1016

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.5 MAY 2017

[PAPER

A Fast and Accurate FPGA System for Short Read Mapping Based
on Parallel Comparison on Hash Table

Yoko SOGABE®, Nonmember and Tsutomu MARUYAMA ™, Member

SUMMARY The purpose of DNA sequencing is to determine the order
of nucleotides within a DNA molecule of target. The target DNA molecules
are fragmented into short reads, which are short fixed-length subsequences
composed of ‘A’, ‘C’, ‘G’ ‘T’, by next generation sequencing (NGS) ma-
chine. To reconstruct the target DNA from the short reads using a ref-
erence genome, which is a representative example of a species that was
constructed in advance, it is necessary to determine their locations in the
target DNA from where they have been extracted by aligning them onto the
reference genome. This process is called short read mapping, and it is im-
portant to improve the performance of the short read mapping to realize fast
DNA sequencing. We propose three types of FPGA acceleration methods
based on hash table; (1) sorting and parallel comparison, (2) matching that
allows one mutation to reduce the number of the candidates, (3) optimized
hash function using variable masks. The first one reduces the number of
accesses to off-chip memory to avoid the bottleneck by access latency. The
second one enables to reduce the number of the candidates without degrad-
ing mapping sensitivity by allowing one mutation in the comparison. The
last one reduces hash collisions using a table that was calculated from the
reference genome in advance. We implemented the three methods on Xil-
inx Virtex-7 and evaluated them to show their effectiveness of them. In our
experiments, our system achieves 20 fold of processing speed compared
with BWA, which is one of the most popular mapping tools. Furthermore,
we shows that the our system outperforms one of the fastest FPGA short
read mapping systems.

key words: field programmable gate array, genome sequence alignment,
accelerated implementation, bioinformatics

1. Introduction

DNA sequencing is a process to determine the order of nu-
cleotides (A, C, G, T) in a target DNA, and this technol-
ogy can be applied widely, for example, to ecology, evolu-
tionary studies, agriculture, drug discovery and personalized
medicine. In DNA sequencing, the target DNA are broken
up into short DNA fragments. The fragments are read by
a DNA sequencer, and the obtained fixed-length sequences
of nucleotides are called short read. Not full length but the
fixed length portion of the DNA fragment is read. In the
paired-end sequencing, to achieve higher quality sequenc-
ing, the DNA fragment is read from both ends of the fixed
length. Then the short reads are mapped onto a given refer-
ence genome, which is a representative example of a species
that was constructed in advance. Using their locations ob-

Manuscript received June 13, 2016.
Manuscript revised December 13, 2016.
Manuscript publicized January 30, 2017.

"The authors are with Graduate School of Systems and In-
formation Engineering, University of Tsukuba, Tsukuba-shi, 305—
8573 Japan.

a) E-mail: sogabe @darwin.esys.tsukuba.ac.jp
b) E-mail: maruyama@darwin.esys.tsukuba.ac.jp
DOI: 10.1587/transinf.2016EDP7262

tained by the mapping, the target DNA can be reconstructed.

Next generation sequencer (NGS) have achieved high
throughput more than 100G base pairs per day with one ma-
chine, and DNA sequencing of the human genome is becom-
ing popular A base pair (bp) is a pair of complementary nu-
cleotides (“A-T”, “C-G”) linked by hydrogen bonds. How-
ever, this mapping process requires long computing time;
in general, it takes a few days. Furthermore, there are ge-
netic variations between the target genome and the reference
genome, and it makes the mapping more difficult. Hence,
the short read mapping is becoming the bottle-neck of DNA
sequencing using NGS.

Several software tools for the mapping such as
BOWTIE [1], BOWTIE2 [2], BWA [3], and BFAST [4] have
been developed, but their throughput are slower than the
NGS. To accelerate the performance, several FPGA systems
have also been proposed. In [5], an FPGA aligner based
on the BFAST was implemented. The final system with 8
Virtex-6 FPGAs achieved two and one orders of magnitude
speedup against BFAST and BOWTIE respectively. In [6],
an FPGA system for a variant of the FM-index algorithm
was implemented on Virtex-6 FPGA, and it showed simi-
lar performance with [5]. In [7], an FPGA system based
on BWA was implemented. To reduce the index size, an
encoded occurrence array was proposed. In [8], an FPGA-
based acceleration of a drop-in replacement for BOWTIE
was proposed. This system achieved 12 times of speedup
compared to BOWTIE running 8 threads, however, it dose
not support gapped alignment.

In this paper, we propose an FPGA acceleration
method to improve the hash-index method used in BFAST.
This approach have achieved higher processing speed while
maintaining the high matching rate. Our approach consists
of three parts:

(1) sorting seeds, which are a part of short reads, by using
a hash function to collect P (P is the maximum number of
seeds which are compared in parallel) seeds with the same
hash value and comparing them in parallel,

(2) allowing one nucleotide substitution, insertion and
deletion in the comparison to improve the mapping sensitiv-
ity without increasing the number of compared candidates,
and

(3) optimizing hash function using variable masks to re-
duce fruitless comparison.

These three approaches have been published in [9]-[11]. In
[9], [10], the above approach (1) and (2) have been pro-
posed.

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

SOGABE and MARUYAMA: A FAST AND ACCURATE FPGA SYSTEM FOR SHORT READ MAPPING BASED ON PARALLEL COMPARISON ON HASH TABLE

In this paper, we discuss the current implementation
and conduct new experiments to evaluate more parameters
(its result is shown in Fig. 8). These experiments show that
our system improves the mapping rate compared with BWA
if the short reads include many mutations.

Furthermore, to get a more detailed evaluation, we
evaluate its performance using 45M paired-end short reads
with 100 base-pairs, which were generated from whole
genome sequence of a human by Illumina HiSeq 2000.

2. Short Read Mapping

Figure 1 shows the outline of the DNA sequencing using
the reference genome. The goal of the DNA sequencing is
to identify the correct full sequence of nucleotides of the
target genome. First, the target genomes are randomly frag-
mented into short reads by NGS. Then, by finding the most
similar parts in the reference genome, the short reads are
mapped onto the reference genome. In this mapping pro-
cess, a part of short reads do not exactly match with the
reference genome because of the genetic variations and the
read errors by NGS. To distinguish them, several same se-
quences are randomly fragmented in order to map different
short reads onto the same location of the reference genome.
By this redundant mapping, the genetic variation can be dis-
tinguished from the read error, because read error occurs
randomly. This mapping process requires long computation
time, and is becoming the bottle-neck of DNA sequencing
by NGS. For improving the mapping performance, many al-
gorithms have been proposed. They can be categorized into
two groups: FM-index [12] and hash-index. FM-index is a
compressed full-text index using the the Burrows-Wheeler
transform (BWT)[13]. BOWTIE[1], BOWTIE2[2] and
BWA [3] belong to this category. With this approach, the
total data size required for human genomes is kept rela-
tively small (about 4GB), and this algorithm is one of the
fastest on desktop computers. However, the running time of
this class of algorithms is exponential with respect to the al-
lowed number of genetic variations (in general, no variation
is allowed to achieve higher processing speed), and it is not
easy to accelerate this algorithm using hardware because the
tables are repeatedly referred to find the final locations.

_§/EE
_/\\—

apping

m
fragmentation

target DNA short reads

short read

reference §§9n0m8
reference genomd

ACGTGCAGTGCAGTATAGICATGTA[GICAGT

short reads

TGCAGTGCAGTATA(CIC GICAGT
ACGTG CAGTATAICICATGTA(TIC
ACGTGCA TATA%CATGTA?CAGT

reconstructed sequence

ACGTGCAGTGCAGTATACCATGTAGCAGT

Fig.1 DNA sequencing using the reference genome

1017

2.1 Hash-Index Method

The hash-index method is an approach using subsequence
of short reads, which are called seeds. BFAST [4] belongs
to this category. In the first stage, it finds candidate align-
ment locations (CALs) by exactly matching seeds with a
part of the reference genome. The CALs are scored by
Smith-Waterman algorithm, and finally, the best alignment
location is determined. The hash table is constructed in ad-
vance from the reference genome. In this mapping process,
to find their locations in the reference genome, the hash ta-
ble is looked up using seeds extracted from short reads. The
hash table consists of the index table and the CAL table.

Figure 2 shows an example of hash table. In the fol-
lowing, we explain the details of the search using this ex-
ample. In Fig.2, the reference genome is “ACGTAACG-
TAGC”, and the length of seeds is 4 letters. Each nucleotide
(A, C, G, T) is encoded to 2 bits (00,01,10,11). In this
case, the hash values of seeds are simply the first 2 letters
(4 bits). For example, the hash value of “CGTA” is CG(0110
(= 64p)). There exist 9 seeds (12 — 4 + 1) in the reference
genome. All seeds in the reference genome are extracted,
and they are registered in the CAL table with their locations
on the reference genome. The index table is accessed by
the hash values of seeds and gives the regions (starting po-
sition and size) in the CAL table. Each region in the CAL
table is called hash bucket. A hash bucket stores seeds with
the same hash value in the reference genome. Because the
first two letters are obvious, the CAL table stores only the
remaining two letters of seeds, which is called key bits. For
example, {CG.,4} in the first bucket in the CAL table means
“AACG” is located at 4 in the reference genome. Consid-
ering the range of the hash values, the length of the index
table (which is called index size) is 16.

Suppose that a short read “CGTAATG” is given. The
difference between short reads and the reference genome is
very small in general, and we can expect that some seeds in
a short read do not include the variations, and exactly match
with the reference genome. There exist 4 seeds in the short
read. For each seed, its location on the reference genome is
looked up using the tables. For example, to find the loca-
tion of the seed “GTAA”, first, the index table is accessed
using its index “GT”. Then, “5 / 2” is obtained. Using 5
and 2, {“AA”,2} and {“AG”,7} are read from the CAL ta-
ble. “AA” and “AG” are compared with “AA” (the key of
“GTAA”), and 2 is obtained as the candidate location. In the

reference genome index table CAL table short read
012345678 CGTAATG
AcGTAACGTAGC ~ AA[0/1 cel 4 R
] AC l/.2 GT| 0 caTA
ACGT : ST 5 GTAA || seeds
CGTA = CG|3/2 TA 1 TAAT
GTAA < ; Ta| 6 AATG
TARC = GT([5/2 AA| 2 AACGTAG
i A : AG| 7 111
seeds AACG
CGTA TA |7 /‘2 AC 3 ACGT seeds
GTAG : Gcl 8 CGTA
TAGC TT Key GTAG
Fig.2 The index and CAL tables

1018

same way, the candidate locations 1 and 6 are obtained from
“CGTA”. From “TAAT” and “AATG”, no candidate location
is obtained because of the failure of their key comparisons.
Then, the whole short read is compared with the reference
genome starting from 1 and 6, and 1 is chosen as the final
location. According to [4], in case of 22 letter seeds, more
than 80% seeds have only one candidate location, while the
number of the seeds that have 10 to more than 100000 can-
didate locations is more than 15%. The seeds which appear
more than 8 times on the reference genome are called fre-
quent seeds and removed from the CAL table because they
unnecessarily increases the number of candidate locations.
In BFAST, generally, the length of seed is 22, and the index
size becomes 228,

When we consider to implement this method on a
hardware system, the parallelism in key comparisons and
the number of random accesses to off-chip DRAM banks
are two important factors that dominate the system perfor-
mance.

3. Our Approach

The target of our system is the human whole genome, and
the length of short reads and seeds are 100 and 22 base pairs.
The short reads and the reference sequence include am-
biguous characters (non-A/C/G/T characters, typically ‘N’
which means unknown or any). In [3], the ambiguous char-
acters are randomly converted to ‘A’, ‘C’, ‘G’, ‘T’. We fol-
low this method to simplify the computation by encoding the
nucleotides in 2 bits. This method may cause false match,
however, the chance that this may happen is very small as
reported in [3].

Figure 3 shows the overview of our system and its data
flow. ‘SR’ stands for short read. The hash table and the
reference sequence are stored in off chip memory of FPGA
in advance. The hash table is generated on the host-PC in
two steps; (1) calculating the size of each hash bucket, and
(2) creating the hash table the size of which is the sum of
each hash bucket size. It takes several hours to create the
hash table, however, this time is not important because it

Host-PC PCI Express x8 FPGA
;-Finding CALs module-;
: Sort unit
CPU id| CALs :
l parallel key
B comparison unit
SR Jid[CAL| | """ tTrmomommmmmmmmees
;===-:‘Scoring module:----;
_ | sw SW SW .
: id E aligner || aligner || aligner E

DRAM alignment @ @
score
RA

short reads o bank0 - T Dankl-- -,

their best alignment
locations and scores

Fig.3 The overview of our system and its data flow

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.5 MAY 2017

can be used for sequencing all other human genomes. First,
the host-PC sends short reads and their IDs (serial numbers)
to FPGA. The “Finding CALs module” calculates CALs of
the short reads and consists of the sort unit and the paral-
lel comparison unit. The given short reads are sent to the
sort unit. In the this unit, all seeds in the short reads are
extracted, and then sorted by their hash values. When P
seeds with the same hash value are obtained, the sort unit
is stopped and the P seeds are compared in the parallel key
comparison unit. The parallel key comparison unit sends
back the IDs and their CALs of matched seeds to the host-
PC. In the host-PC, the best alignment location and its score
for each short read are managed and the host-PC sends the
short read and its CAL to FPGA to calculate the score of the
CAL, if the CAL is not the best location of the short read
(unless the score is already known). Scoring module con-
sists of several Smith-Waterman (SW) aligners that operate
concurrently. The paired end reads is a pair of reads with
almost fixed distance (this distance is called insert size), and
used to improve the sensitivity of mapping. In our system,
both paired-end reads is aligned on the reference on the con-
dition that the max insert size is 800. This operation is per-
formed by Smith-Waterman algorithm between paired-end
reads (200 bps) and the candidate locations on the reference
sequence (1000 bps).

Our research focuses on how to accelerate the finding
CAL stage, because it requires most of the computation time
and Smith-Waterman’s implementation on FPGA have been
already proposed in [14] and others. In this section, we de-
scribe our methods, which consists of three parts as follows.

1. Parallel comparison:

All seeds in the given short reads are extracted, and
they are sorted by their hash values using bucket sort.
When P seeds with the same hash value are obtained,
their candidate locations in the corresponding hash
bucket are read from the CAL table in DRAM bank,
and compared with the P seeds in parallel.

2. Flexible matching that makes it possible to reduce the

number of candidate locations registered in the hash
table:
In the key comparison, one substitution, insertion
and deletion are allowed to improve the robustness
against variation between short reads and the reference
genome. We call this matching ‘flexible match’. By
using flexible match, we can reduce the number of the
key comparison by removing a number of seeds from
the CAL table without degrading mapping accuracy.

3. Optimized hash function using variable masks:

The ununiformity of the reference genome causes the
great amount of hash collisions in the original hash
function. To reduce the hash collisions, we propose
a new hash function that uses variable masks.

3.1 Parallel Comparison

In FPGA implementation, the hash table must be stored on

SOGABE and MARUYAMA: A FAST AND ACCURATE FPGA SYSTEM FOR SHORT READ MAPPING BASED ON PARALLEL COMPARISON ON HASH TABLE

off-chip DRAM memory because the size of the hash table
of human genome is more than 4GB. When the hash ta-
ble is accessed one by one, DRAM access delay becomes
the bottleneck of the system. In order to use computing re-
sources in FPGA efficiently, it is very important to get rid of
DRAM access delay. In our approach, to reduce the num-
ber of DRAM accesses, seeds with the same hash values are
sorted by bucket sort, and the hash table is accessed when
P seeds with the same hash value become ready. The hash
table is accessed once for the P seeds, and the P seeds are
compared with the corresponding keys in parallel. This par-
allel comparison aims to reduce the computation time of the
key comparison and the idle time caused by DRAM access
delay by reducing the number of DRAM accesses to 1/P.

3.1.1 Sorting

Two level buckets, internal and external, are used in our sys-
tem. Figure 4 shows the bucket sort unit. First, the received
short read is set to the shit register. The short read is shifted
to left by 2b controlled by the counter, and the left most
44b is extracted as a seed. From one short read of length /,
I —22 + 1 seeds are generated. The value of counter means
the seed’s position on the short read. Each entry of a bucket
is a key field of the seed (the last 32b of the seed), its short
read ID, and its position on the short read. The position on
the short read and the ID are expressed by 7 and 25 bits.
Therefore, the size of each entry is 8B. Each external bucket
in off-chip DRAM bank stores P seeds of the same hash
value. The total size of external buckets is P X w X 8B (w is
the range of hash values). Each internal bucket on on-chip
memory in FPGA stores 7 seeds of the same hash value and

+short read (200b) * short read ID

shift register
I

_ — — — _ 4= =

| position in SR

| key 4 SRID

I
%1 _extract seed module

counter

L leew g
o internal buckets
- 01T — |\ — - — (7 seeds cache for each hash value)
| Vo, v
" bucket 0 |
..... | i bucket 1
| o internalbucket T bucket 2
| Y N bucket w-ll
| Evaanko o * bankl 4, } bank2 o * bank 7 |
L [write buffer |
—_ — — T — — _ _ 1
8xo4 ix seeds
| DRAM UF | FpGa

v
|< P ->|< P + P ->| |< P ->| external bucket prAM banks

Fig.4 Sort unit by bucket sort

1019

works as cache memory. The total size of internal buckets is
7 x wx 8B. When the 8th seed is given to an internal bucket,
the 8 seeds (7 seeds in the internal bucket and the 8th seed)
are moved to the external bucket by burst-write. Internal
buckets are used to reduce the accesses to the external buck-
ets in the off-chip DRAM bank, and to achieve higher data
transfer rate by burst-write. The sort module processes one
seed per one clock cycle. When an external bucket becomes
full, the sort module is stopped, and the key comparison unit
reads P seeds from the bucket.

Although larger w is required to reduce the hash col-
lisions, the realizable size of internal buckets is limited. In
BFAST, wis 2?8, but it is reduced to 2'* to 2'® in our system
because of the limitation of on-chip memory resources on
FPGA. Although it raises the amount of the hash collisions,
the bottleneck of DRAM access is avoided, and furthermore,
more number of key comparisons can be executed in paral-
lel.

3.1.2 Parallel Key Comparison

Figure 5 shows a block diagram of the parallel key compari-
son unit. When an external bucket becomes full, the P seeds
in it are read back from the bucket, and given to this unit.
Each seed in the bucket consists of the key, the short read
ID and the position in the short read. At the same time, the
keys and CALs in the corresponding hash bucket are read
from the hash table, and also given to this unit. In this unit,
the keys in P seeds are compared with all keys in the hash
bucket in parallel. The comparison on this unit consists of

from external bucket [_count [mode H fromnﬁl %Sgllilgléfé
hort read ID & *-----matched count register----~
-+~ Short real - 0 key locatlon

" potision on the short read
key register L

-
L 2 2 2 2 2 I 1
[tchler] |match|er | |mdtch|er | [matcher . ister
B S SN Ty
3 %‘:I:l v vV v vy
A~ [matcher | [matcher | [matcher | [matcher |

SR-buffers
-
-

CAL buffer

A}
I, + iy
controller] [c ntroller [controller]| [controller

matching location + short read ID + position on the short read

Fig.5 A diagram of the parallel key comparison unit

1020

Table 1

[mode [

The modes and operations

operations executed when keys match |

increase count’s value
if count’s value is zero, change count’s value and mode
to the position of the key and ‘lock’ respectively,
otherwise decrease count’s value

first stage
second stage

(not reach)
lock (second stage) none

two phases, and the mode fields in ‘matched count register’
manage these two phases.

With burst-read, 4 seeds in the external bucket can be
given to this unit every clock cycle. The keys from the CAL
table are given to the top of the array of the key shift registers
one by one. They are shifted down every clock cycle, and
are compared with the four seeds on each line in parallel.
With each key, four ‘matched count’, which were initialized
to zero, are shifted down. These counts are incremented
independently when the key matches the key shift register
on the same column. When each key reaches the bottom
of the array (it takes P/4 clock cycles), it was compared
with all P seeds, and the four ‘matched counts’ are stored in
the four redo-buffers respectively (if the count is zero, it is
discarded). The short read ID and the position on the short
read from the external bucket and the location from the CAL
table are directly sent to the SR-buffer and the CAL buffer
because they are not necessary for the comparisons. The
SR-buffer stores P pairs of the ID and the position on the
short read and is accessed using the position on the array at
the end of the second phase. CAL buffer is a FIFO with P/4
CALs, and the input CAL appears at the output after P/4
clock cycles.

After the last entry of the hash bucket is given to the ar-
ray, the second stage is started. The purpose of this stage is
to find the pairs of a matched short read ID and a CAL using
the result of the first stage. Each entry in the redo-buffers is
copied m times if its matched count is m, and the m copies
are re-entered into the array one by one. For this reprocess-
ing, j (0< j<m) is attached to each copy as its initial count.
When the key matching is successful, one of the following
action is taken. If the count is zero, the line number of array
is copied into the count field, and the mode is changed so
that the count is not changed any more. Otherwise the count
is decremented by one. When the copy reaches the bottom,
the count field shows with which seed the copy matches. By
using the count field and the SR-buffer, a pair of the short
read ID and its CAL are obtained and sent back to the host-
PC.

In our implementation, to realize the procedure above,
the mode field of the matched count register is used like a
state machine. Table 1 show a list of mode and what to do
when the keys are matched. Figure 6 shows the data flow
on one column of the parallel key comparison unit (actu-
ally four columns). In the first phase, four columns work in
parallel. In the second phase, only one column work exclu-
sively because the key shift registers is only one column.

In this unit, it is necessary to read 4 seeds per clock
cycle from the external bucket and one seed per clock cycle
from the hash table. The memory bandwidth of the system

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.5 MAY 2017

second phase :
finds the matched paires

first phase :
counts the number of matched paires

hash bucket

matched count reg fisrt(F)
count mode i second(S) i

/ key shift reg lock(LK) i

== [Es ey
= — i
@Icrcas? cx:)um

external bucket e

&

poOs
unt

ilpcen] _ ofacea [¢is] [acen
f [TraT 1[caat m}

CCAT

JEeE D09

=2
AGGA
TTAT
match!
Set pos 2 in count
match! H
@Increase =3
GAAT
AGGA
CAGG
=4

matched at pos 2

1iAGGA | [GRAT]
add copies to
ccan SAGG
rcdo-buffc: n

2 AGGA oo i
matched 2 times

0 AGGA
matched at pos 0

Fig.6 The data flow on the parallel key comparison unit (one column)

is fast enough for this requirements.
3.2 Flexible Match to Reduce the Hash Table Size
3.2.1 Flexible Match

Figure 7 shows a block diagram of the matcher. In Fig.7,
keyO and keyl are compared. ‘Exact matching’ module
compares its two inputs nucleotide (2b) by nucleotide (2b).
‘#zero==1" module counts the number of zeros in its in-
put, and outputs 1 if the number of zeros is 1. ‘leading
gen’ module extracts the leading ‘1’s from the most sig-
nificant bit (e.g., 1110XXXX = 11100000, OXXXXXXX =
00000000). By taking OR of the output of ‘leading gen’
and ‘exact matching’ with two bit left/right shift of its input,
we can detect one nucleotide insertion and deletion on arbi-
trary position on key0. ‘valid bit’ is attached to each key in
the CAL table to suppress the excessive match by the flex-
ible matching. The ‘valid bit’ of the keys in the CAL table

SOGABE and MARUYAMA: A FAST AND ACCURATE FPGA SYSTEM FOR SHORT READ MAPPING BASED ON PARALLEL COMPARISON ON HASH TABLE

16 nucleotides
(2-bit encoded)
ACG. .GTA ACG. .CGT

key0 keyl
key0 <<2 ACG..GTA
32 32 keyl ; <<2 >>2
exact matching |5 vsp) -Jexact matching | [exact matching |
~. TI5 15
key0 ACG..GTA A" 16 leading gen e key0>>2 ACG. . GTA
it 1 ¢
[OR] OR] 111..00
N~ 00...11
[==0xFFFF | [#zero==1 | [==O0x7FFF | [==0x7FFF |11..11}
1 41 B Fi
1 substitution 1 insertion 1 deletion
exact 1
B 1 mutation 1 valid bit
AND
1
OR

Fig.7 A block diagram of matcher (the example that key1 has one dele-
tion)

that match frequently are turned off so that the number of
successful matches does not become larger than 8 for any
given key. About 80% of valid bits in the CAL table is on.

3.2.2 Reducing the Size of the Hash Table

The sort and parallel comparison enable to further improve
the performance by reducing the size of hash bucket. In
BFAST, all seeds in the reference are not registered in the
hash table. The frequent seeds are removed from the hash
table, and only 80% of them are used. If one seed gives the
true location, it is enough to know the true location of the
short read. 80% is enough for the mapping, because each
short read has 79 seeds (100 — 22 + 1) in it.

In our approach, to reduce the number of key compar-
isons to 1/s (s is an arbitrary integer), only the seeds at
s X ith position (i is also an arbitrary integer) on the ref-
erence genome are registered in the hash table. By using the
seeds that start from sth, 2sth, 3sth and so on the reference
genome, we can reduce the number of key comparisons to
1/s. If the seed at s X i is a frequent seed, the nearest non-
frequent one is registered instead of it. With this method,
the number of CALs can be reduced to almost 1/s and it
enables to increase the performance by about s fold.

This methods may degrade the mapping rate, but flex-
ible match enables to achieve the high mapping rate as
with BFAST. To evaluate the rate of short reads which are
mapped correctly, we have created a single-end simulated
data set with their true locations from the reference genome
(GRCh37) because the real data sets do not have the true
locations. The simulated data consists of 100k short reads
with 100 base pair and mutations are added to them artifi-
cially to clarify the relation between the amount of muta-
tions and the mapping rate. Figure 8 shows a graph of the
mapping rate of BFAST, BWA, which is one of the most ac-
curate software tools, and our method when we change s.

1021

correct mapping rate

#mutation

Fig.8 Mapping rate by exact and flexible matching when s is changed

The horizontal axis shows the mutation rate (%) per base-
pair, and the vertical line shows the mapping rate. The dis-
tribution of the substitution, insertion and deletion on muta-
tions is 0.75, 0.125, 0.125. As shown in this graph, the map-
ping rate decreases by reducing the number of seeds to 1/s,
but by using flexible match, we can achieve higher mapping
rate than BFAST on each mutation rate when s <= 15. Fur-
thermore, when s = 5, our mapping rate outperforms BWA
when the mutation rate is high. The larger s enables more
acceleration. In our implementation, we choose s = 15 be-
cause this is the maximum of s that shows better mapping
rate than BFAST.

3.3 Optimization of the Hash Function

In this section, we improve the hash function from the seed
of 22 letters (44b) to the hash value (log,(w)b). First, we
formulate the execution time of the key comparisons;

R: a set of the seeds in the reference genome

D: a set of the seeds in the CAL table

SR: a set of the seeds extracted from the given short reads
Here, let X; be a subset of X with the same hash value i
(X; : {a € X;| hash(a) = i}), and let |X| be the number of
elements in X. The execution time of key comparisons (7)
is given by

T.=C.x|SR|

where C, is the average number of the key comparisons for
each seed. C, is given by

C.= Z pilDil
1ew
where p; is the probability that a seed is mapped into the
hash bucket i. This equation means that when a seed is
mapped to i, it is necessary to compare it with |D;| keys in
D;. Here, p; can be approximated as

ISR _ IRl
LY
because the distribution of hash values of the short reads is

very similar to that of the reference genome. This is caused
by the fact that the difference between the short reads and

1022
Table2 C,;, and C, on the original hash function
w 214 216 218
C, 701728.7 | 228917.5 | 88532.7
Coin 349282.6 87320.6 | 21830.2
Cr/Coin 2.0 2.6 4.1

the reference is very small. Therefore, C. can be rewritten
as

- Diew IRilID;]

Ce
IR|

|D;| o< |R;| because the distribution of D and R is very
similar. Thus, the average number of the key comparisons
in the hash table with R (which is called C,) is given by

~ DiewlRP

o
R]

K xCe,,

where K is a proportionality coefficient. Hence, to minimize
C,, it is necessary to minimize C, by equalizing |R;|. We can
minimize C, by improving the hash function because it de-
fines R;. In addition, when |R;| = |R|/w (all |R;| are perfectly
equalized), the value of C, can be minimized (C,,,). Table 2
shows a comparison of C, and C,,, when we change w from
2% t0 2'8. The bottom line (C,/C,,,) indicates that the max-
imum acceleration rates by optimizing the hash function are
more than 2.

3.3.1 Hash Function Using Mask Table

We propose a new hash function using a mask table, to
equalize |R;|. The basic idea of our method is to divide larger
R; and merge smaller R ;s using the mask table.

First, we define three fields of each seed: key, prefix
and extended bit. The key bit is the last 32b of a seed,
The prefix bit is the first /, bit and the extended bit is the
next /bit to the prefix. We define a mask operation here.
The mask operation extracts bits from a given bit sequence
using its mask bit. We express that x is masked by m as
“mask(x,m)”. For example, when a data x = x4x3x,x1x9 and
its mask m = 10110 are given, the mask function mask(x, m)
generates x4x,x1. The mask table consists of a pair of an off-
set and mask bit, and it is accessed by prefix bits. The mask
bit and the offset work to divide and to merge hash buckets.
The hash value is calculated from prefix and extended fields
of a seed using the mask table. The hash function is defined
as

hash(prefix_bit, extended_bit) =
mask_table[prefix_bit].offset +
mask(extended_bit, mask_table[prefix_bit].mask)

As shown this equation, to calculate a hash value, first, the
offset and mask bit are read from the mask table using the
prefix of the seed. The extended bit of the seed is masked by
the mask bit, and the numerical value of the result is added
to the offset to obtain the hash value.

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.5 MAY 2017

4 CAL table R
. AAA | 4
index table Y
AA|0/6 ACT| 5
: ACG| 1
CA| /1 ATA| 6
ccl /1 ATT| 2
TT ACT | 3
CTA| 8
original hash funciton

. . Key Location
(hash value is the first 4b)

CAL table
mask table .
B _ index table AAR| 4
offset mask bit 573 / AAG| O
aal 0 [0l Uz ; - ACT| 5
AC| 2 00 — ——|AGG| 1
: H - ATA| 6
/2

cal 6 Joo 7’ : ATT| 2

cc[6 [oo ; :
N o — ACT| 3
TT CTA| 8

proposal hash function
(equalize the size of hash buckets)

Key Location)

Fig.9 Comparison between previous and proposal hash function

Figure 9 shows an example of the proposal hash func-
tion and original one, which is used in BFAST. In this figure,
the length of seed, key, prefix, extended bit are 8b (4-letters),
6b (3-letters), 4b (1-letters) and 2b (1-letters). For example,
the first entry in the CAL table means that “AAAA” appears
at the location 4 on the reference. In the original method,
the hash value is just the prefix bits. In this example, the
seeds in the reference genome that start from “AA”, “CA”
and “CC” are stored in three buckets, and their sizes are 6, 1
and 1.

When a seed “AAGG” in a short read is given, it is
mapped to the bucket 0, and compared 6 keys in Ry. Then
‘1’ is obtained as CAL of this seed. In the proposal method,
the mask table is used to calculate its hash value. The {0,10}
are read as the offset and mask bit from the mask table using
the prefix “AA”. The extended bits “G”=°(10)" is masked
by 10, and 1 is extracted. It is added to the offset, and fi-
nally, “AAGG” is mapped onto 1. In the original method,
all seeds with prefix “AA” are mapped into 0. However,
they are mapped into 0 and 1 in our method. In this way,
the seeds with the frequently appeared prefixes are divided
into several hash buckets to equalize |R;|. Actually, the mask
bit is an arbitrary bit sequence with [, bits, and the prefix
is divided into 2PP™ hash buckets, where m is the mask
and pop(m) is the number of 1’s in m. For example, when
m = 1011, seeds with the same prefix are mapped onto 2°
hash buckets. On the other hand, the seeds with the less
frequently appeared prefixes are merged into the same hash
bucket like ‘CA’ and ‘CC’ in Fig. 9 by giving them the same
offset.

By using the mask table, the seeds that start from “AA”,
“CA” and “CC” are mapped onto three buckets as well as
the original method, but the size of the three buckets are
equalized; 3, 3, 2 from 6, 1, 1, by the original method.

Here, we must mention one constraint on the mask ta-
ble. The CAL table stores not whole field of seeds but only

SOGABE and MARUYAMA: A FAST AND ACCURATE FPGA SYSTEM FOR SHORT READ MAPPING BASED ON PARALLEL COMPARISON ON HASH TABLE

Table 3 The improvement rate of C, by equalizing |R;| and the mask
table size (Mb) when w = 21

Iy

14 15 16 17 18
8 | 2.02(0.38) | 2.11(0.75) | 2.15(1.50) | 2.21(3.00) | 2.26 (6.00)
10 | 2.11(0.41) | 2.16 (0.81) [2.20 (1.63) | 2.28 (3.25) | 2.29 (6.50)
I [12] 2.17(0.44) | 2.21(0.88) | 2.21 (1.75) | 2.31 (3.50) | 2.32(7.00)

14 [2.22(0.47) | 2.25(0.94) | 2.26 (1.88) - -
16 | 2.25(0.50) - -
i The theoretical maximum performance improvement is 2.62.

Table 4 Internal bucket size and C,
w 214 2]5 216 217 2]8
internal bucket size (MB) 0.875 1.75 3.5 7 14
C, 24786 12609 6281 3182 1788

keys. We cannot distinguish two seeds of different first 12b
if they are stored int the same hash bucket. Thus, the seeds
in the same hash bucket must have the same first 12b. We
must merge buckets based on this constraint.

3.3.2 Finding Better Mask Table

The next problem is how to calculate better mask table effi-
ciently to equalize |R;|. The problem to find an optimal mask
table is a combinatorial problem, and it is not easy to find
the optimal solution. Here, we propose a simple heuristic
method based on two steps: dividing and merging.

1. Initialize a mask table:
The mask table is initialized so as to output the same
result as the original hash function.

2. Devide the largest hash bucket by randomly raising one
bit of the mask bit.

3. Merge the smallest hash bucket with the same first 12b,
by giving the same offset.

4. Repeat (2) and (3), until the search converges.

5. Finalize:
All mask bits are refined to find a local optimum by
evaluating all possible combinations within the number
of 1’s in the mask bit.

It takes several hours to calculate the mask table by our
heuristic method, however, once it is calculated, it can be
used for all individuals of the same species.

Table 3 shows the improvement rate of C, by equal-
izing |R;| using our heuristic method, when w = 2'°. To
calculate hash values faster, the mask table must be placed
in on-chip memory in FPGA. This requirement limits the
width of /, and [, as show in Table 3. The values in brack-
ets are the size of each mask table in MB. The acceleration
rates are close enough to the theoretical maximum. As show
in this table, there is a tradeoff between speedup and the us-
age of FPGA resources. We have chosen, = 15and [, = 14
considering the balance of them. We have created the mask
tables for each w, and Table 4 shows the size of the internal
bucket and C,.. As shown in this table, C. can be improved
using the mask table.

1023
Table 5 FPGA resource utilization
#LUTs (K) | #Registers (K) #BRAMs freq (MHz)
336 (78%) 120 (14%) 898 (61%) 200
Table 6 The mainly memory consumption
in FPGA mask table 0.12 MB
internal buckets 3.50 MB
index table 1.25 MB
in off-chip DRAM banks | reference genome | 0.78 GB
external buckets 1.0GB
CAL table 2.84 GB

Table 7

mutation rate | 2 4 6 8 10
BWA[3] | 98.816 | 98.594 | 98.247 | 96.586 | 92.228
BOWTIE2[2] | 97.776 | 90.448 | 72.093 | 46.414 | 23.276
BFAST[4] | 94.177 | 90983 | 85.419 | 76.985 | 65.989
Our Approach | 97.968 | 97.464 | 96.028 | 92.675 | 85.826

Mapping accuracy by simulated data

4. Implementation and Performance Evaluation

To implement our approach on an FPGA, we must decide
P, w and the number of Smith-Waterman aligner accord-
ing to the amount of available hardware resources. P is de-
cided by the amount of configurable logic blocks (CLBs)
in the FPGA, and w is decided by the size of available on-
chip memory resources. Larger w is required to reduce the
number of key comparisons, however, it requires more hard-
ware resources. As shown in Table 4, with larger w, the
more the performance is improved, however, the size of in-
ternal bucket also becomes larger. Our target device is Xil-
inx Virtex-7 XC7VX690T, and it has 52.92Mb (6.615MB)
of on-chip memory (Block RAMs). We have implemented a
circuit for w = 16, because it is the largest w for this FPGA.

In the scoring module, 16 Smith-Waterman aligners
are implemented. The finding CAL module and the scor-
ing module run concurrently, and when a sufficient number
of SW aligners are prepared, the total execution time is de-
cided by the execution time of the finding CAL module. 16
SW aligners are enough through all experiments.

We have implemented the circuit using Verilog HDL
on a Virtex-7 XC7VX690T, and Vivado 2014.2 was used
to compile it. The operating frequently is 200MHz to
synchronize the DRAM interface (DDR-800). Table 5
shows the summary of the implementation result reported
by Vivado. Table 6 shows the main memory consumption
of on-chip memory (BlockRAMs) in FPGA and off-chip
DRAM banks.

To compare the rate that are mapped correctly, we have
created 100K simulated paired-end short reads with 100
base-pairs from the reference genome of human (GRCh37).
Table 7 show the rate of the short reads that are mapped
onto the true locations by software tools and our approach.
The mutation rate (%) means the rate of the added muta-
tion (the ratio of substitution, insertion and deletion is 0.75,
0.125, 0.125) per a base-pair. BWA [3], BOWTIE2 [2], and

1024
Table8 Execution time and the mappingg rate

t (sec) rate (%) speedup
BWA [3] 4156 99.60 1.00
BOWTIE2 [2] 4117 96.19 1.01
BFAST [4] 32878 98.99 0.13
Olson et al. [5] (Virtex-6 XC6VLX240T)" 644 98.99 6.45
our approach (Virtex-7 XC7VX690T) 176 99.05 23.61

T performance with one XC6VLX240T is estimated from the eight FPGA
system for 76 base-pairs short read.

BFAST [4] are software tools. As shown in this table, the
mapping accuracy of our approach outperforms BOWTIE2
and BFAST, and very close to BWA.

We have evaluated the performances by using a real
data set, 45M paired-end reads (45M X 2 short reads) with
100 base-pairs (ERR251631), which were generated from
whole genome sequence of a human by Illumina HiSeq
2000. The FPGA system by Olson et al. is one of the
fastest FPGA systems for short read mapping. The soft-
ware tools are executed on Intel(R) Core(TM) i7-4790K
CPU @ 4.00GHz with 32GB main memory by 8 threads.
To create the index of BFAST, we used ‘bfast index -f
/ref/GRCh37/v37.fa-A0-m 1111111111111111111111 -w
14 -i 1 -n 8 as arguments, which means that the length of
seeds is 22 letters and their first 28b (14 letters) is used as
the hash value. In other software programs, their default op-
tions are used. Table 8 shows the execution time and the
mapping rate. Here, it should be noted that ‘mapping rate’
means not ‘mapped correctly’ but ‘reported that at least one
location is found’. Our system is about 24 times faster than
BWA, which is one of the fastest software programs. The
system by Olson et al. was implemented on eight Virtex-6
XC6VLX240T and the target short reads length is 76 base-
pairs. In Table 8, we have estimated the performance on
one XC6VLX240T for shot reads with 100 base-pairs. It is
difficult to compare FPGA systems on different devices. In
order to fairly compare both FPGA systems, we normalize
the performances by the number of CLBs (the amount of
hardware resources). Our system is about 3.7 times faster
than the system by Olson et al. although our system requires
2.8 times of hardware resources. This mean that our system
works more efficiently than the system by Olson et al. As
shown in Fig. 8, when s = 5, the mapping rate of our system
outperforms BWA when the mutation rate is high, and the
performance is still 8 times faster than BWA.

5. Conclusion

In this paper, we proposed an FPGA acceleration method
based on hash table to realize faster short read mapping.
Although we have optimized our system for the whole hu-
man genome, our system works effectively on other target
genomes which have similar order length (whole human
genome is about 3G). First, to reduce the number of accesses
to the hash table, the seeds in the short reads are sorted by
their hash values, and P seeds with the same hash value are
compared in parallel. Second, in the comparison between
the seeds in the short reads and the reference genome, one

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.5 MAY 2017

mutation are allowed to improve the mapping accuracy. This
extension enables to reduce the number of the seeds in the
hash table to 1/15 while keeping the high mapping rate.
Third, to equalize the number of the seeds that are hashed
into each hash bucket, we proposed an optimized hash func-
tion using masks. We implemented our approach on Xilinx
Virtex-7, and showed that its performance is more than 20
times faster than BWA, which is one of the fastest software
program. Furthermore, the mapping rate of our approach is
very close to BWA, which is one of the most accurate soft-
ware tools.

Due to further improvement of NGS technology, the
length of reads is becoming longer. In our approach, the
hardware size of the finding CALs modules does not depend
on the read length because these units process not the whole
short reads but the seeds (fixed-length sub-sequences of the
reads), and the performance of the modules is almost pro-
portional to the total number of seeds which are extracted
from the reads. The total number of seeds is almost the
product of the read length and the total number of reads.
In general, by enlarging the length of reads, the total num-
ber of them becomes smaller. Thus, we can consider that the
longer length of the reads has only small effect on the find-
ing CALs modules. On the other hand, the performance and
hardware size of scoring modules are simply proportional to
the read length. In our current implementation, those two
kinds of modules run concurrently, and when the length of
short reads is 100 base pairs, the total performance is dom-
inated by the finding CALs modules. However, for longer
reads, this balance will be gradually changed, and when they
are longer than 500 base pairs, the scoring modules become
the bottleneck. In this case, we need to re-balance the sys-
tem. These are our future work.

References

[1] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg, “Ultrafast
and memory-efficient alignment of short dna sequences to the human
genome,” Genome Biology, vol.10, no.3, 2009.

[2] B. Langmead and S.L. Salzberg, “Fast gapped-read alignment with
bowtie 2,” Nature Methods, vol.9, no.4, pp.357-359, 2012.

[3] H. Li and R. Durbin, “Fast and accurate short read alingment
with burrows-wheeler transform,” Bioinformatics, vol.25, no.4,
pp-1754-1760, 2009.

[4] N. Homer, B. Merriman, and S.F. Nelson, “Bfast: An alignment
tool for large scale genome resequencing,” PLoS ONE, vol.4, no.11,
p.e7767, 2009.

[5] C.B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling, S. Hauck,
and W.L. Ruzzo, “Hardware acceleration of short read mapping,”
FCCM, pp.161-168, 2012.

[6] J. Arram, K.H. Tsoi, W. Luk, and P. Jiang, “Hardware acceleration
of genetic sequence alignment,” ARC, vol.7806, pp.13-24, 2013.

[7] H.M. Waidyasooriya, M. Hariyama, and M. Kameyama, “Fpga-
accelerator for dna sequence alignment based on an efficient data-
dependent memory access scheme,” Proc. 5th International Sym-
posium on Highly-Efficient Accelerators and Reconfigurable Tech-
nologies (HEART), pp.127-130, 2014.

[8] E.B. Fernandez, J. Villarreal, S. Lonardi, and W.A. Najjar, “Fhast:
Fpga-based acceleration of bowtie in hardware,” Computational Bi-
ology and Bioinformatics, IEEE/ACM Transactions on, vol.12, no.5,
pp.973-981, 2015.

http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1371/journal.pone.0007767
http://dx.doi.org/10.1109/fccm.2012.36
http://dx.doi.org/10.1007/978-3-642-36812-7_2
http://dx.doi.org/10.1109/tcbb.2015.2405333

SOGABE and MARUYAMA: A FAST AND ACCURATE FPGA SYSTEM FOR SHORT READ MAPPING BASED ON PARALLEL COMPARISON ON HASH TABLE
1025

[9] Y. Sogabe and T. Maruyama, “An acceleration method of short read
mapping using fpga,” Field-Programmable Technology (FPT), 2013
International Conference on, pp.350-353, IEEE, 2013.

[10] Y. Sogabe and T. Maruyama, “Fpga acceleration of short read map-
ping based on sort and parallel comparison,” Field Programmable
Logic and Applications (FPL), 2014 24th International Conference
on, pp.1-4, IEEE, 2014.

[11] Y. Sogabe and T. Maruyama, “A variable length hash method for
faster short read mapping on FPGA,” Field Programmable Logic and
Applications (FPL), 2015 25th International Conference on, pp.1-6,
IEEE, 2015.

[12] P. Ferragina and G. Manzini, “Opportunistic data structures with ap-
plications,” Proceedings of the Annual Symposium on Foundations
of Computer Science, pp.390-398, 2000.

[13] M. Burrows and D.J. Wheeler, “A block-sorting lossless data com-
pression algorithm,” Digital Equipment Corporation, Technical re-
port 124, 1994,

[14] Y. Yamaguchi, T. Maruyama, and A. Konagaya, “High speed homol-
ogy search with FPGAs,” PSB, pp.271-282, 2002.

Yoko Sogabe received the B.S. and
M.S. (engineering) degrees from university of
Tsukuba in 2013 and 2015. He is now phD
student of university of Tsukuba. His research
interest is an accelerated implementation on
FPGA and GPU for applications of bioinformat-
ics, etc.

Tsutomu Maruyama is a professor of the
faculty of engineering, information and systems
at University of Tsukuba. He received his Doc-
tor of Engineering degree from Tokyo Univer-
sity in 1987. His research interest is in the ap-
plication acceleration using FPGAs and GPUs.

http://dx.doi.org/10.1109/fpt.2013.6718385
http://dx.doi.org/10.1109/fpl.2014.6927404
http://dx.doi.org/10.1109/fpl.2015.7293938
http://dx.doi.org/10.1109/sfcs.2000.892127
http://dx.doi.org/10.1142/9789812799623_0025

