-
gorithm. More detail information can be found in the pa-
per [37]. Regarding the computational complexity, before
the algorithm goes into the E-step and M-step iterations,
avoiding EC conflicts requires o(Nς) operations, where ς is
the percentage of data points involved. In general, ς ranges
from 1–10% and ς < 1. Calculating all possible assign-
ments of data points to sources has a complexity in each
E-step of o(NK). In the M-step, all μ and Σ are updated on
each iteration, which has a complexity of o(NK). Overall,
the complexity of the proposed algorithm is o(2NKt + Nς),
where N is the number of data points, K is the number of
clusters, and t is the number of iterations. The complexity
of constrained EM is o(2NK(t + s)), where s is the number
of iterations of constraint conflict processing and s => 1.
Constrained EM has a higher computational load than the
proposed algorithm, because o(2NK(t + s)) is greater than
o(2NKt + Nς).

In [5], the constraints modify the E-step (expectation
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computation) such that the sum is taken only over the assign-
ments that comply with the given constraints. The most im-
portant difference between the proposed ECs EM and con-
strained EM [5] is that ECs EM can avoid constraint con-
flicts, whereas constrained EM cannot. These constraint
conflicts pose two disadvantages to constrained EM. First,
constrained EM requires many more iterations (E-step and
M-step) than ECs EM, which increases the time to conver-
gence. Second, if all pairwise constraints conflict with one
another at extremely case such as (C 
 (xi, x j) ∈ M), con-
strained EM will oscillate in the E- and M-steps. The pre-
processing step can be used to delete the extremely case to
avoid the algorithm vibration.

4. Empirical Study

4.1 Experimental Setup

Eighteen real-world datasets from the UCI machine learning
repository were used to conduct experiments. The number
of objects, features, and classes of each dataset are listed in
Table 4.

To evaluate clustering performance, the micro-
precision [38] was used to measure the accuracy of the clus-
ter with respect to the true labels. The micro-precision is
defined as

MP =
K∑

h=1

ah/N (18)

where ah denotes the number of objects in cluster h that are
correctly assigned to the corresponding class. We identify
the corresponding class for a cluster h as the true class hav-
ing the largest overlap with the cluster, and assign all objects
in cluster h to that class. Note that 0 ≤ MP ≤ 1, with 1 in-
dicating the best possible consensus clustering (i.e., in full
agreement with the class labels). We considered pairwise
constraints and ECs. Pairwise constraints were constructed

Table 4 Number of instances, features, and classes in each dataset.

Dataset Characteristic Instances Features Categories

iris real 150 4 3
wdbc real 569 30 2
wine real 178 13 3
ionosphere real 351 34 2
bupa discrete 345 6 2
balance discrete 625 4 3
hear real 270 13 2
haberman discrete 306 3 2
wave real 5000 40 3
labor real 57 16 2
user real 258 5 4
climate real 540 18 2
seeds real 210 7 3
plrx real 182 12 2
vertebral real 310 6 2
magic real 19020 10 2
bank real 45211 16 2
diabete real 4839 5 2

as follows: 5% of the data points were randomly selected
and the constraints were produced according to the labels of
the selected data points. To construct the ECs, the k-centroid
was first used to find the exemplars among the datasets. The
ECs were produced according to the labels of these exem-
plars.

4.2 Performance Comparison

To evaluate the proposed algorithm, we compared its perfor-
mance against five conventional algorithms.

1. Unsupervised clustering:

a. K-means: perform K-means on the original
datasets;

b. EM: perform EM on the original datasets;

2. Semi-supervised clustering:

a. COP-Kmeans [3]: perform COP-Kmeans on the
original datasets with 5% random constraints;

b. Constrained EM [5]: perform constrained EM on
the original datasets with 5% random constraints;

c. ECs EM: perform the proposed ECs EM on the
original datasets with 5% ECs.

The experiments were repeated 10 times. The averaged re-
sults are presented in Table 5. The proposed ECs EM algo-
rithm achieved the best results among the algorithms on 15
datasets. On the balance and bupa datasets, ECs EM scored
second best. Among all the results, we focus on those given
by the constrained EM algorithm and ECs EM. We can see
that ECs EM outperformed constrained EM on each dataset.
Table 5 also shows that ECs EM achieved the best average
micro-precision (MP), with a value of 0.7702.

Some of the results in Table 5 are very close to one
another. To give a more detailed comparison, a 1 × n com-
parison of Table 6 was performed by means of the Fried-
man Aligned Rank test [39]. ECs EM was selected as the
control method. For the five comparative algorithms and
18 datasets, the aligned values and corresponding ranks are
recorded in Table 6.

On average, ECs EM ranked first, with a rank score
of 23.5833; pairwise constrained EM ranked second with
29.3889, followed by EM in third with a rank of 33.9167,
COP-kmeans in fourth with a rank of 67, and kmeans in
fifth with a rank of 73.6111. Under the null hypothesis, the
role of the Friedman Aligned Rank test is to check whether
there is a significant difference between the measured sum
of aligned ranks and the total aligned ranks R̂ j = 819.

k∑
j=1

R̂ 2
., j = 13252 + 12062 + 610.52 + 5292 + 424.52

= 4042812.5, (19)
k∑

j=1

R̂ 2
i,. = 2212 + 2422 + 2302 + . . . + 1852 = 940397,

(20)
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Table 5 Average accuracies achieved in the experiments. ECs EM is the proposed method.

Dataset Kmeans COP-Kmeans EM Constrained EM ECs EM

haberman 0.5121±0.0254 0.5852±0.0216 0.6667±0.0234 0.6729±0.0421 0.6850±0.1890
iris 0.8933±0.0015 0.9067±0.0012 0.9667±0.0000 0.9660±0.0009 0.9767±0.0016
wdbc 0.8541±0.0002 0.8489±0.0023 0.9554±0.0008 0.9513±0.0021 0.9554±0.0001
wine 0.6632±0.0122 0.7130±0.0042 0.7528±0.0024 0.7752±0.0087 0.8039±0.0026
ionosphere 0.7123±0.0006 0.7068±0.0026 0.8168±0.0034 0.8324±0.0031 0.8535±0.0042
bupa 0.4840±0.0012 0.5569±0.0122 0.5072±0.0055 0.4991±0.0080 0.5154±0.0026
balance 0.5158±0.0048 0.5506±0.0016 0.5186±0.0042 0.5280±0.0016 0.5376±0.0017
heart 0.5926±0.0221 0.5926±0.0042 0.7148±0.0025 0.7259±0.0034 0.7333±0.0026
wave 0.3824±0.0002 0.4723±0.0026 0.8224±0.0008 0.8198±0.0014 0.8242±0.0006
labor 0.5789±0.0000 0.5789±0.0000 0.7795±0.0062 0.8024±0.0034 0.8135±0.0042
user 0.4845±0.0024 0.5246±0.0037 0.6171 ±0.0044 0.6321±0.0092 0.6988±0.0084
climate 0.5093±0.0017 0.5439±0.0025 0.6065 ±0.0164 0.6766±0.0522 0.6909±0.0046
seeds 0.8952±0.0021 0.8874±0.0415 0.9219±0.0075 0.9228±0.0042 0.9248±0.0094
plrx 0.5138±0.0013 0.5224±0.0562 0.7066±0.0093 0.6973±0.0259 0.7225±0.0125
vertebral 0.6710±0.0029 0.6824±0.0032 0.7871 ±0.0000 0.7903±0.0073 0.7911±0.0044
magic 0.6491±0.0000 0.6541±0.0021 0.6289 ±0.0014 0.6320±0.0036 0.6336±0.0028
bank 0.8536±0.0011 0.8448±0.0023 0.8605 ±0.0008 0.8598±0.0018 0.8648±0.0021
diabete 0.5121±0.0038 0.6642±0.0052 0.8380 ±0.0046 0.8324±0.0047 0.8390±0.0038

average 0.6265±0.0046 0.6570±0.0094 0.7482 ±0.0052 0.7565±0.0102 0.7702±0.0143

Table 6 Aligned observations of five algorithms examined in the experimental study. The ranks in
parentheses are used in the computation of the Friedman Aligned Ranks test. The smallest rank is the
best.

Dataset Kmeans COP-Kmeans EM Constrained EM ECs EM Total

haberman -0.1123(84) -0.0392(67) 0.0423(30) 0.0485(21) 0.0606(19) 221
iris -0.0486(68) -0.0352(66) 0.0248(37) 0.0241(38) 0.0348(33) 242
wdbc -0.0589(69) -0.0641(72) 0.0424(28.5) 0.0383(32) 0.0424(28.5) 230
wine -0.0784(78) -0.0286(65) 0.0112(44) 0.0336(34) 0.0623(17) 238
ionosphere -0.0721(74) -0.0776(77) 0.0324(35) 0.0480(22) 0.0691(14) 222
bupa -0.0285(64) 0.0444(25) -0.0053(55) -0.0134(60) 0.0029(50) 254
balance -0.0143(61) 0.0205(39) -0.0115(58) -0.0021(52) 0.0075(46) 256
heart -0.0792(79.5) -0.0792(79.5) 0.0430(26) 0.0541 (20) 0.0615(18) 223
wave -0.2818(90) -0.1919(88) 0.1582(2) 0.1556(3) 0.1600(1) 184
labor -0.1317(86.5) -0.1317(86.5) 0.0689(15) 0.0918(9) 0.1029(5) 202
user -0.1069(82) -0.0668(73) 0.0257(36) 0.0407(31) 0.1074(4) 226
climate -0.0961(81) -0.0615(70) 0.0011(51) 0.07129(13) 0.0855(11) 226
seeds -0.0152(62) -0.0230(63) 0.0115(42) 0.0124(41) 0.01449(40) 248
plrx -0.1187(85) -0.1101(83) 0.0741(12) 0.0648(16) 0.0900(10) 206
vertebral -0.0734(76) -0.0620(71) 0.0427(27) 0.0459(24) 0.0467(23) 221
magic 0.0114(43) 0.0074(47) -0.0088(57) -0.0057(56) -0.0041(54) 257
bank -0.0031(53) -0.0119(59) 0.0038(48) 0.0031(49) 0.0081(45) 254
diabete -0.2250(89) -0.0729(75) 0.1009(7) 0.0953(8) 0.1019(6) 185

Total rank 1325 1206 610.5.5 529 424.5
Average rank 73.6111 67.0000 33.9167 29.3889 23.5833

T = {(5 − 1)(4042812.5 − (5 × 182/4)(5 × 18 + 1)2)}
÷ {(5 × 18(5 × 18 + 1)(2 × 5 × 18 + 1))/5

− (1/5) × 940397}
= 25.4250. (21)

Given five algorithms and 18 datasets, T is distributed
according to the chi-square distribution with 5 − 1 = 4
degrees of freedom. The p-values for a χ2(4) distribution
are 0.00000711 (one-tailed) and 0.00001421 (two-tailed).
These are far less than 0.05, so the null hypothesis is com-
fortably rejected. As a result, we can conclude that there is
a significant difference among the algorithm results.

4.3 Parameter Tuning

In semi-supervised clustering, the number of constraints has
a very important influence on the accuracy of the results.
Thus, we conducted a parameter tuning experiment in which
different numbers of constraints were used to verify the pro-
posed algorithm. The corresponding accuracies are shown
in Fig. 2. The x-coordinate in the figure denotes the num-
ber of pairwise constraints and ECs, and the y-coordinate
measures the average accuracy with the corresponding con-
straints. We can see that the accuracies gradually increase
with the number of constraints. Although the results inter-
sect at some points, the proposed ECs EM algorithm gen-
erally obtains better results than the constrained EM algo-
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Fig. 2 Experimental results with respect to the number of constraints. This experiment considered
constrained EM (blue line) and ECs EM (red line). On most of the datasets, ECs EM outperformed
pairwise constraints EM.

rithm.

4.4 Exemplars Constraints Propagation Results

ECs can be propagated by the neighborhood of the exem-

plars, and this propagation can influence the results. Hence,
we designed an experiment to examine how the radius of
the ECs neighborhood influences the clustering accuracy.
In this experiment, the same constraints were applied and
the radius of the neighborhoods was gradually increased. In
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Fig. 3 Experimental results with respect to the radius of the ECs neigh-
borhood.

Fig. 4 Ratios of pairwise constraints to ECs with the same accuracies.
In this experiment, the different numbers of constraints needed to obtain
the same accuracy were recorded. We can see that, if we use pairwise
constraints and ECs to obtain the same accuracy, the ratio of pairwise con-
straints to ECs is 1.4509:1.

Fig. 3, the x-coordinate denotes the radius of the ECs, which
is defined as radius = r

MAX(R) , where R is the distance ma-
trix of data points. The results using all datasets have been
averaged to give the trend, and it is clear that the average
clustering results initially improve as the radius increases.
Moreover, the accuracy reaches a maximum at a radius of
0.2. As the radius continues to increase, the accuracy de-
clines dramatically. This is because the different neighbor-
hoods may intersect when the radius is large, and this will
produce some conflicting constraints, which affect the clus-
tering performance.

4.5 Exemplars Constraints vs. Pairwise Constraints Re-
sults

In this experiment, we examined how many pairwise con-

straints and ECs were required to obtain the same degree
of accuracy on each dataset. For comparison, the number
of constraints from each algorithm on different datasets was
summed as nume (ECs) and nump (pairwise constraints). We
found that nump

nume
= 1.4509, as shown in Fig. 4, which indi-

cates that the proposed method required fewer constraints to
obtain the same accuracy.

5. Conclusions

This paper has made two main contributions. First, we iden-
tified the interesting phenomenon that semi-supervised clus-
tering based on pairwise constraints can obtain worse results
than the corresponding unsupervised algorithms. Although
it is difficult to comprehend this phenomenon, it truly ex-
ists in the field of semi-supervised learning. Furthermore,
we defined the concepts of ambiguousness and coherence to
illustrate why semi-supervised clustering based on pairwise
constraints can achieve worse results. The reason we identi-
fied gave us a hint as to which kinds of pairwise constraints
can improve the performance of semi-supervised learning.
Second, following on from the above, ECs were proposed
to address the phenomenon. Specifically, a semi-supervised
clustering framework based on ECs was proposed, and an
ECs mixture model based on this framework was designed.
Expectation-maximization was used to infer the proposed
model, and the corresponding algorithm was described. Fi-
nally, experimental results on several UCI datasets demon-
strate the effectiveness of our proposed method, which out-
performs the corresponding semi-supervised algorithms.

The most challenging aspect of our work was to iden-
tify under what conditions pairwise constraints can guaran-
tee improved performance. This has been somewhat, but
not totally, solved in this paper. Our method represents an
active way to ensure that semi-supervised learning gives im-
proved performance. In future work we will gain additional
insights. Moreover, if the data points do not belong to Gaus-
sian distribution, but they follow an exponential family of
distributions, the exponential mixture model based on ex-
emplars can be proposed to solve the problem in the future.
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