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PAPER

Insufficient Vectorization: A New Method to Exploit Superword
Level Parallelism

Wei GAO†a), Lin HAN†, Rongcai ZHAO†, Yingying LI†, Nonmembers, and Jian LIU††b), Member

SUMMARY Single-instruction multiple-data (SIMD) extension pro-
vides an energy-efficient platform to scale the performance of media and
scientific applications while still retaining post-programmability. However,
the major challenge is to translate the parallel resources of the SIMD hard-
ware into real application performance. Currently, all the slots in the vector
register are used when compilers exploit SIMD parallelism of programs,
which can be called sufficient vectorization. Sufficient vectorization means
all the data in the vector register is valid. Because all the slots which vector
register provides must be used, the chances of vectorizing programs with
low SIMD parallelism are abandoned by sufficient vectorization method. In
addition, the speedup obtained by full use of vector register sometimes is
not as great as that obtained by partial use. Specifically, the length of vector
register provided by SIMD extension becomes longer, sufficient vectoriza-
tion method cannot exploit the SIMD parallelism of programs completely.
Therefore, insufficient vectorization method is proposed, which refer to
partial use of vector register. First, the adaptation scene of insufficient vec-
torization is analyzed. Second, the methods of computing inter-iteration
and intra-iteration SIMD parallelism for loops are put forward. Further-
more, according to the relationship between the parallelism and vector fac-
tor a method is established to make the choice of vectorization method, in
order to vectorize programs as well as possible. Finally, code generation
strategy for insufficient vectorization is presented. Benchmark test results
show that insufficient vectorization method vectorized more programs than
sufficient vectorization method by 107.5% and the performance achieved
by insufficient vectorization method is 12.1% higher than that achieved by
sufficient vectorization method.
key words: SIMD extension, SIMD parallelism, vector register, insufficient
vectorization

1. Introduction

The need to increase performance and power efficiency in
modern processors has led to a wide adoption of SIMD
(single-instruction multiple-data) vector units. All major
vendors support vector instructions and the trend is push-
ing them to become wider and more powerful [1]. SIMD in-
struction set extensions are quite common today in both high
performance and embedded microprocessors [2]. However,
writing code that makes efficient use of these units and leads
to platform-specific implementations is rather difficult [3].
Compiler-based automatic vectorization is one of the solu-
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tions to this problem. There are two main types of vec-
torization algorithms. Loop-based algorithms can convert
multiple iterations of a loop into a single iteration of vec-
tor instructions [4]. However, these algorithms require that
the loop has well-defined induction variables, usually affine,
and that all inter-loop and intra-loop dependences are stati-
cally analyzable. On the other hand, algorithms that target
straight-line code operate on repeated sequences of scalar
instructions outside a loop [5]. They do not require sophis-
ticated dependence analysis and have more general applica-
bility. However, vectorization is often thwarted when the
original scalar code does not contain enough isomorphic in-
structions to make conversion to vectors profitable [6].

Automatic vectorization techniques have proven quite
effective at extracting large levels of data-level parallelism
(DLP). However, vectorization is often much less effective
for applications which have low trip count loops, complex
control flow, and non-uniform execution behavior [7]. As a
result, SIMD lanes remain idle due to insufficient DLP [8].
SIMD widths have been following an upward trend: the
128-bit Streaming SIMD Extensions (SSE) of x86 archi-
tectures has been augmented by 256-bit Advanced Vec-
tor Extensions (AVX); the new Intel Many Integrated Core
(MIC) architecture supports 512-bit SIMD. For the high-
performance computing (HPC) industry, effective utilization
of SIMD on current hardware – and preparing for potentially
wider SIMD in the future – are crucial [9]–[11]. Though
the vector register provided by SIMD extension is becom-
ing wider, performance achieved by it is not scaling. When
exploiting the SIMD parallelism of programs, compiler will
make full use of slots that vector register provides, which
can be called sufficient vectorization. Sufficient vectoriza-
tion means all the data in the vector register is valid. Be-
cause all the slots must be used, the chances of vectoriz-
ing programs with low SIMD parallelism are given up by
sufficient vectorization method. In addition, the speedup
achieved by full use of vector register sometimes is not as
large as that achieved by partial use. However, partial use of
vector register has its own advantages including the follow-
ing aspects:

• When the number of isomorphic statements in a
straight-line code is less than vector factor, insufficient
vectorization method is needed. With the length of vec-
tor register becomes longer, vector factor is getting big-
ger. Take IMCI as an example, it can deal 8 double or
16 float simultaneously. Therefore, 8 double isomor-
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phic statements are needed when sufficient vectoriza-
tion method is used in IMCI. But there are rarely 8
double isomorphic statements naturally in a straight-
line code. Though more isomorphic statements can be
gained through loop unrolling, sometimes it is illegal to
unroll a loop because of dependence or non-standard
loop. Therefore, insufficient vectorization method is
needed at this time.
• When loop-based method is used to exploit SIMD

parallelism of inter-iteration for loops, if the iteration
number of the loop which is the most suitable for vec-
torization is smaller than vector factor, sufficient vec-
torization cannot vectorize it and insufficient vector-
ization method is needed at this time. This scenario
is very common in real-world applications. Loop nest
may have many levels and the iteration number of the
most suitable vectorization one is often smaller than
vector factor.
• Vectorization is often impeded by the SIMD mem-

ory architecture, which typically provides access to
contiguous memory items only, often with additional
alignment restrictions. Computations, on the other
hand, may access data elements in an order that is nei-
ther contiguous nor adequately aligned. Bridging this
gap efficiently requires careful use of special mecha-
nisms including permute, pack/unpack, and other in-
structions that incur additional performance penalties
and complexity. Besides, these mechanisms differ
widely from one SIMD platform to another. The per-
mutation ability of different platforms is not the same,
some platforms support flexible shuffle modes, others
support fixed shuffle mode and even unsupported. It
is difficult for fixed or unsupported platform to vector-
ize non-stride memory access. Furthermore, the cost of
shuffle instruction is expensive. It is NP-hard problem
to obtain the optimal shuffle mode [28]. These are all
needed to be considered when adopting sufficient vec-
torization method. However, when using insufficient
vectorization method, there is no need to consider per-
mutation. Though it is not making full use of vector
register, the performance is better than sufficient vec-
torization method when shuffle cost is large. Besides,
it provides a method to vectorize non-stride memory
access.

Therefore, insufficient vectorization method is pro-
posed, the methods of computing inter-iteration and intra-
iteration SIMD parallelism for loops are put forward, then
according to the relationship between the parallelism and
vector factor a method is established to make the choice
of vectorization method in order to vectorize programs as
much as possible. Finally, code generation strategy for in-
sufficient vectorization is considered.

The contributions of this paper are threefold:

• The adaptation scene of insufficient vectorization is an-
alyzed.
• The computation methods of inter-iteration and intra-

iteration SIMD parallelism for loops are given. In addi-
tion, they are used to guide the choice of vectorization
method.
• Loop unrolling is reconsidered for vectorized loop.

The rest of this paper is organized as follows: Sect. 2 de-
scribes insufficient vectorization method in detail. In Sect. 3,
we give a brief overview of the GCC compiler used and its
vectorizer infrastructure. Section 4 presents our approach
of vectorizing loops, which is guided by SIMD parallelism.
In Sect. 5 we demonstrate performance results of applying
our approach compared to sufficient vectorization method.
Section 6 introduces related work and Sect. 7 concludes.

2. Insufficient Vectorization Method

Vector register can deal with multiple data simultaneously.
Currently, most of the vector registers are used entirely,
which means all the data are useful in the slots. The sta-
tus lasts from vector loading to computation then to vector
storing and data in the slots are all useful during these opera-
tions. However, partial use of vector register is needed when
SIMD parallelism is low, which means some slots hold valid
data while others hold invalid data. Using manners of vector
register can be divided into four kinds, as is shown in Fig. 1.
Using entirely is shown in Fig. 1(a) and Fig. 1 (b) means one
part of the vector register is invalid and the other is valid.
Figure 1 (c) shows both ends are invalid and the middle part
is valid. Discontinuous use is shown in Fig. 1(d).

Insufficient vectorization method means not all the data
in the register is valid. Take vectorizing statement S 1 :
c[2i] = a[2i]+b[2i] as an example, which is shown in Fig. 2.
In the vector register Va and Vb, because data is loaded to
the vector register in the continuous manner, the even po-
sitions are valid and the odd positions are invalid. Insuf-
ficient vectorization means computing Va and Vb directly,
then storing the result to Vc and ignoring the data in the odd
position and meanwhile the results of even positions will be
stored to memory using extract instruction. Sufficient vec-
torization method will load twice and shuffle once to get
a vector register which is full of valid data. After compu-
tation, shuffling is also needed when the results are stored.

Fig. 1 Use manners of vector register.
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Fig. 2 An example to illustrate insufficient vectorization method.

For convenience, we call slots that hold valid data valid slots
and those hold invalid data invalid slots. Assume the vector
factor is 4. When compilers vectorize statement S 1, the the-
oretical speedup is 4 in the case that sufficient vectorization
is used and is 2 in the case that insufficient vectorization
is used. Though insufficient vectorization method cannot
make full use of vector register, it has advantages in several
cases.

Insufficient vectorization applies in the following two
scenarios: one is when the SIMD parallelism is low, as is
shown in Fig. 1(b) and Fig. 1 (c); the other is for non-stride
memory access, as is shown in Fig. 1(d).

2.1 Low SIMD Parallelism

When the intra-iteration SIMD parallelism is low, insuf-
ficient vectorization is needed. As is shown in Fig. 3(a),
it is the most time-consuming loop in 435.gromacs of
SPEC2006, which is called inl1130 and spends 75 percent
of the time. There are 3 isomorphic statements in the loop.
However, the number of isomorphic statements cannot scale
through loop unrolling because it may be illegal to unroll the
loop as indirect memory exists in the basic block. There-
fore, when the vector factor of a platform is greater than
3, insufficient vectorization is needed because of the low
intra-iteration SIMD parallelism. This case often appears
in real-world applications. Another example is shown in
Fig. 3(b). It is the most time-consuming loop in183.equake
of SPEC2000, which is called smvp and spends 72 percent
of the time. There are 3 isomorphic statements in this loop.
Loop unrolling is illegal because indirect memory access ex-
ists in this while-do loop. Therefore, when the vector factor
of a platform is greater than 3, insufficient vectorization is
needed.

When the inter-iteration SIMD parallelism is low, in-
sufficient vectorization is needed. As is shown in Fig. 4(a),
it is the most time-consuming loop in 454.calculix of
SPEC2006, which is called E c3d and spends 69 percent
of time. The outermost i1-loop is suitable for vectorization,
but its iteration number is only 3. This case often appears
in real-world applications. As is shown in Fig. 4(b), it is the
second time-consuming loop in BT of NPB, which is called
compute rhs and spends 16 percent of time. The innermost
m-loop is suitable for vectorization and the number of iter-
ation is only 5. Therefore, when the vector factor of a plat-

Fig. 3 Examples of low intra-iteration SIMD parallelism.

Fig. 4 Examples of low inter-iteration SIMD parallelism.
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Fig. 5 Examples of non-stride memory access.

form is greater than 5, insufficient vectorization is needed.
In addition to the above two cases, there are several

cases resulting in low SIMD parallelism. For example, the
number of iteration epilogue loop is smaller than vector fac-
tor after a loop is peeled for vectorization. When there is
flow dependence in the loop and the dependence distance is
smaller than vector factor, insufficient vectorization method
is also needed to ensure the correctness of vectorization.

2.2 Non-Stride Memory Access

Non-stride memory access kernels are often used in real-
word applications. As is shown in Fig. 5(a), it is the most
time-consuming loop in 462.libquantum of SPEC2006,
which is called toffoli and spends 64 percent of time. In
172.mgrid of SPEC2006 the third time-consuming loop is
shown in Fig. 5(b), which is called interp and spends 13 per-
cent of the time. Furthermore, programs related to complex
number often contain non-stride memory access.

(1) When the platform does not support shuffling or the
shuffle mode is fixed, insufficient vectorization is needed.
Vector registers can hold all valid slots through permutation
for non-stride memory access programs. But permutation is
restricted to the ability of shuffling instruction. If the plat-
form does not support shuffle or the shuffle mode is fixed,
the cost of permutation is expensive or even offset the ben-
efit from vectorization. However, insufficient vectorization
does not need permutation, which provides a manner to im-
plement the vectorization of non-stride memory access pro-
grams.

(2) When the performance achieved by insufficient vec-
torization method is better than that achieved by sufficient
vectorization, insufficient vectorization is needed. Sufficient
vectorization method needs more than one load and shuf-
fle in order to obtain a vector register which is full of valid
data. Shuffling is also needed when the result is written to
memory after computation. Besides, shuffling is expensive
and it is an NP-hard problem to obtain the optimal shuf-

fle mode [28], and thus sufficient vectorization may get no
benefit. But for insufficient vectorization method, though
it doesn’t make full use of vector register, sometimes the
speedup achieved may be greater than that achieved by suf-
ficient vectorization.

3. Vectorizer Overview

We use GCC to implement insufficient vectorization. In this
section, we describe the infrastructure of GCC that is rele-
vant to our work. In the next section, we describe how this
infrastructure was extended to support insufficient vector-
ization.

GCC uses multiple levels of Intermediate Languages in
the course of translating the original source language to as-
sembly. Our focus is on GIMPLE, which supports Static
Single Assignment and retains enough information from
the source language to facilitate advanced data-dependence
analysis and aggressive high-level optimizations, including
auto-vectorization. From the high-level target-independent
GIMPLE IL, statements are translated to the low-level in-
structions of the RTL, where target-dependent optimiza-
tions, such as instruction scheduling and register allocation,
is applied.

Two mainstream vectorization methods include loop-
based method which is oriented to inter-iteration and SLP
which is oriented to intra-iteration. Both loop-based and
SLP are implemented in GCC. The GCC auto-vectorizer
derives from the classic approach for vectorization, which
focuses on loops, and attempts to detect data parallelism
across different iterations of the loop. After some general
properties of the entire loop are analyzed, each statement
is analyzed and vectorized independently. For each state-
ment, the vectorizer tries to group together VF occurrences
of that statement from VF different consecutive iterations,
where VF is the vectorization factor. This is what we refer
to one-to-one substitution approach. Each scalar statement
is mapped to one vector statement that performs the respec-
tive operation on VF data elements from VF consecutive it-
erations of the loop. Additional handling beyond the one to-
one substitution is provided to generate code before or after
the loop: constants and loop invariants require that vectors
be initialized at the loop pre-header; reduction and induc-
tion computations require special epilog code after the loop.
In other cases, like access to unaligned or non-unit stride
data and operations on mixed data types, single scalar op-
eration is replaced by more than one vector operation. The
loop bound is transformed to reflect the new number of it-
erations, and if necessary, an epilog scalar loop is created
to handle the remaining loop iteration. Using if conversion,
the framework is also extended to handle more sophisticated
loop body. The cost model is also improved and loop trans-
formations oriented to vectorization with a heuristic method
is implemented, such as loop interchange, loop distribution.
Outer-loop can also be vectorized in our framework.

The SLP vectorization approach on the other hand
groups VF statements from the same iteration into a vector
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statement. It looks at flat code sequences. So it is in fact not
aware of the loop context, and can be applied to basic-blocks
anywhere in the program. The SLP approach starts by look-
ing for groups of accesses to adjacent memory addresses,
attempting to pack them together into vector load/store op-
erations. These groups of adjacent memory references are
used as the seed to an analysis that, starting from this seed,
following the def-use chains between statements, in search-
ing for computation chains that can be vectorized. Loop
rerolling can regroup isomorphic statements into a loop and
then vectorize them using the loop-based method.

Loop-aware SLP is derived from SLP. It gains more
isomorphic statements through loop unrolling. SLP is ap-
plied when the number of isomorphic statements in a ba-
sic block is greater than vector factor. Therefore, determin-
ing unroll factor is the key of loop-aware SLP. When the
unroll factor is 1, loop-aware SLP method can be called
pure SLP, and when the unroll factor equals to vector fac-
tor, loop-aware SLP is loop-based method. When the state-
ment number in the loop is less, loop unrolling can convert
inter-iteration SIMD parallelism into intra-iteration SIMD
parallelism. Hence, loop-aware SLP is restricted to loop un-
rolling. When it is illegal to unrolling a loop, such as the
dependence inhibits unrolling or it is a non-standard loop
and even the inter-iteration SIMD parallelism of the loop is
also low, loop-aware SLP method cannot vectorize it. At
this time, insufficient vectorization is needed.

4. Extending the Vectorizer to Handle Insufficient Vec-
torization

4.1 The SIMD Parallelism Computation Method of Loops

Note that not only inter-iteration SIMD parallelism but also
intra-iteration SIMD parallelism can be exploited for loops,
and thus the SIMD parallelism can be calculated from these
two perspectives.

The computation method of intra-iteration SIMD par-
allelism is introduced first. As intra-iteration SIMD paral-
lelism of loops is an inherent property, its value is fixed. But
for the limitation of exploiting method, the values obtained
from different methods obtained may not be the same. We
take SLP as an example to illustrate how to calculate intra-
iteration SIMD parallelism (IAP) for short) of loops. The
first requirement of SLP is that packed statements must be
isomorphic. SLP takes the adjacent memory access array
as the seed, then extends pack set from the def-use chain
and use-def chain, and finally schedules pack set according
to the dependence. Using def-use chain and use-def chain
to extend pack set can reduce the opportunity of unpacking.
Taking the adjacent memory access array as the seed can
improve the performance of SIMD code largely. Therefore,
three limitations of computation intra-iteration SIMD paral-
lelism are as follows: statements must be isomorphic; they
must have adjacent memory access; these statements satisfy
the dependence of vectorization. The number of statements
satisfying the above three conditions is IAP.

The inter-iteration SIMD parallelism (IEP for short) of
loops refers to the number of a statement can be SIMD ex-
ecuted. The legality of SIMD executing is that of statement
reordering in fact, while the legality of statement reorder-
ing depends on the dependence analysis. If the dependence
of loop does not hinder statement reordering, then the loop
has inter-iteration SIMD parallelism. In a traditional vector
machine, since the length of vector register is considered un-
limited, a loop can be executed in one time, the loop cannot
have loop-carried dependence. While the length of SIMD
extension is fixed, say 128-bit or 256-bit, it is vectorizable
if a loop has loop-carried dependence, but the dependence
distance must be considered. If the distance is larger than
the vector factor, all the slots can be used. But if the dis-
tance is smaller than the vector factor, it is illegal to use
all the slots and insufficient vectorization method must be
used. Therefore, two conditions have to be considered when
we calculate inter-iteration SIMD parallelism: one is the it-
eration number, and the other is the dependence distance.
In specific, if the dependence distance is 0, which means it
is loop-independent dependence, IEP equals to iter, which
stands for the iteration number; if the dependence distance
is dep, which is larger than 0, IEP equals to the minimum
between dep and iter.

4.2 Vectorization Method Guided by SIMD Parallelism
for Loops

The essence of loop-aware SLP is converting inter-iteration
SIMD parallelism into intra-iteration SIMD parallelism
through loop unrolling when the intra-iteration SIMD par-
allelism of a loop is low. Hence, the inter-iteration SIMD
parallelism of the loop must be enough. But loop-aware SLP
cannot exploit in the following two cases: one is that when
loop unrolling is illegal, such as if the dependence inhibits
or it is a non-standard loop; the other is the inter-iteration
SIMD parallelism of a loop is not enough with the increas-
ing vector register, which is more likely to occur. Hence,
we propose a new vectorization method for loops that is
guided by SIMD parallelism (VMSP for short) to solve the
disadvantages of loop-aware SLP. VMSP method chooses
appropriate vectorization method according to the relation-
ship between SIMD parallelism and vector factor, as shown
in Table 1.

When the intra-iteration SIMD parallelism is larger
than the vector factor, i.e., IAP ≥ VF, SLP can be applied
directly because the number of the isomorphic statements is
enough to pack.

When the intra-iteration SIMD parallelism is smaller
than the vector factor but is bigger than 1, i.e., 1 < IAP <
VF, loop unrolling is needed at this time. The unrolling
times UF can be expressed as

⌈ VF
IAP

⌉
, which is the up-

per bound of the quotient of VF and IAP. It means the
inter-iteration SIMD parallelism is enough if IE ≥ UF,
then the loop is unrolled UF times and SLP is applied to
pack. If 1 ≤ IEP < UF, which means the inter-iteration
SIMD parallelism is also not enough. Insufficient vectoriza-
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Table 1 Vectorization method guided by SIMD parallelism for loops

IAP ≥ V F 1 < IAP < V F IAP = 1

SLP
IEP ≥ UF 1 ≤ IEP < UF IEP ≥ VF 1 < IEP < VF IEP = 1

loop-aware
insufficient vectorization

Loop-based
insufficient vectorization

execute serially
method based SLP based loop-based

tion method based SLP works after the loop is unrolled UF
times.

When the intra-iteration SIMD parallelism equals to 1,
i.e., IAP = 1, only inter-iteration SIMD parallelism can be
applied at this time. In specific, if the inter-iteration SIMD
parallelism is larger than the vector factor, the loop-based
method is applied. If the inter-iteration SIMD parallelism
is smaller than the vector factor but it is bigger than 1, i.e.,
1 < IEP < VF, insufficient vectorization method based
loop-based works. If IEP = 1, the loop has to be executed
serially.

In the Fig. 4 (b), The IEP of innermost m-loop is 5, and
the IAP of innermost m -loop is 1. Assuming the platform
is intel’s AVX, we can choose loop-based method to achieve
best vectorization performance according to Table 1, when
IAP = 1, IEP = 5 and VF = 4. Assuming the platform is
intel’s MIC, we can choose insufficient vectorization based
loop-based to achieve the best vectorization performance ac-
cording to Table 1, when IAP = 1, IEP = 5 and the VF = 8.

After exploiting intra-iteration SIMD parallelism by
SLP, loop-based method can also be applied to exploit inter-
iteration SIMD parallelism. Because there may be scalar
codes after using SLP method, vector codes have to be un-
rolled if compiler continues vectorizing the loop using the
loop-based method.

Loop unrolling can not only improve instruction-level
parallelism but also increase the opportunity of data reuse.
Three differences exist between scalar loops and vector
loops in unrolling. First, scalar registers have more uses
than vector registers. Scalar registers may be used for loop
index, a base address register, stack register and so on. Vec-
tor registers are only used for memory access and compu-
tation. Second, unrolling for vector loops do not need to
consider the cost of control flow, because there is no if state-
ment after if-conversion. Third, some registers have been
owned by global variables, but there is rarely global vec-
tor variable when compiler vectorize a loop. Unrolling too
many times will lead to overflow in the instruction buffer,
so the determination of unroll factor is crucial. As there is
no need to consider the number of vector register and branch
statement, only the number of operations is concerned about
vectorized loop unrolling. According to the number of op-
erations and the size of instruction buffer, the upper bound
of unroll factor UFU equals to SL/N sum, where SL is the
size of instruction buffer and N sum stands for the number
of operations.

When a loop is vectorized, the iteration number will
decrease VF times, where VF is the vector factor. There-
fore, the vectorized loop is suitable for unrolling completely
if VF is very big. Unrolling completely can reduce the cost
of loops, which is very significant for loop nest. But un-

rolling immoderately will also lead to code inflating and de-
crease the efficiency of unrolling. If the number of itera-
tion is known when compiling, unrolling completely for the
loops whose number of iteration simd ite is smaller than un-
roll times + 1. Because when simd ite equals to unroll times
+ 1, the loop will be unrolled unroll times and generate an
epilog, the statements number of unrolling completely is the
same with before unrolling. We add an option vec unroll to
control loop unrolling for vectorized loops, unrolling flow is
as follows:

(1) if vec unroll=0, jump to step 4 as it means turning
off this optimization. If vec unroll =1, unroll times is ob-
tained by the compiler at this time and jump to step 2. If
vec unroll is bigger than 1, unroll times is designated by
vec unroll, jump to step 3.

(2) determine the upper bound of unroll times accord-
ing to the formula UFU=SL/N sum. In order to reduce the
number of prefetching, unroll times will be adjusted to the
pow of 2, which is 2�logUFU

2 �
(3) unroll the vectorized loop unroll times, if the itera-

tion number is known when compiling and is less than unroll
times +1, unroll completely for the vectorized loop.

(4) finish unrolling.

4.3 Code Generation for Insufficient Vectorization Method

Both SLP and loop-based vectorization methods have the
passes of pre-analysis, dependence analysis and code gener-
ation. There are a few differences between insufficient vec-
torization method and sufficient vectorization method in pre-
analysis and dependence analysis. How to generate code for
insufficient vectorization method correctly is a crucial prob-
lem. In order to guarantee the correctness of insufficient
vectorization, three aspects have to be considered: first is
valid slots and invalid slots have to be marked when data is
loaded from memory; second is to ensure the corresponding
of the valid slots when computing data in the vector regis-
ter; third is how to avoid the result of invalid slots written to
memory and guarantee the valid results written to memory.

When SLP is used, load instruction is generated ac-
cording to the packs. Continuous slots can be used in the
vector register. If the array access memory is aligned, com-
piler can generate aligned load, otherwise unaligned load is
generated. The valid slots are marked simultaneously. Be-
cause the statements are isomorphic, we get the correspond-
ing valid slots when computing. The valid slots and invalid
ones all participate in the computation. Valid results must
be written to memory to ensure the correctness, and the re-
sults in invalid slots must be abandoned. Code generation
for loop-based method is similar with SLP. Valid slots are
determined using stride and offset of arrays in the loop, and
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Fig. 6 An example to illustrate code generation of insufficient vectorization

Fig. 7 Data insertion for loading A

Fig. 8 Widened vector load for A

if the strides of arrays are the same, the valid slots of vector
register are corresponding. When the strides of arrays in the
loop are not the same, the valid slots are not corresponding
and code generation is difficult. Therefore, we only con-
sider the same stride in loops. We take an example basic
block to illustrate the insufficient vectorization code gener-
ation, which is simplified from Fig. 3 (b).

As shown in Fig. 6(a), we discuss how to vectorize
3-way double precision operations on sunway, which has
a 256-bit SIMD extension. The sunway register can be
viewed as a 256-bit vector register or a 64-bit scalar reg-
ister, which depends on operating by vector instruction or
scalar instruction [31]. Figure 6 (b) gives a code generation
method in terms of sufficient vectorization method on sun-
way. However, the vectorized code is incorrect since the
two load instructions access the locations that are not orig-
inally intended, which are highlighted by the dashed boxes
in Fig. 6(c). The two load instructions may cause potentially
wrong output, memory errors, or even program crashes. In
addition, the multiply instruction may trigger new numeric
exceptions on the unused slots. We introduce a number of

techniques to ensure their correct and efficient execution on
SIMD extension. We describe how to perform partial vector
loads, partial vector computations, and partial vector stores
correctly and efficiently.

1) Partial Vector Loads
As shown in Fig. 7, data insertion is a straightforward

approach to achieve insufficient vector load, which is ac-
complished by scalar and vector loads followed by packing.
Some platform supported masked vector loads, such as In-
tel’s AVX2 and Intel’s IMCI. With an masked load instruc-
tion “vmaskmovpd f [k][0], mask, ymm2”, f[k][0], f[k][1]
and f [k][2] is loaded to the vector register.

We can also use a widened vector load instead of inser-
tion or mask load. As shown in Fig. 8, one single widened
vector load suffices if the elements loaded are consecutive in
memory. However, a widened vector load may touch loca-
tions that are not accessed originally at the end of an array,
causing potentially memory protection errors. This can be
avoided by adding dummy elements via tail padding. For
a static array, this can be done at compile time. For a dy-
namic array, its original size can be increased in a call to,
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e.g., allocate.
2) Partial Vector Computations
Unused slots do not perform any computation in the

original program. However, no platform supports masked
arithmetic instructions currently. Appropriate data values
have to be assigned to unused slots to avoid introducing
numeric exceptions. As shown in Fig. 9, we replicate the
computational behavior of an arbitrarily selected used slot
in every unused slot by simply replicating the values loaded
initially into the used slot. Such initial values can be avail-
able in a vector initialized from memory or data packing. As
a result, no new numeric exceptions will arise. Replication
is a general approach that works on any data type. The repli-
cation is unnecessary if all numeric exceptions are masked.

3) Partial Vector Stores
As shown in Fig. 10, data extraction is a straightfor-

ward approach to achieve insufficient vector store, which is
accomplished by scalar and vector stores followed by pack-
ing. Some platform supported masked vector stores, such
as Intel’s AVX2 and Intel’s IMCI. With an masked store
instruction “vmaskmovpd ymm3, mask, x[k][0]”, x[k][0],
x[k][1] and x[k][2] is stored to the memory.

Just like the case of partial vector loads, a widened vec-
tor store can also be used instead of extraction or mask store.
However, a widened vector store must also avoid introduc-

Fig. 9 Safe execution of partial vector computations

Fig. 10 Data extraction for storing w

Fig. 11 Widened vector stores for w

ing not only memory protection errors as before but also
memory corruption errors. As shown in Fig. 11, by append-
ing a few dummy elements via tail padding to avoid memory
protection errors, which is similar with partial vector loads.
Furthermore, we must also avoid memory corruption errors
due to the writes that do not exist originally. In this exam-
ple, the full vector writes in line 2 may corrupt the value in
w[col + 1][0]. We propose to apply a backup and recovery
mechanism to correct such a corrupted value. As illustrated
in Fig. 8, the value in w[col + 1][0] is first backed up and
then recovered, after it may have been corrupted previously.

Insufficient vectorization code is generated using
widened load. Compared with sufficient vectorization
method, three extra instructions are added for insufficient
vectorization method. As shown in Fig. 6 (d), we add an in-
struction insertion to ensure the correctness of partial vec-
tor computation. We also add a scalar load and a scalar
store to ensure the correctness of partial vector store. Dif-
ferent SIMD extensions may offer different memory access
methods, we can classify them to three kinds, which are
insertion/extraction, mask load/store, and widened vector
load/store. Every method has its own advantages and disad-
vantages. We will discuss the performance differences due
to different memory access methods in the evaluation.

4.4 Cost Model for Insufficient Vectorization Method

Insufficient vectorization provides a method to vectorize
stride memory access programs. When the platform does
not support permutation flexibly, insufficient vectorization
method can make vector registers work and obtain speedup
possibly. When the platform supports permutation, the com-
piler can choose a better way to vectorize stride memory
access programs between using insufficient vectorization
method and permutation. If benefit obtained by insuffi-
cient vectorization method is larger, insufficient vectoriza-
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Fig. 12 Speedup of insufficient vectorization method.

tion method can be chosen. Therefore, a cost model is
needed to guide which vectorization method to be chosen.

Because SLP exploits intra-iteration SIMD parallelism,
adjacent memory addresses are needed, so we only con-
sider vectorizing stride memory access programs by loop-
based method. Insufficient vectorization based on loop-
based method focuses on inter-iteration SIMD parallelism,
which can perform the respective operation on N data ele-
ments from N consecutive iterations of the loop, and thus N
is the theoretical speedup. Obviously, N is related to stride.
As the length of a vector register is fixed, N will be smaller
if the stride is large. In specific, analyzing the relationship
between stride and N from align load and unaligned load, as
is shown in Fig. 12.

An unaligned load will be used if the first slot of vec-
tor register is a valid one. If stride is smaller than VF, the
speedup will be achieved because data of two consecutive
iterations can be filled in the vector register at least. Now
N equals to

⌈ VF
stride

⌉
.While an aligned load is used, o f f set

stands for the offset. The first offset slots will be invalid
slots. Because remaining VF - offset slots can be used, the

speedup of N equals to

⌈ (
VF−offset

)
stride

⌉
.

Three aspects have to be considered when comput-
ing vectorization cost. They are the cost of grouping vec-
tor, computation and writing computation results to mem-
ory respectively.

∑
cgather is the cost of grouping vector and∑

ccompute is the cost of computation.
∑

cscatter is the cost of
writing computation results to memory. For a statement
S , its cost of sufficient vectorization based on loop-based
method is

CostS =

∣∣∣DS
∣∣∣

VF
(
∑

ccompute +
∑

cgather

+
∑

cscatter)

Its cost of insufficient vectorization based on loop-based
method is

CostS =

∣∣∣DS
∣∣∣

N

(∑
ccompute + cload + cstore

)

Where
∣∣∣DS
∣∣∣ is iteration domain, VF is the theoretical

speedup of sufficient vectorization method and N is the the-
oretical speedup of insufficient vectorization method. The
key problem of memory access is alignment and consecu-
tive. The platform may supply several ways to deal with

alignment, such as it supports unaligned instruction, or can
use shift or shuffle instruction when permutation. At the
same time, there also may be several ways to vectorize
stride memory access programs, such as permutation, ex-
tract odd/extract even, gather/scatter or read/write memory
with the mask. The cost of each scheme can be calculated
according to the cost of instructions, finally a scheme of the
lowest cost will be applied.

5. Experiment and Analysis

There are three aspects in the experiment, including recog-
nition test, kernel test and full program performance test.
We implement our insufficient vectorization method in
GCC(version 4.9.1). Evaluations are carried on two plat-
forms, i.e., one is on E5-2680 and the other is on KNC.
E5-2680 is used to evaluate SSE and AVX. KNC is used
to evaluate IMCI. The vector width on IMCI is 512 bits
and the VPU may operate on 8 double-precision or 16 sin-
gle precision data elements. AVX can deal with 4 double-
precision or 8 single precision data elements. SSE can deal
with 2 double-precision or 4 single precision data elements.
The vector width on sunway is 256 bits, which can deal
with 4 double-precision or 8 single precision data elements.
Sunway is the CPU of Sunway TaihuLight supercomputer,
which is number one in the latest Top 500 rank of supercom-
puter [31]. We use option -ftree-vectorize to generate in-
sufficiently vectorized codes and option -ftree-no-vectorize
to generate non-vectorized codes. Run vectorized codes to
obtain vectorized time and non-vectorized codes to obtain
sequence time. Speedup is the result of sequence time div-
ing vectorized time. Therefore, in the relative performance
graphs, the base performance refers to the performance that
obtained by the non-vectorized programs. In Fig. 13 to 17,
x-axis stands for the kernel that is selected to the evaluation,
and y-axis stands for the speedup that the kernel achieves.

5.1 Recognition Test

We choose programs with high SIMD parallelism as sam-
ples, which are from SPEC2000 and NPB3.3. Compare the
recognition rate of loop-aware and VMSP on KNC. Results
of SPEC2000 are shown in Table 2 and results of NPB3.3
are shown in Table 3.

In SPEC2000, 6 programs are selected. The recog-
nition of VMSP and loop-aware are nearly the same in
171.swim, 173.applu, 187.facerec and 301.apsi. But in
183.equake and 191.fma3d, the recognition of VMSP is far
more than that of loop-aware, this is because programs have
low SIMD parallelism and loop-aware cannot exploit effec-
tively. The intra-iteration SIMD parallelism in the kernel
of 183.equake is 3 and it is a while-do loop and cannot be
rewritten to a for loop, and thus unrolling cannot be applied
to convert inter-iteration SIMD parallelism to intra-iteration
SIMD parallelism. Therefore, loop-aware fails to exploit it.
The same situation occurs in 191.fma3d, whose kernel is as
follows,
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Table 2 The recognition of two methods in SPEC2000

Benchmark Loop numbers VMSP loop-aware Improved

171.swim 29 11 10 10%
173.applu 26 5 5 0%

183.equake 50 26 5 420%
187.facerec 30 6 6 0%
191.fma3d 190 21 5 320%
301.apsi 20 5 5 0%
average 125%

Table 3 The recognition of two methods in NPB

Benchmark Loop numbers VMSP loop-aware Improved

BT 23 15 5 200%
FT 19 9 6 50%
MG 62 15 15 0%
LU 26 14 7 100%
SP 30 12 6 100%

average 32 13 8 90%

Ax, Ay, Az are the three members of MOT ION.
MOT ION is a structure, so the compiler has to vectorize ar-
ray of structure. Three isomorphic statements have the adja-
cent memory access in the loop body, and thus SLP is more
suitable than loop-based for this kernel. As its intra-iteration
SIMD parallelism degree is 3, loop unrolling is needed.
Since there are other members in the structure, memory ac-
cess is not continuous between two consecutive iterations
after unrolling. Loop-aware cannot exploit it while VMSP
can vectorize it successfully.

Take 183.equake to illustrate the computation method
of recognition, VMSP recognizes 26 loops successfully and
the number of loop-aware is 5, and thus the improved ratio
is (26-5)/5 = 420%. In SPEC2000, VMSP recognizes 125%
more than loop-aware averagely.

We choose 5 programs from NPB. The recognition of
VMSP and loop-aware are nearly the same in MG and FT.
But in BT, SP and LU the recognition of VMSP is far more
than that of loop-aware. The first kernel of BT is binvcrhs.
We can get the following statements after forward substitu-
tion and statement reordering are appiled,

A basic block that SIMD parallelism degree is 4
lhs(2,2) = lhs(2,2) - lhs(2,1)*lhs(1,2)
lhs(3,2) = lhs(3,2) - lhs(3,1)*lhs(1,2)
lhs(4,2) = lhs(4,2) - lhs(4,1)*lhs(1,2)
lhs(5,2) = lhs(5,2) - lhs(5,1)*lhs(1,2)

A basic block that SIMD parallelism degree is 3
lhs(3,3) = lhs(3,3) - lhs(3,2)*lhs(2,3)
lhs(4,3) = lhs(4,3) - lhs(4,2)*lhs(2,3)
lhs(5,3) = lhs(5,3) - lhs(5,2)*lhs(2,3)

A basic block that SIMD parallelism degree is 2
lhs(4,4) = lhs(4,4) - lhs(4,3)*lhs(3,4)
lhs(5,4) = lhs(5,4) - lhs(5,3)*lhs(3,4)

Fig. 13 Speedups of WIDEN, I/E, and MASK on Intel’ AVX

The SIMD parallelism of binvcrhs is 2, 3 and 4 respec-
tively. The second kernel in BT is shown in Fig. 4(b). The
vector width on IMCI is 512 bits and vector register can op-
erate 8 double-precision data elements, and thus insufficient
vectorization method can exploit successfully while loop-
aware cannot. The similar situations occur in LU and SP.
VMSP recognizes 90% more than loop-aware averagely in
NPB.

Because VMSP recognizes 125% more than loop-
aware averagely in SPEC2000 and VMSP recognizes 90%
more than loop-aware averagely in NPB. Therefore, VMSP
recognizes 107.5% more than loop-aware in selected bench-
mark averagely.

5.2 Evaluating of Different Memory Access Methods

We discuss the performance differences due to different
memory access methods. I/E means that data insertion is
applied to perform partial vector loads and data extraction is
applied to perform partial vector stores. Instead of insertion
and extraction, MASK means that masked vector loads and
stores are used. WIDEN means that widened vectors are
used to perform partial vector loads and stores. We choose
five kernels to illustrate the evaluation, which are all dou-
ble precision Insufficient vectorization method must be used
for these five kernel on Intel’ AVX. Speedups of different
memory access methods are shown in Fig. 13.

Figure 13 reveals the superiority of WIDEN over I/E
and MASK. WIDEN achieves speedups that are better than
or similar to I/E and MASK for the 5 kernels. The aver-
age speedups achieved by WIDEN are better. WIDEN is
faster than I/E by 12.0% and is faster than MASK by 9%.
WIDEN achieves performance improvements, particularly
in the case of E c3d and Inl1130, because it has avoided
the high packing/unpacking and memory access overheads
incurred by I/E and the masking overheads incurred by
MASK. On average, MASK is slightly better than I/E. I/E
suffers from packing/unpacking overhead and more memory
access overhead due to more loads and stores issued.

In contrast, MASK avoids PAUN’s packing/unpacking
overhead but ends up with some other performance pitfalls,
such as increased uops, reduced load/store throughput, and
ineffective store-load forwarding. A masked vector load has
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Table 4 Examples of low intra-iteration SIMD parallelism

kernel name Program percentage SIMD parallelism degree
reasons why only intra-iteration

SIMD parallelism can be exploited

inl1130 435.gromacs 75% 3 dependence hinders unrolling
smvp 183.equake 72% 3 non-standard loop

solve 191.fma3d 33% 3
memory access is not continuous

between two consecutive iterations.
binvcrhs BT 23% 2,3,4 straight-line code

buts LU 19% 2,3,4 straight-line code
z solve SP 18% 2,3,4 straight-line code

Fig. 14 Result of low inter-iteration SIMD parallelism.

a similar latency as a normal vector load. However, their
reciprocal throughputs are different: 0.5 for a normal load
but 2 for a masked load. MASK has managed to achieve
better or similar speedups as I/E for all kernels except for
solve. The main reason is that MASK uses longer vectors
than I/E and it suffers three times as many cache-line splits
as I/E.

5.3 Evaluating the Kernels of Low Intra-Iteration SIMD
Parallelism

We test the kernels which loop-aware cannot vectorize and
VMSP do in the previous section. The evaluation is di-
vided into two parts, i.e., one is evaluating kernels of intra-
iteration SIMD parallelism is low, and the other is evaluat-
ing kernels of inter-iteration SIMD parallelism is low. Three
SIMD extension instructions are utilized, which are SSE,
AVX and IMCI. We compare performance of the kernels
and evaluate these three SIMD extensions.

In the real-world application, loops of low intra-
iteration SIMD parallelism are very common. We choose
kernels which take large execution time as examples, which
are shown in Table 4. It lists kernel names, from which
program, percentage, SIMD parallelism degree. Though
unrolling can convert inter-iteration SIMD parallelism into
intra-iteration SIMD parallelism, sometimes unrolling is il-
legal. In the last column, reasons why only intra-iteration
SIMD parallelism can be exploited are listed. The first rea-
son is it is straight-line code and no loop exists. The second
is it is a while-do loop. The third is dependence hinders un-
rolling. The fourth is that memory access is not continuous
between two consecutive iterations.

Examples are all double, so vector factor is 2, 4 and 8
respectively for SSE, AVX and IMCI. Results are shown in
Fig. 14. Sufficient vectorization method is applied for SSE
because its vector factor is 2. The speedup of inl1130, smvp

Table 5 Examples of low inter-iteration SIMD parallelism

Kernel Program Percentage SIMD parallelim

E c3d 454.calculix 69% 3
x solve SP 17% 3

mat times vec 410.bwaves 30% 5
compute rhs BT 16% 5

Rhs LU 24% 5

and solve are 1.19, 1.34 and 1.14 respectively. The speedup
of binvcrhs, buts and z solve are 1.86, 1.54 and 1.28 respec-
tively.

Vector factor is 4 for AVX, so inl1130, smvp and solve
are all exploited by insufficient vectorization method. The
speedup of them is 1.33, 1.64 and 1.37 respectively. Be-
cause in binvcrhs the SIMD parallelism degree is 2, 3, 4
respectively, so both insufficient vectorization method and
sufficient vectorization method are used, buts and z solve
are the same case. The speedup of them is 2.20, 2.36 and
1.88 respectively.

Vector factor is 8 for IMCI, and thus only insufficient
vectorization method is exploited. The speedup of inl1130,
smvp and solve are 1.29, 1.50 and 1.24 respectively. The
speedup of binvcrhs, buts and z solve are 2.15, 2.36 and 1.81
respectively.

The last bar of Fig. 14 is the average speedup for SSE,
AVX and IMCI, which are 1.39, 1.80 and 1.73 respectively.
The largest speedup of loop-aware is 1.20 for SSE because
it exploits sufficient vectorization. The largest speedup of
VMSP is AVX, which is 1.80.

5.4 Evaluating the Kernels of Low Inter-Iteration SIMD
Parallelism

Loops of low inter-iteration SIMD parallelism are also very
common in the real-world application. We choose kernels
that large execution time are taken as examples, which are
shown in Table 5. It lists kernel names, from which pro-
gram, the percentage of execution time and SIMD paral-
lelism degree. They are all the kernels of programs, and
vectorizing them can be highly improved performance. Low
inter-iteration SIMD parallelism caused by true dependence
is seldom in real-world application, and examples we chose
are all because of small iteration numbers.

Examples are all double precision data elements.
Therefore vector factor is 2, 4 and 8 respectively for SSE,
AVX and IMCI. Sufficient vectorization method is applied
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Fig. 15 Result of low inter-iteration SIMD parallelism.

for SSE because its vector factor is 2. Insufficient vector-
ization method is applied for IMCI because its vector factor
is 8. Insufficient vectorization method is applied to E c3d
and x solve for AVX because the inter-iteration SIMD paral-
lelism degree of E c3d and x solve are 3, while other kernels
are exploited by sufficient vectorization method for AVX.
Results are shown in Fig. 15. The speedup of E c3d and
x solve for AVX is 1.42 and 1.40 respectively, 1.40 and 1.46
for IMCI, 1.12 and 1.24 for SSE.

Sufficient vectorization method can be applied on SSE
and AVX for mat times vec, compute rhs and Rhs. The
speedup of AVX is 1.30, 1.18 and 1.45 respectively. The
speedup of SSE is 1.15, 1.15 and 1.32 respectively. Insuffi-
cient vectorization method is applied on IMCI, where mask
writing is used. The speedup of these three kernels is 1.40,
1.15 and 1.40 respectively.

The last bar in Fig. 15 is the average speedup of these
five kernels, which is 1.20, 1.35 and 1.36 for SSE, AVX
and IMCI respectively. The largest speedup of loop-aware
is 1.20 for SSE, because it exploits sufficient vectorization.
The largest speedup of VMSP is IMCI, which is 1.36.

The theoretical speedup of AVX is double of SSE, be-
sides AVX is compatible with SSE. When speedup achieved
by insufficient vectorization method for AVX is lower than
SSE, the lower 128-bit can be used which is like SSE, and
hence the performance achieved by AVX will not be lower
than SSE. When sufficient vectorization method is used for
SSE, the performance cannot be larger than AVX, so vec-
tor length is the key factor that restricts SIMD performance
when SIMD parallelism degree is larger than vector factor.
From the comparison of AVX and IMCI, some kernels per-
formance for AVX is larger than IMCI, though the vector
length of IMCI is larger than AVX. This is because IMCI is
not compatible with AVX, and IMCI do not support the flex-
ible partial use of vector register. Hence, for longer vector
register, like more than 512 bit, supporting flexible partial
use of vector register is the key to SIMD performance.

5.5 Evaluating the Kernels of Non-Unit Stride Memory
Access

Real-world applications often have non-unit stride memory
access in their kernels. Eight kernels are chosen for our eval-
uation. In SPEC2006, we select toffoli, C-not and sigma x
from 462.libquantum. In SPEC2000, we select interp and
rprj3 from 172.mgrid. Furthermore, we choose complex
dot, complex multiplication and FFT which are typical ker-
nels in muti-media field.

Fig. 16 Results of non-unit stride memory kernels.

Stride of the examples are all 2, so theoretic speedup of
insufficient vectorization method is half of sufficient vector-
ization method. Test results are shown in Fig. 16. Because
kernels are all double or long, it is useless when insufficient
vectorization method is applied for SSE. We take sunway,
AVX and IMCI as test platforms. In Fig. 16, AVX stands
for speedup obtained by sufficient vectorization method, and
AVX+ insufficient is speedup of insufficient vectorization
method, and the others are the same.

Sunway only provides extract and insert instructions,
which do not support flexible permutation, and hence it
is difficult to implement sufficient vectorization method.
Though extract and insert instructions can be used to gen-
erate vectorized code, the efficiency is still lower than scalar
code. In our work, we consider the speedup of sufficient
vectorization method as 1 on sunway. Though insufficient
vectorization method is not able to make full use of vector
register, the theoretic speedup will be half of sufficient vec-
torization method because stride is 2. When insufficient vec-
torization method is applied, the speedup of toffoli, cnot and
sigma x is 1.20, 1.12 and 1.05 respectively. The speedup of
interp and rprj3 is 1.33 and 1.25 respectively. The speedup
of C-Dot, C-Saxpy and FFT is 1.50, 1.45 and 1.28 respec-
tively. In sunway the average speedup is 1.28. Hence, when
the platform do not support shuffle, insufficient vectoriza-
tion method can exploit SIMD parallelism of non-unit stride
memory access kernels.

Extract and insert instructions are also used to im-
plement insufficient vectorization method for AVX. The
speedup of toffoli, cnot and sigma x is 1.23, 1.15 and 1.05
respectively. The speedup of interp and rprj3 is 1.33 and
1.30 respectively. The speedup of C-Dot, C-Saxpy and FFT
is 1.55, 1.41 and 1.35 respectively. In AVX the average
speedup is 1.29, which is higher than sunway. This is be-
cause AVX supports loadu instruction by hardware and sun-
way has to use shift to implement unaligned load, we can see
that our cost model works. As fixed shuffle is supported, the
performance for AVX is better when sufficient vectorization
method is applied. The speedup of toffoli, cnot and sigma x
is 1.82, 1.75 and 1.35 respectively. The speedup of interp
and rprj3 is 2.10 and 2.05 respectively. The speedup of C-
Dot, C-Saxpy and FFT is 2.50, 2.21 and 1.87 respectively.
From the comparison of sufficient vectorization method and
insufficient vectorization method on AVX, we can see that
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Fig. 17 Comparison of speedups for loop-aware, VMSP and VMSP with
unrolling.

when powerful permutation is supported, sufficient vector-
ization method can obtain better performance than insuffi-
cient vectorization method.

The vector length of IMCI is double than sunway and
AVX, and thus theoretic speedup is also double. Mask writ-
ing memory is supported by IMCI, which is of great benefits
for insufficient vectorization method. The speedup of toffoli,
cnot and sigma x is 1.75, 1.62 and 1.45 respectively. The
speedup of interp and rprj3 is 2.20 and 1.95 respectively.
The speedup of C-Dot, C-Saxpy and FFT is 1.95, 1.81 and
1.74 respectively. For sufficient vectorization method, the
speedup of toffoli, cnot and sigma x is 2.70, 2.14 and 2.05
respectively. The speedup of interp and rprj3 is 1.84 and
1.73 respectively. The speedup of C-Dot, C-Saxpy and FFT
is 3.21, 3.07 and 2.53 respectively. From the results of in-
terp and rprj3, we can see that the speedups achieved by
insufficient vectorization are higher than those of sufficient
vectorization method. This is due to sophisticated permuta-
tion modes are needed by interp and rprj3. If compiler gen-
erates codes by permutation more instructions are needed.
However, writing to memory with mask makes insufficient
vectorization method efficiently.

The insufficient vectorization method of IMCI is the
same as sufficient vectorization method of AVX, for double
it is 4. When permutation mode is complex, the speedup of
insufficient vectorization method on IMCI is higher than that
of sufficient vectorization method on AVX, such as sigma x
and interp. While sufficient vectorization method on AVX
obtains better performance for kernels whose permutation
model is simple, such as toffoli and cnot. Because vector
register length of IMCI is longer than that of AVX and sun-
way, writing to memory with mask is also very efficient on
IMCI. Therefore the performance achieved by insufficient
vectorization method on IMCI is much higher than that of
on AVX and sunway.

5.6 Full Program Performance Test

In this section, full program performance is implemented to
compare VMSP with loop-aware on KNC. Programs are se-
lected from SPEC2006, SPEC2000 and NPB. The reference
input is used for SPEC benchmark and Class B input is used
for NPB. Results are shown in Fig. 17. We test loop-aware,
VMSP and VMSP with unrolling. Unroll times is generated
heuristically by compiler.

Because loop-aware method cannot vectorize 454.cal-

culix, 435.gromacs and 410.bwaves effectively, the speedup
obtained is 1.01, 1.03 and 1.03 respectively. While VMSP
can exploit the SIMD parallelism of these programs suffi-
ciently. The speedup is 1.16, 1.08 and 1.10 respectively,
which are much higher than that of loop-aware. After un-
rolling vectorized loops, the speedup of 410.bwaves im-
proves to 1.16. This is because mat times vec is a five nest
loop, unrolling completely can not only eliminate the cost
of loops but also enhance instruction-level parallelism.

The SIMD parallelism degrees of both 191.fma3d and
183.equake are lower than vector factor, and unrolling is il-
legal which is illustrated in the previous section, so loop-
aware cannot exploit successfully and obtains the speedup
of 1.02 and 1.0 respectively. VMSP can vectorize success-
fully, and the speedups achieved by it are larger than loop-
aware, which is 1.13 and 1.25. Unrolling is not suitable for
183.equake because the kernels are while-do, but 191.fam3d
get a high speedup when unrolling is applied, which is 1.20.

The kernels of BT, LU and SP do not have enough
SIMD parallelism, as shown in previous section. VMSP
can vectorize more loops than loop-aware, so the speedups
of VMSP are much higher than loop-aware. The speedups
of loop-aware are 1.02, 1.03 and 1.03 respectively, while
the speedups of VMSP before loop unrolling is applied are
1.10, 1.13 and 1.20 respectively. After using loop unrolling,
the speedups of VMSP are 1.12, 1.25 and 1.25 respectively
because most of the kernels are three levels loop nest. Im-
provement is not obvious when unrolling is used.

The SIMD parallelism of 171.swim and MG are
enough, loops which can be vectorized by insufficient vec-
torization method are also vectorized by sufficient vector-
ization method. Therefore, the speedup of two methods
achieved is the same, which are 1.83 and 1.56 respectively.
When loop unrolling is applied, performance improves to
1.85 and 1.70.

The last bar of Fig. 17 is average speedup of these three
methods. The speedup of loop-aware method is 1.16. The
speedup of VMSP is 1.26 before unrolling. After unrolling
is applied the speedup of VMSP is 1.30. Hence, the speedup
achieved by VMSP is 12.1% higher than loop-aware.

6. Related Work

Currently, there are two major vectorization algorithms.
Loop-based algorithm can combine multiple iterations of a
loop into a single iteration of vector instructions. Super-
word level parallelism (SLP) targets straight-line code.

As SIMD extensions are similar to vector processors,
SIMD compilation techniques first originated from tradi-
tional vectorization techniques for vector processors [12].
Loop-based algorithms are based on the notion of data
dependence along with several classical loop transforma-
tions. Strip-mining, scalar expansion, reduction process-
ing, loop distribution and outer-loop vectorization are ma-
jor loop transformation techniques used to enhance paral-
lelism [13]. A cost model and a loop transformation frame-
work is proposed to extract subword parallelism opportuni-
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ties and to select an optimal strategy among them, which
is based on polyhedral compilation, leveraging its represen-
tation of memory access patterns and data dependences as
well as its expressiveness in building complex sequences of
transformations [14].

SLP has been recently introduced to taking advance
of SIMD extensions for the straight-line code. Larsen and
Amarasinghe [15] are the first to present an automatic vec-
torization technique based on vectorizing parallel scalar
instructions with no knowledge of any surrounding loop.
Other straight-line code vectorization techniques which de-
part from the SLP algorithm have also been proposed in the
literature. A back-end vectorizer in the instruction selection
phase based on dynamic programming was introduced by
Barik [16]. The approach is different from most of vectoriz-
ers as it is close to the code generation stage and can make
more informed decisions on the costs involved with the in-
structions generated. Holewinsky et al. [17] propose a tech-
nique to detect and exploit more parallelism by dynamically
analyzing data dependences at runtime, and thus guiding
vectorization. Liu et al. [5] present a vectorization frame-
work that improves SLP by performing a more complete
exploration of the instruction selection space while building
the SLP tree.

Control flow is another factor that inhibits exploiting
SIMD parallelism. Currently, there are two major vector-
ization control dependence algorithms. Shin et al. [18] in-
troduces an SLP algorithm with a control-flow extension
that makes use of predicated execution to convert control
flow into data-flow, thus allowing it to become vectorized.
They emit select instructions to perform the selection based
on the control predicates. The other code generation tech-
nique is vectorizing data flow in each basic block individ-
ually, and then maintains data dependency of variables for
SIMD operations by inserting assignment statements for the
variables [19]. Programs with control flow can be vector-
ized without modifying control flow structure. In addi-
tion, function-level vectorization has also been researched
in [20]. Speculative dynamic vectorization algorithm is also
presented to reorder speculatively ambiguous memory ref-
erences to uncover vectorization opportunities [21], [22].

In spite of similarities, there exist several differ-
ences between traditional vector machine and SIMD ex-
tensions [23]. The most significant differences arise from
the weaker memory units of SIMD extensions. In con-
trast to those of vector processors, the memory units of
SIMD extensions usually do not support scatter/gather oper-
ations. They only allow to access memory locations that are
aligned at vector register length boundaries. Eichenberger
et al. proposes a method for vectorizing loops with mis-
aligned stride-one memory references [24]. Ren et al. op-
timizes a sequence of multiple data reorganization for stat-
ically misaligned data [25]. Nuzman et al. extends a loop-
based vectorization technique to handle computations with
non-unit stride accesses to data, where the strides are the
powers of 2 [26]. The methods to address unaligned mem-
ory access can be divided into three categories: first is us-

ing multiple times of memory accesses alignment and then
shifting [23], [27]–[29]; second is using loop transforma-
tion [25], [30]; third is that hardware supports for unaligned
visit deposit [26].

In [32], to ensure a correct and efficient execution
of partial vector operations on SIMD extensions are intro-
duced. In our work, we call it insufficient vectorization.
How to generate memory accesses for insufficient vectoriza-
tion without using special hardware support such as predi-
cated load and store is discussed in our paper. Furthermore,
the adaptation scene of insufficient vectorization is classified
in detail. We proposed loop SIMD parallelism to guide the
choice of vectorization methods, loop unrolling oriented to
vectorized loops is also proposed.

7. Conclusions

In this paper, we present insufficient vectorization, a novel
method to exploit low SIMD parallelism for the growing
SIMD width. First, the adaptation scene of insufficient
vectorization is analyzed. Then the computation method
for intra-iteration and inter-iteration SIMD parallelism is
given. Afterward, loop vectorization parallelism guides the
choice of which vectorization method to be used in order
to fully exploit the parallelism of loops. Finally, loop un-
rolling oriented to vectorized loops is proposed to improve
the instruction-level parallelism further. Experimental re-
sults on three platforms show that compared with loop-
aware method which is widely used in current compilers, the
methods proposed in this paper boost the recognition rate by
107.5% and the performance is improved by 12.1%.

SIMD parallelism in programs can be exploited from
multiple granularities, such as loops, basic blocks and so
on. In this paper, we present how to exploit the SIMD par-
allelism of loops completely. How to exploit function-level
vectorization efficiently is to be solved. Furthermore, to ob-
tain optimal SIMD performance for a specific application,
which one or more granularities to vectorize, is also to be
solved.
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