
462
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

PAPER

Industry Application of Software Development Task Measurement
System: TaskPit

Pawin SUTHIPORNOPAS†, Nonmember, Pattara LEELAPRUTE†, Akito MONDEN††, Hidetake UWANO†††a),
Yasutaka KAMEI††††, Naoyasu UBAYASHI††††, Members, Kenji ARAKI†††††,

Kingo YAMADA††††††, Nonmembers, and Ken-ichi MATSUMOTO∗, Fellow

SUMMARY To identify problems in a software development process,
we have been developing an automated measurement tool called TaskPit,
which monitors software development tasks such as programming, testing
and documentation based on the execution history of software applications.
This paper introduces the system requirements, design and implementation
of TaskPit; then, presents two real-world case studies applying TaskPit to
actual software development. In the first case study, we applied TaskPit to
12 software developers in a certain software development division. As a
result, several concerns (to be improved) have been revealed such as (a) a
project leader spent too much time on development tasks while he was sup-
posed to be a manager rather than a developer, (b) several developers rarely
used e-mails despite the company’s instruction to use e-mail as much as
possible to leave communication records during development, and (c) sev-
eral developers wrote too long e-mails to their customers. In the second
case study, we have recorded the planned, actual, and self reported time of
development tasks. As a result, we found that (d) there were unplanned
tasks in more than half of days, and (e) the declared time became closer
day by day to the actual time measured by TaskPit. These findings suggest
that TaskPit is useful not only for a project manager who is responsible for
process monitoring and improvement but also for a developer who wants
to improve by him/herself.
key words: processs measurement, system development, case study

1. Introduction

To promote the idea of “Process Improvement via Measure-
ment” in software development, we developed a software
development task measurement system called “TaskPit” in
2008 [1], and have been updating it ever since. TaskPit au-
tomatically records the time and the amount of work of an
individual developer or a development team when perform-
ing daily tasks, to identify any problems in the software de-
velopment process. It can record the time spent for each

Manuscript received May 27, 2016.
Manuscript revised October 12, 2016.
Manuscript publicized December 20, 2016.
†The authors are with Department of Computer Engineering,

Kasetsart University, Bangkok, 10900 Thailand.
††The author is with Okayama University, Okayama-shi, 700–

0082 Japan.
†††The author is with National Institute of Technology, Nara Col-

lege, Yamatokoriyama-shi, 639–1080 Japan.
††††The authors are with Kyushu University, Fukuoka-shi, 819–

0395 Japan.
†††††The author is with NCS&A Co., Ltd., Osaka-shi, 540–6316

Japan.
††††††The author is with FineBus Co., Ltd., Osaka-shi, 541–0054
Japan.

∗The author is with Nara Institute of Science and Technology,
Ikoma-shi, 630–0101 Japan.

a) E-mail: uwano@info.nara-k.ac.jp
DOI: 10.1587/transinf.2016EDP7222

task such as “Programming” using Eclipse or Visual Studio,
“Documentation using Word or other text editors, “E-mail”
using Gmail on a browser and so on, where a task is asso-
ciated with a set of applications and window titles. TaskPit
records the amount of work for each task in terms of the
number of keystrokes and mouse clicks. It can also record
the amount of deliverables of each task as the increase in file
size in a directory associated with the task.

To date, the TaskPit community has been gradually
growing; user manuals and related tools have been devel-
oped by volunteers, and as of July 2015, total downloads of
TaskPit version 1.0.0 to 1.0.3 has reached 1500 [1]. Now
we are asking for real-world case studies to share the ex-
perience and findings about how TaskPit could be used for
process improvement.

The goal of this paper is to demonstrate how the task
measurement can be used to monitor daily tasks of a soft-
ware development and to identify possible concerns to be
improved. This paper introduces the system requirements,
design and implementation of TaskPit; then presents real-
world case studies of applying TaskPit in two software or-
ganizations. The first organization consists of 12 members,
measurements were taken during a 9 day period (6 business
days) where 7 are developers, 3 leaders, and 2 customer ser-
vice agents. Analysis of the measurement data was done by
a QA specialist in a different division of a same company
in which measurement was taken. In the second organi-
zation, one developer was being measured for a period of
17 days (13 business days). In addition to TaskPit’s auto-
matic measurement, the planned time and self reported time
of each development task for each day was also recorded.
This will help in understanding the difference between the
self reported time and the actual time measured by TaskPit.

This paper extends our Japanese workshop (short) pa-
per [2] with an additional (second) case study. We also
added in this paper explanations of the system requirements,
design and implementation of TaskPit to clarify the design
concept of TaskPit and to illustrate how TaskPit can be used
in software organizations.

In the following Sect. 2, we will describe related work
and the research background, Sect. 3 will be about TaskPit
and its system requirements, design, and implementation.
Section 4 will show measurement results and analysis in
two organizations which will be split into two sub sections.
Lastly in Sect. 5 is a summary.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

SUTHIPORNOPAS et al.: INDUSTRY APPLICATION OF SOFTWARE DEVELOPMENT TASK MEASUREMENT SYSTEM: TASKPIT
463

2. Background and Related Work

As represented in Tom DeMarco’s famous quote “You can’t
control what you can’t measure,” [3] we believe measure-
ment is essential in the control and improvement of software
development processes. For this purpose, various product
process metrics have been proposed, and applied in actual
software development [4], [5]. In many projects, metrics
such as software size, development hours, the number of
bugs are measured and used for project management and
quality assurance [6], [7].

On the other hand, the majority of causes of software
failure are human factors [8]–[10]. Therefore, in addition
to measure the software products and/or processes, it is
natural to measure the developers and their works to im-
prove the process. One widely known method is the Per-
sonal Software Process (PSP) and Team Software Process
(TSP), which record information on the daily tasks of the
developer or development team for use in process improve-
ment [11], [12]. However, as developers have to do this
manually, the barrier for its adoption is high, and it has not
been used widely.

When the PSP had been first proposed, it required mea-
surement data to be input in to specific paper based forms,
which required great cost in performing data measurement.
Therefore, tools that assist in data input and calculation
have been proposed such as Process Dashboard [13], Task
Coach [14] and Slim Timer [15]. However, they still require
human effort in measurement with a context switch between
development and measurement tasks, which presented a bar-
rier towards adoption in actual development projects [16].

Automatic measurement tools that do not require a con-
text switch have been proposed, for example hackystat [17],
EPM [18], [19] and Ginger2 [20]. These can be used to col-
lect detailed data at a lower cost. However, the data col-
lected by these tools are not directly associate with devel-
opers’ tasks such as “programming” and “testing”, and also,
the recorded data are too much in detail, which require sig-
nifiacant amount of time for the analysis. The data required
for process improvement based on PSP/TSP are: (1) the
time spent on each task; (2) the outcome of each task (e.g.
number of bugs found); and does not require detailed data.
While the detailed data collected by hackystat and Ginger2
enable more detailed analysis, it also presents a weakness in
increased time required for the analysis.

In this paper, we aim to present TaskPit as a tool to in-
troduce process improvement in a development task level.
The advantage of TaskPit is that it requires no pre-planning
and easy to adopt. It can automatically record the time spent
on each task and the output of each task together with its
change over time. The data measured by TaskPit repre-
sents the amount of work and outcome of each task and is
easy to analyze. Hence, it is suitable for the introductory
stages of implementing process improvement methods such
as PSP/TSP.

3. TaskPit

3.1 System Requirements

Based on the discussion in the previous section, the system
requirements of TaskPit are defined as follows.

3.1.1 Requirement 1: Binding between Tasks and Appli-
cations

In TaskPit system, we consider that each development task
to be a work performed in different applications or windows.
Therefore, we need to bind a task name with its correspond-
ing application name (the executable file name or process
name). However, it is not always the case that performing
a task uses only one application. So it should be possible
to assign multiple applications to a task. Additionally, dif-
ferent tasks may use the same application. In this case, we
distinguish the task based on the window name during the
execution of the application. The extended BNF for defin-
ing tasks is as follows.

〈Task〉 ::= 〈Application〉 { | 〈 Application 〉}
〈Application〉 ::= 〈Executable File Name〉 [〈Window
Name〉]
Tasks are defined as a set of one or more running appli-

cations, and applications are defined as a set of executable
name and window name. Below shows an example of task
definitions.

Mail ::= Outlook | Gmail with IE | Gmail with Chrome
Programming ::= Eclipse | Visual Studio
Web Browsing ::= Internet Explorer
Outlook ::= OUTLOOK.EXE
Gmail with IE ::= IEXPLORE.EXE Gmail
Gmail with Chrome ::= CHROME.EXE Gmail
Eclipse ::= ECLIPSE.EXE
Visual Studio ::= DEVENV.EXE
Internet Explorer ::= IEXPLORER.EXE

TaskPit assumes that a developer performs just one
task at a time, i.e. tasks are not overlapping each other.
In this example, the task “Mail” is associated with
OUTLOOK.EXE, IEXPLORE.EXE with a window name
“Gmail” and CHROME.EXE with a window name “Gmail”.
This means, if a developer is using the Internet Explore and
a text string “Gmail” is included in its window title, then
TaskPit considers that the developer is performing the task
“Mail”. Note that in this example IEXPLORE.EXE also ap-
pears in the task definition of “Web Browsing” without any
window title specified. In this case, TaskPit considers that a
developer is performing the task “Web Browsing” if he/she
is using the Internet Explore and its window title does not
include its associated strings indicated in other task defini-
tions (“Gmail” in this case.)

We assume that these task definitions should be de-
termined before starting the measurement as clearly as

464
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

possible, e.g. by asking developers about which tasks
they are performing and which applications they are us-
ing to work on each task. We decided to use such a
definition-before-measurement policy rather than definition-
after-measurement because (1) it is often the case that a data
analysis is performed several weeks/months after the mea-
surement, and in such a case (2) it is often very difficult to
contact and ask developers about tasks and applications they
were using.

At the same time, it is possible to start measurement by
TaskPit with a standard (default) task definition, and conduct
detailed task analyses after measurement with help of devel-
opers being measured. For this purpose, TaskPit provide a
functionality to record law log data of executed applications
and their window titles.

3.1.2 Requirement 2: Automated Data Measurement

• Task Execution Time
The start and end time of using each application is

recorded, where an application is considered in use if the
window is currently in focus. However, even if a window is
in focus, if a fixed amount of time (e.g. 10 minutes) has
passed without activating computer input (mouse or key-
board), it will be recorded that no application is in use.

• Amount of Work
Amount of work is recorded as the number of key

strokes and mouse clicks.
Table 1 shows an example of tasks and their amount of

work measured by TaskPit.

• Amount of Deliverables
The outcome (deriverables) of each task is defined as

the combination of a directory and one or more file exten-
sions. TaskPit periodically scans the files in the specified
directory and its subdirectories, and records the number of
files and the total file size. The extended BNF for defining
the outcome is as follows.

〈Outcome〉 ::= 〈Directory〉 〈Extension〉 {〈 Extension 〉}
An example of outcome definition in TaskPit is shown

below.

Requirement analysis documents ::=
C:\Users\monden\desktop\development\SRS
doc tex txt

Table 1 Example of output of TaskPit.

Task name start time end time left click right click keystroke

File Operation 20150204:095229 20150204:095235 3 0 0
Spreadsheet 20150204:095235 20150204:095256 1 0 0
File Operation 20150204:095256 20150204:095319 6 1 0
Programming 20150204:095319 20150204:095340 3 0 10
Programming 20150204:095340 20150204:095411 3 0 15
File Operation 20150204:095411 20150204:095415 2 0 0
Programming 20150204:095415 20150204:095455 2 0 0
Programming 20150204:095455 20150204:095612 2 0 10

Program source files ::=
C:\Documents and Settings\monden\desktop\
development\sources c cpp java

• Privacy
Especially when recording team activities, it is neces-

sary to protect personal information and respect the privacy
of developers. In the proposed system, the key stroke con-
tents, application contents, window names, file names and
file contents are not recorded. Additionally, recording the
complete history of all applications and windows will make
the user feel like being “monitored” which may cause resis-
tance in adopting the system, so the applications and win-
dows not bound to a task in Requirement 1 will be recorded
together as “Other tasks”.

However, before starting measurement for process
monitoring and improvement, one may need to conduct a
pilot measurement to determine task definitions. Also, one
may want to use the definition-after-measurement policy.
For these purposes, TaskPit optionally provides a function-
nality to record all executed application names and their
window titles.

3.1.3 Requirement 3: Team Measurement

Data measured for individual developers in their computers
are gathered as a team data in a specific computer to let a
manager (or a data analyst) enable analyzing the data.

3.1.4 Requirement 4: Data Visualization and Analysis

The recorded data can be visualized as a graph for an in-
dividual developer or a team. The time spent on each task
and total time during the specified period is shown as a bar
chart or a line chart. The data visualization tool uses the task
log file from TaskPit (such as in Table 1), compiles it into a
pre-processed version, and shows the result as a graph. Ex-
amples of the graphs are shown in Figs. 1 and 2.

Figure 1 describes the total time spent on tasks in a
given time frame, separated by each individual in the team
with each task indicated with different colors. This figure
can show task contribution in the big picture of the team, in
which every data is gathered from TaskPit log file.

Figure 2 is a time series visualization of work hours
of a specified developer. This figure will describe how a
developer performed tasks in each day.

SUTHIPORNOPAS et al.: INDUSTRY APPLICATION OF SOFTWARE DEVELOPMENT TASK MEASUREMENT SYSTEM: TASKPIT
465

Fig. 2 Time series data of tasks.

Fig. 1 Total time spent on tasks.

Also, to make analysis easier, TaskPit outputs a sum-
marized log file, which consists of the number of keystrokes,
mouse clicks, or the time spent for using each application in
a given interval time (e.g. 10 minutes. This interval time is
given in a configuration file). Table 2 shows an example of
summarized log for the time spent for using each applica-
tion. As shown in the table, only 6 lines of log data (in CSV
format) are output in every 60 minutes.

3.2 System Design

As shown in Fig. 3, TaskPit consists of a measurement com-
ponent which is connected to a database, a visualization
component, a configuration file, a log file and daily report
files. In Fig. 3, arrows indicates input/output relations. The
configuration file contains the definitions of tasks and out-
come, as well as the interval of outputting to the log file. The
measurement component GUI contains a “Task” tab show-
ing the accumulated time spent, key strokes and clicks for
each task (see Fig. 4), and a “File” tab showing the number
of files and file size. The measurement results are output to
the log file periodically (e.g. every 10 minutes).

Fig. 3 System components.

Fig. 4 TaskPit user interface.

To satisfy Requirement 3, a client-server architecture
was considered, but client-server systems require non-trivial
configuration and maintenance cost, so instead, we forgo the
server and output the measurement data in a specified shared

466
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

Table 2 Example of summarized log of TaskPit.

Web Browsing Mail Programming Spreadsheet File Operation Others

20130204:100000 123 50 217 120 80 0
20130204:101000 43 80 366 47 56 0
20130204:102000 118 0 387 0 0 0
20130204:103000 0 14 463 0 9 0
20130204:104000 108 0 445 0 39 0
20130204:105000 97 0 320 167 9 0
20130204:110000 126 0 319 148 0 0

Fig. 5 Measurement for a team.

folder (or the user’s local directory when using individually)
in a log file. The visualization component will take the con-
figuration file and shared folders as input, and display the
data for a specified period, using various charts. As depicted
in Fig. 5, the measurement component is run on each devel-
oper’s PC, and the visualization component is run when the
developer or team leader wishes to see the measurement re-
sults.

In addition, an overview report of daily work can be
generated in both CSV format and in Excel .xls format.

3.3 Implementation

TaskPit 1.0.X runs on the .Net Framework on Windows
XP, Vista, 7, 8 and 8.1, and uses the SQLite database.
The Windows API is called to identify tasks; specifically,
GetForegroundWindow is called to obtain the active win-
dow handle; GetWindowText is called to obtain the win-
dow title. The GetProcessById method from the Sys-
tem.Diagnostics.Process class is called to obtain the process,
in order to get the execution file name.

Similarly, to record key strokes and mouse clicks,
we register methods to be hooked to record keyboard and
mouse events using SetWindowsHookEx. In addition,
we also measure outcomes with GetFiles method of Sys-
tem.IO.Directory class. The specified directory is scanned
at predefined time intervals to record the number of files and
file size.

Measured task log is recorded in CSV file for visualiza-
tion and further analysis. Free charting library NPlot is used
for visualization (see Fig. 2). An Excel file is also created

Table 3 Team roles.

Role Member Note
Project Leader L1, L2, L3
Member of
Project A

A1, A2, A3 A3 is a recruit.

Member of
Project B

B1, B2, B3, B4
B1 transferred from
different section.

Customer
Support

CS1, CS2
Both are part time
worker.

for an overview report. Excel file is generated from multiple
classes in Microsoft.Office.Interop.Excel namespace.

4. Measurement

4.1 Case Study 1: Team Measurement

4.1.1 Goal of Measurement

The first case study envisions a scenario where a software
development department wants to identify problems in the
development process and find ways to improve. Analysis of
the recorded data is performed by a veteran employee from
the Project Management Office (PMO). This person is re-
sponsible for development support and consulting, from the
point of view of company-wide project management stan-
dardization, quality control, and human resource develop-
ment. The analyst understands the role of each person, but
does not know the daily assgined tasks of each person.

The aim of this case study is to observe daily software
development activities in industry without any hypothesis,
and to find out if any symptoms for possible improvements
could be observed by a company’s analyst without any pre-
requisite effort before the analysis.

4.1.2 Measurement Target and Time

The target organization is a software development depart-
ment consisting of 12 members. Their roles are shown in
Table 3.

The department uses Trac as a project management tool
which is run on the Web browser. They have been encour-
aged to use Trac for manipulating variouos documents re-
lated to the development.

For data measurement, we used a customized TaskPit
1.0.1, which was modified to hide the GUI to prevent dis-
traction during work. Also, before the measurement we in-
terviewed the members on their application usage to define

SUTHIPORNOPAS et al.: INDUSTRY APPLICATION OF SOFTWARE DEVELOPMENT TASK MEASUREMENT SYSTEM: TASKPIT
467

Fig. 6 Configration file.

Table 4 Measured time and lines of log of each member.

Measured Time
(Hours)

Lines of Log

L1 26.3 568
L2 33.1 610
L3 32.3 789
A1 56.6 818
A2 30.5 479
A3 35.8 513
B1 46.1 633
B2 25.7 386
B3 32.0 647
B4 28.3 575
CS1 35.0 674
CS2 26.0 411

the binding between task and application. The measure-
ments were carried out over for period of 9 days (6 business
days).

Table 4 shows measured time for each member. The
table also shows the lines of (summarize) log for each mem-
ber with an inverval time = 5 min. As shown in the Table,
the lines of log to analyze is relatively small. On the other
hand, in case of other related work such as Ginger 2 [20],
more than 80,000 lines of log data were recorded in a 50-
min experiment [21]. The log of Ginger 2 includes various
fine-grained real time data such as mouse cursor movement,
mouse clicks, all the changes of texts in kterm window, key
strokes, editor commands such as cut, copy and paste, text
cursor movement, window movement, and eye-gazing point
movement. Therefore, we believe data of TaskPit is much
easier to analyze than that of Ginger 2.

4.1.3 Configuration File

Part of the configuration file used for the measurement is
shown in Fig. 6. The configuration shows that multiple ap-
plications can be assigned to a single task.

4.1.4 Measurement Results and Analysis

Figure 7 shows the one day average of time spent on each
task, total time for all tasks and total working time. Work-
ing time is estimated from the start up and shutdown time of
TaskPit. From the results we can give the following observa-

Fig. 7 Average time spent on tasks in a day of each developer.

tions. These observations were derived by an analyst within
a day, which we believe it a realistic time for the analysis.

• As shown in Fig. 7 all developers worked on unregis-
tered tasks. With A3, B2, B4 in particular who ex-
ceeded 100 minutes in this category. One of the cause
of this was, there were unidentified applications in-
stalled on the PC, despite prohibiting the installation of
unapproved applications in this organiation. Moreover,
the organization used an attendance management sys-
tem, which was not registered in the configuration file.
Furthermore, TaskPit can not record testing or debug-
ging that is performed on a virtual OS. (TaskPit 1.0.3
added the ability to record applications not registered
in the configuration file.)
• Total working hours and the time spent on the PC-

related tasks for project A members (A1, A2, A3) were
longer than other project members, due to the proxim-
ity to the deadline of the project. On the other hand,
project B members (B1, B2, B3, B4) had shorter work-
ing times due to their project’s satisfactory progress.

468
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

This shows that TaskPit can be used to grasp the busy-
ness of a project. This is very important to the com-
pany because if someone is not working, than that
means company’s management (task assignment) is
bad. Also, this company uses a cooperative company
in abroad, and it was very difficult for the company
to grasp whether or not the cooperative company was
busily working or not. Indeed, after this case study, this
company applied TaskPit to an overseas company and
observed its work situation.
• A1 had the longest working hours and the time spent

on the PC, spending on average 184 minutes pro-
gramming/debugging, 106 minutes editing and 94 min-
utes testing. This shows A1 works mainly on coding.
Meanwhile, A2 who belongs to the same project spent
0 minutes programming/debugging (or not more than
76 minutes including time for unregistered tasks), and
156 minutes testing. This suggests A2 is responsible
for testing. Therefore, TaskPit can be used to grasp the
work content of each developer. This is also important
because if a developer is not working on the assigned
task, then the task assignment is bad and need improve-
ment.
• The relationship between total working hours and the

time spent on PC is shown in Fig. 8. From this figure,
we learn that the 3 leaders spent less time on the PC
compared to developers and customer support agents.
This is because they need to spend more time in busi-
ness and management tasks. However, looking at the
task breakdown, leader L2 had engaged on average 71
minutes in testing and 103 minutes using excel (which
is considered to be involved with test case manage-
ment). This can be said to be too much engagement
in development task for a leader. To improve this sit-
uation, a manager need to ask the leader why he/she
needed to work on the development task so much, iden-
tify its underlying problem, and seek for possible solu-
tions for the problem.

Fig. 8 PC work time and working hour relationship.

• Two customer support agents (CS1, CS2) are mostly
engaged with mailing and browsing. This is be-
cause their work requires communicating and interact-
ing with customers via e-mail. The data suggests that
they are using Trac for document control and commu-
nication in the browser. (This measurement helped us
discover the problem that different tasks performed in
the browser cannot be reflected in the configuration
file.)
• Looking at mail tasks, L2, A3, B1, B2, B3, B4 all

spent less than 15 minutes. The department encour-
aged members to use e-mail rather than telephone for
communication (to leave a record of communication).
From the data it can be said that leader L2 spent too
little time using e-mail, and after further investigation,
we learn that L2 uses the telephone more frequently.
• Figure 9 shows time spent in mailing and program-

ming for each member along with their respective typ-
ing speed (or key strokes). Comparing key strokes
per minute for the e-mail tasks, CS1 and CS2 show a
high value. These two also have high total key strokes,
which suggests they send out long e-mails. When re-
sponding to e-mails with customers it is preferred to
write concisely, covering the main points; additionally,
the message should be checked and polished, so it can
be seen that the manner in which they write e-mail can
be improved.
• Focusing on key strokes for programming/debug task,

it can be seen that A1 has the highest number of key
strokes and key strokes per minute. Thus, apart from
its quality, it can be considered that A1 is the most pro-
ductive developer.

Our analysis on the measured data revealed that some
member possibly violated some policies such as “prohibit-
ing the installation of unapproved applications” and “use e-
mail rather than telephone” used in a company. Since the
actual violation of policies cannot be judged by TaskPit’s
data only (e.g. the time spent to use telephone is not record-

Fig. 9 Mail and programming.

SUTHIPORNOPAS et al.: INDUSTRY APPLICATION OF SOFTWARE DEVELOPMENT TASK MEASUREMENT SYSTEM: TASKPIT
469

able by TaskPit), the analyst need to interview a team mem-
ber if he/she actually violated the policy or not. If an actual
violation to a company’s policy was identified, then the im-
provement is to guide members to comply with the policy.

4.2 Case Study 2: Personal Measurement

4.2.1 Measurement Purpose and Methods

The second case study envisions a scenario where an indi-
vidual developer records and analyzes his own performance
to identify problems and lead to improvement. In this case
study, we will record the planned time, measured time, and
self reported time for each task, daily, and identify the dif-
ferences in these values. The planned time is the time the
developer sets at the beginning of the day. The measured
time is the time reported by TaskPit. The self reported time
is the time the developer reports at the end of the day (before
seeing the result from TaskPit).

If the value of planned, measured and self reported time
are identical, it means the developer has performed the task
according to plan, and has a good grasp on the situation
without using TaskPit. However, if a large difference be-
tween measured and reported time is present, it means the
developer is not able to grasp the time spent on each task.
Especially when there is a large difference between mea-
sured and self reported time, this is a serious problem as the
developer cannot manage his time.

4.2.2 Measurement Target and Period

The target personnel of this measurement belongs to a differ-
ent organization than the first case study. The target is a de-
veloper doing web-based programming. The measurement
period was 17 days (13 business days). Prior to the mea-
surement, 3 days were spent adjusting the configuration file
and performing preliminary measurements. Also at the end
of each day, the developer was asked to look at the planned,
measured and self reported times, and write a comment.

4.2.3 Measurement Results and Analysis

Measured value, planned value and self reported value are
shown in Fig. 10, Figs. 11 and 12 respectively. The horizon-
tal axis of each graph represents the days and the vertical
axis represents number of hours. Measured values tend to be
less than what is planned, except for day 11, which shows
time is not spent according to plan. From the developer’s
comments, this is because time was spent in activities not
using the PC (answering the phone) on 4 days, and because
there was unplanned work on 3 days. It is usual to have un-
planned work/activities during the work day, the data from
TaskPit shows that 5 to 10 percent of extra time should be
allotted for this during planning. Note that on day 11 the
measured time exceeded planned time, this was caused by a
mistake in planning (the developer forgot a task that should
be done that day).

Fig. 10 Measured value.

Fig. 11 Planned value.

Figure 13 shows measured time minus self reported
time. This shows that at the beginning of using TaskPit,
the developer overestimated the time spent, and gradually,
has been able to better estimate the actual (measured) time.
Therefore, from this case study, the developer was able to
grasp his actual workload more accurately with the con-
tinued use of TaskPit. This is reflected in the developer’s
comment on day 5: “I was consciously aware of the task
I was doing, and my planned times and self-reported times
are becoming closer to the measured time.” Also on day 7:
“If there are no unplanned tasks, the gap between planned,
self reported and measured time is becoming smaller.” This
shows that by using TaskPit the developer will be more con-
scious to planned and measured time, and should be able to
better manage his tasks.

As more detailed analysis, Fig. 14 shows measured

470
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

Fig. 12 Self-reported value.

Fig. 13 Difference between measured and self reported time.

Fig. 14 Difference between measured and self reported time of each task.

time minus self reported time of each task. As shown in the
figure, we found that there was no improvement when we
focus on individual task. This is partly because, for example
the task “web browsing”, “document” and “file operation”
is sometimes a part of program/debugging and so the de-
veloper could not distinguish between such tasks defined by
the used applications, although the developer could become

able to properly report the “total” working time. We rec-
ognize such a gap between application software-based task
and real task is a big threats to validity to conduct detailed
task-wise analyses, and therefore we are currently working
to improve TaskPit to reduce the gap by a machine learning
approach [22].

5. Conclusion

In this paper, we illustrated the effect of using automatic
measurement in software development. This was done
through the use of the development task recording system
TaskPit in two software development organizations, with the
aim to accumulate and publish the findings. In the first
organization, 12 developers were recorded for 6 business
days. The result, from the PMO’s perspective, was the abil-
ity to grasp the busyness of each project, and understand the
work content of each member. Additionally, the following
points of improvements were identified: (a) a leader spent
too much time on development tasks, (b) several developers
rarely used e-mails, (c) some members spent a short amount
of time sending multiple long e-mails to customers, suggest-
ing some room for improvement in e-mail writing.

We believe that the main benefit to employ TaskPit for
the purpose of management is to grasp how developers are
working. This is especially important for the company who
work with overseas cooperative (subsidiary) companies. In
case of the company of case study 1, they applied TaskPit to
an overseas subsidiary company (after the case study 1), and
we that they could observe the busyness of teams in each
week, as well as major tasks of each developer (e.g. pro-
gramming, testing, documenting, etc). Also they observed
that developers tend to use web browsers in less busy terms,
in which more tasks could be assigned.

In the second organization, an individual developer’s
planned, measured and self reported times were recorded
for 13 business days. As a result, it was discovered that (d)
there were unplanned tasks in more than half of the days
recorded, (e) the declared time became closer day by day
to the actual time measured by TaskPit. These suggest that
using TaskPit continuously can be useful in managing the
developer’s own tasks.

We hope the findings in the above case studies will be
useful for organizations considering using TaskPit for mea-
suring and improving their processes. The authors plan to
continue to collect more case studies and publish newly ob-
tained findings.

References

[1] “Taskpit,” http://taskpit.jpn.org/
[2] A. Monden, H. Uwano, K. Araki, K. Yamada, and K.i. Matsumoto,

“Automatic development task measurement in a software company,”
JSSST Workshop on Foundation of Software Engineering, pp.257–
262, 2013.

[3] T. DeMarco, Controlling software projects: Management, measure-
ment, and estimates, Prentice Hall PTR, 1986.

[4] V.R. Basili and D.M. Weiss, “A methodology for collecting valid

http://dx.doi.org/10.1109/tse.1984.5010301

SUTHIPORNOPAS et al.: INDUSTRY APPLICATION OF SOFTWARE DEVELOPMENT TASK MEASUREMENT SYSTEM: TASKPIT
471

software engineering data,” IEEE Trans. Softw. Eng., vol.SE-10,
no.6, pp.728–738, 1984.

[5] R.B. Grady, Practical software metrics for project management and
process improvement, Prentice-Hall, 1992.

[6] E.B. Rini van Solingen, The Goal/Question/Metric method: A
practical guide for quality improvement of software development,
McGraw-Hill, 1999.

[7] L. Putnam and W. Myers, Five core metrics: The intelligence behind
successful software management, Addison-Wesley, 2013.

[8] R.N. Charette, “Why software fails [software failure],” IEEE Spectr.,
vol.42, no.9, pp.42–49, 2005.

[9] B. Curtis, ed., Human factors in software development, IEEE Com-
puter Society, 1985.

[10] S. Flowers, Software failure: Management failure: Amazing stories
and cautionary tales, Wiley, 1996.

[11] W.S. Humphrey, A discipline for software engineering, Addison-
Wesley Longman Publishing Co., 1995.

[12] W.S. Humphrey, Introduction to the personal software process,
Addison-Wesley, 1996.

[13] “Process dashboard,” http://www.processdash.com/
[14] “Task coach - your friendly task manager,” http://members.chello.nl/

f.niessink/
[15] “Slimtimer - time tracking without the timesheet,”

http://www.slimtimer.com/
[16] A. Sillitti, A. Janes, G. Succi, and T. Vernazza, “Collecting, integrat-

ing and analyzing software metrics and personal software process
data,” Proc. 29th Euromicro Conference, 2003, pp.336–342, IEEE,
2003.

[17] “hackystat - a framework for collection, analysis, visualization, in-
terpretation, annotation, and dissemination of software development
process and product data,” http://www.hackystat.org/

[18] M. Ohira, R. Yokomori, M. Sakai, K.i. Matsumoto, K. Inoue, and
K. Torii, “Empirical project monitor: A tool for mining multiple
project data,” International Workshop on Mining Software Reposi-
tories (MSR2004), pp.42–46, IET, 2004.

[19] A. Monden, T. Matsumura, M. Barker, K. Torii, and V.R. Basili,
“Customizing GQM models for software project monitoring,”
IEICE Trans. Inf. & Syst., vol.E95-D, no.9, pp.2169–2182, Sept.
2012.

[20] K. Torii, K.i. Matsumoto, K. Nakakoji, Y. Takada, S. Takada, and
K. Shima, “Ginger2: An environment for computer-aided empiri-
cal software engineering,” IEEE Trans. Softw. Eng., vol.25, no.4,
pp.474–492, 1999.

[21] A. Monden, Y. Takada, and K. Torii, “An experiment to observe de-
bugging process by using an eye tracking device,” IEICE Technical
Report, SIG-SS, 96(172), 1996.

[22] R. Ohashi, H. Uwano, A. Monden, K. Araki, K. Yamada, and
K. Matsumoto, “Task purpose estimation in software development
based on automatic measurement data and machine learning,” Com-
put. Softw., vol.33, no.2, pp.139–150, 2016.

Pawin Suthipornopas is a student at
Kasetsart University, Thailand in Software and
Knowledge Engineering faculty, in which he
will graduate in 2016. Had two months period
of internship in 2015 at Nara Institute of Science
and Technology in Software Engineering labo-
ratory. His research interests include software
measurement and software process.

Pattara Leelaprute is a lecturer at the Fac-
ulty of Engineering, Kasetsart University, Thai-
land. He received his B.E. (2001) in Information
and Computer Science, M.E. (2003) in Com-
puter Science, and Ph.D. (2006) in Information
and Systems Engineering from Osaka Univer-
sity, Japan. His research interests include Fea-
ture Interactions, Telecommunication services
and Home Network Systems. He is a member
of IEICE.

Akito Monden is a professor in the Grad-
uate School of Natural Science and Technol-
ogy at Okayama University, Japan. He received
the B.E. degree (1994) in electrical engineering
from Nagoya University, and the M.E. (1996)
and D.E. (1998) degrees in information science
from Nara Institute of Science and Technology
(NAIST). His research interests include soft-
ware measurement and analytics, and software
security and protection. He is a member of the
IEEE, ACM, IEICE, IPSJ and JSSST.

Hidetake Uwano is an associate professor
at National Institute of Technology, Nara Col-
lege, Japan. He received B.E. degree (2004)
in Software and Information Sciences from
Iwate Prefectural University, and M.E. (2006)
and D.E. (2009) degrees in information science
from Nara Institute of Science and Technology
(NAIST). His research interests include human
computer interaction, human factor, and soft-
ware measurement. He is a member of IEEE,
ACM, IEICE, JSSST, and HIS.

Yasutaka Kamei is an associate profes-
sor at Kyushu University in Japan. He has
been a research fellow of the JSPS (PD) from
July 2009 to March 2010. From April 2010
to March 2011, he was a postdoctoral fellow
at Queen’s University in Canada. He received
his B.E. degree in Informatics from Kansai Uni-
versity, and the M.E. degree and Ph.D. degree
in Information Science from Nara Institute of
Science and Technology. His research interests
include empirical software engineering, open

source software engineering and Mining Software Repositories (MSR).
More information about him is available online at http://posl.ait.kyushu-
u.ac.jp/˜kamei/

Naoyasu Ubayashi is a professor at Kyu-
shu University since 2010. He is leading the
POSL (Principles of Software Languages) re-
search group at Kyushu University. Before join-
ing Kyushu University, he worked for Toshiba
Corporation and Kyushu Institute of Technol-
ogy. He received his Ph.D. from the Univer-
sity of Tokyo. He is a member of ACM SIG-
PLAN, IEEE Computer Society, and Informa-
tion Processing Society of Japan (IPSJ). He re-
ceived “IPSJ SIG Research Award 2003” from

IPSJ.

http://dx.doi.org/10.1109/tse.1984.5010301
http://dx.doi.org/10.1109/mspec.2005.1502528
http://dx.doi.org/10.1109/eurmic.2003.1231611
http://dx.doi.org/10.1049/ic:20040474
http://dx.doi.org/10.1587/transinf.e95.d.2169
http://dx.doi.org/10.1109/32.799942

472
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

Kenji Araki joined Lnet Co., Ltd. in 1993
and moved to ACCESS Co., LTD. in 1996. He
was a part of many large projects and was se-
lected as a team and a project leader. During his
career, he worked on different aspects of both
the CASE tool and the reverse engineering tool
such as research, modeling, and utilization of
them. He was appointed as a head of an off-
shore development group in 2011. Not only he
has been an important coordinator between the
company and its Shanghai branch, but also he

engaged in the BSE management extensively. As a result of a consolida-
tion with NCS Co., Ltd., the company has been renamed as NCS & A Co.,
Ltd. in 2014.

Kingo Yamada majored in industrial en-
gineering and graduated Kansai University in
1988. In the same year, he joined Nissho Elec-
tronics and worked on system analysis, devel-
opment and consulting. In 1994, he joined
ACCESS Co., Ltd. and engaged in research,
planning, and development of the CASE tool
and the reverse engineering tool, REVERSE
PLANET. In 2002, he obtained a patent on the
reverse engineering tool. He became a direc-
tor and an executive director of the company in

2006 and in 2012 respectively. He was appointed to an executive vice-
president of a subsidiary branch, Finebus Co., Ltd. in 2013 and has been a
CEO since 2014.

Ken-ichi Matsumoto is a professor in the
Graduate School of Information Science at Nara
Institute of Science and Technology, Japan. He
received the B.E., M.E., and Ph.D. in Informa-
tion and Computer sciences from Osaka Univer-
sity, Japan, in 1985, 1987, and 1990, respec-
tively. His research interests include software
measurement and software process. He is an
IEICE and IPSJ Fellow, an IEEE senior mem-
ber, and a member of ACM and JSSST.

