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Hierarchical Sparse Bayesian Learning with Beta Process Priors for
Hyperspectral Imagery Restoration

Shuai LIU'®, Member, Licheng JIAO', Shuyuan YANG, and Hongying LIUY, Nonmembers

SUMMARY  Restoration is an important area in improving the visual
quality, and lays the foundation for accurate object detection or terrain
classification in image analysis. In this paper, we introduce Beta process
priors into hierarchical sparse Bayesian learning for recovering underlying
degraded hyperspectral images (HSI), including suppressing the various
noises and inferring the missing data. The proposed method decomposes
the HST into the weighted summation of the dictionary elements, Gaussian
noise term and sparse noise term. With these, the latent information and the
noise characteristics of HSI can be well learned and represented. Solved by
Gibbs sampler, the underlying dictionary and the noise can be efficiently
predicted with no tuning of any parameters. The performance of the pro-
posed method is compared with state-of-the-art ones and validated on two
hyperspectral datasets, which are contaminated with the Gaussian noises,
impulse noises, stripes and dead pixel lines, or with a large number of data
missing uniformly at random. The visual and quantitative results demon-
strate the superiority of the proposed method.

key words: hierarchical sparse Bayesian learning, restoration, beta pro-
cess, hyperspectral image

1. Introduction

Hyperspectral images involve capturing of both spectral and
spatial information by the modern sensors, organized band
by band to constitute a three-dimensional (3D) data-cube.
Due to the limitations of the acquisition systems, hyper-
spectral images unavoidably suffer from various degrada-
tions, such as noise contamination, stripe corruption, miss-
ing data[1], [2]. The degradations severely limit the quality
of the HST and influence the precision of the subsequent pro-
cessing [3], including unmixing, target detection, classifica-
tion and recognition. Hence, image restoration is of critical
importance and challenging on the preprocessing of the HSI
analysis.

In the literature, approaches based on wavelet trans-
form are widely used for HSI restoration. They utilize some
priors or regularizations to threshold the wavelet coefficients
of the degraded data-cube in the transform domain, such
as hybrid spatial-spectral derivatives [4], principal compo-
nent analysis [5] or first order spectral roughness [6], and
then perform the inverse wavelet transform to restore HSI.
However, the proper kinds of wavelet transform are hard to
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choose. Considered the HSI as a three-order tensor, ten-
sor analysis methods are proposed for noise reduction in [7]
and [8], with the spectral and spatial information completely
preserved.

Besides, nonlocal approaches can exploit spatial infor-
mation on the whole image directly. By this, BM3D groups
similar patches into 3D arrays and denoises these arrays by
a sparse collaborative filtering [9]. In this way, the fine spa-
tial structures of the image can be preserved. 3D nonlocal
means (NLM) adoptes this idea and uses a nonlocal sparse
model for restoration [10], [11]. Four-dimensional block
matching (BM4D) is introduced to suppress the noises of
the volumetric data in [12], with satisfying results.

Sparse and redundant representation over dictionary
learning has been extensively introduced into HSI recov-
ery with different types of regularization. K-means and K-
singular value decomposition (KSVD) [13] adopts the local
sparseness characteristic to remove additive Gaussian noise.
Deep Dictionary Learning is explored in [14]. Due to the
high correlation between hyperspectral signatures of pixels,
the low rank constraint is incorporated as a regularization
term to denoise the HSI[15].

Furthermore, the real HSI is usually contaminated by
mixed noises, e.g., Gaussian noise, impulse noise, stripes,
dead pixel lines, which are commonly not uniform across
bands. Most techniques above only focus on identifying
one or two kinds of the noises with specific prior knowl-
edge, such as Gaussian noise with constant variance among
the bands or impulse noise. Additionally, the hyperspectral
images often face the loss of information during the acquir-
ing process [16], [17], which is visible from acquired images
as missing pixels. In order to ensure physical consistency in
the restoration, the spectral characteristics of missing pix-
els need to be inferred, which is usually ignored in HSI
restoration.

To mitigate the above limitations, we present a novel
hierarchical framework to get the ‘clean and entire’ recov-
ery images based on the sparse Bayesian learning, which de-
velops the sparse representation based on dictionary learn-
ing [18], [19]. Beta process is employed as the independent
sparse priors, and explored by use of Gibbs sampler. The
posterior probability density function of variables can be ef-
ficiently sampled to infer the dictionary and the noise di-
rectly, with no prior knowledge of test data. It also makes
prediction about both the mixed noises and the missing pix-
els in a data-driven manner simultaneously.

The paper is organized as follows. Section 2 gives a
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detailed description of the proposed restoration model, and
describes the Bayesian inference which is performed with
Gibbs sampler. Several experimental results are presented
in Sect. 3 based on two HSI data. The conclusions are given
in Sect. 4.

2. Hierarchical Sparse Bayesian Learning with Beta
Process Prior

The sparse Bayesian learning (SBL) has been widely ap-
plied for the HSI analysis [20], [21], with successful re-
sults. But multi-dimensional integral needs to be calcu-
lated for solving sparse Bayesian problems, which is usually
analytically intractable. Until now, the full conjugacy be-
tween the beta and Bernoulli distributions have been demon-
strated [22]. So in the SBL model combining the beta and
Bernoulli distributions, the posterior computation can be
performed analytically. We start with a brief review of beta
process in Sect. 2.1 and then provide a detailed description
of the proposed model in Sect. 2.2.

2.1 Beta Process

The beta process is an infinite jump process, which is suit-
able for dictionary learning due to the high flexibility [23].
The two-parameter beta process is denoted by the draw
H ~ BP(a,b, Hy) with parameters a, b > 0, which is pro-
posed in [24]. Let Q be a measurable space and B its o-
algebra, the disjoint and infinitesimal partitions of Q are
denoted as B € {Bj,---,Bg}. The base measure Hj is a

1
fixed probability measure over (Q, B) with Hy(By) = X for

k = 1,---,K. The set function form of the two-parameter
beta process is shown in Eq. (1).

K
H(B) = ) mdp,(B)
k=1

6]

a b(K-1)
K K

T ~ Beta(—,

where H is composed by infinite number of By sampled i.i.d.
from H, with K probabilities. 7, represents the jump, which
is commonly utilized to parameterize a finite Bernoulli pro-
cess. Beta defines the beta distribution. Supposing z; € RX
is drawn from a Bernoulli process with the parameter my, z;
is a binary vector and can be written as z;; ~ Bernoulli(mwy).
In the dictionary learning, {By}i= ... x refers to the dictionary
atoms, and K represents the number of atoms. By reason-
ably choosing K, a and b, m;, will be near to zero and z;
is equal to zero with a high probability, which implies the
sparse constrains on the dictionary learning model.

2.2 Full Hierarchical Sparse Bayesian Model

Considering the HSI Y € R"*»* where I, and Iy define
the size of the two spatial dimensions, and A refers to the
number of bands. To fully exploit highly correlated spec-
tral information and strongly similar spatial information, ¥
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is divided into overlapping 3D blocks instead of 2D blocks
when performing the restoration. The size of each 3D block
is P = ny X n, X A, where n, X n, defines the spatial size
of the 3D blocks. In vector form, each block is transformed
into x; € RF fori = 1,---, M, and the total number of the
3D blocks is M = (I, — ny + 1)(I, —n, + 1).

For HSI recovery, some existing noises, including im-
pulse noises, stripes and dead pixel lines, only appear in
small part of pixels within a band or few bands, and the
intensity and positions of these noises are often more subtle
and various. So these noises can be considered to be sparse
in the hypersectral images. To fully depict the noise charac-
teristics of HSI, we decompose the noise term into Gaussian
noise term and sparse noise term.

x;=Da;+n;+s;0v;
di ~ N, P 'Ip)

i =Z;ioW;
. ar by(K—-1)

& ~ B 1l , ~ Beta| —, ——= 2
Zik ernoulli(my), e a( X X 2)
wi ~NO,v,'Ix),  yw~T(c,d)

n; ~ N©O,7,'Ip),  yu ~T(e. f)
sip ~ Bernoulli(6;,), 6, ~ Beta(ay, by)

vpi ~ NO,¥,"), v ~T(g.h)

With these, the proposed model is considered as con-
sisting of three terms. The first term represents the ‘clean
and entire’ HSI, which can be well learned by elements of
dictionary. The success attributes to the fact that valid data
in corrupted images are intrinsically sparse under the dic-
tionary framework and the noises are uniformly spread and
cannot be represented by the dictionary. The second term
is the Gaussian noise, and the third term defines the sparse
noise. Beta process coupled with Bernoulli process is uti-
lized to depict the sparseness of the valid data and the arbi-
trariness of the intensity and positions in the sparse noise.
Gaussian process is exploited to learn the Gaussian noise.
According to these, the ‘clean and entire’ image can be ef-
fectively restored from the degraded HSI while the noises
can be greatly reduced by well learning their statistics char-
acteristics. The proposed hierarchical restoration model is
defined as Eq. (2).

In (2), the symbol o represents the element-wise mul-
tiplication, Ip (Ig) is the P X P (K X K) identity matrix,
and K is the number of the dictionary atoms. In this model,
D = [dy,--,dy,-+,dg] € RP*X represents the dictio-
nary learned from the test data, with the dictionary atoms
drawn from a Gaussian distribution. The vector «; repre-
sents the sparse coefficient and A = [y, -, @;, -, apy]
is the sparse coefficient matrix for {x;};=;..». The binary
vector z; = [z, 20, - >zl , drawn from a Bernoulli pro-
cess, is coupled with m; drawn from beta process. And
it defines the columns of D exploited to represent a; with
probability 7. The vector w; = [w;1,wp,---,wig]” is the
weight of the coefficient «;, which is learned by Gaussian
process. When K — oo, the expectation of z; is drawn from
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Poisson(a,/b,) at random [24]. Therefore, explicit sparse-
ness can be enforced on the coefficients {a;};=;... y through
adjusting non-informative hyper-parameters a, and b, in
beta process. When z; = 0, the coefficient a; is equal to
zero instead of near zero in many sparse approaches, which
means that the kth atom of D is not used for coefficient «;.
By calculating the number of the unused atoms, the size of
dictionary can be inferred adaptively.

N(-) and T'(-) represents the normal distribution and
gamma distribution respectively, and these two distribu-
tions tender much more flexibility to solve the model with
the posterior PDF. y,, vy, and y, are taken for precision
of parameters or noise precision separately, with a non-
informative gamma prior.

In the sparse noise term, Beta-Bernoulli process and
Gaussian distribution are explored to fully depict the arbi-
trariness of position and amplitude in the sparse noise sepa-
rately. The intensity of sparse noise is defined by the matrix
vi = [it, o, Vip, - -,v;ip]¥, with each element constrained
by the non-informative hyper-parameter priors. The matrix
si= [Sits+0, Sips e siplT represents the location informa-
tion of sparse noise in x;, which can be illustrated with non-
zero elements of s;.

The negative logarithm posterior density function of
the proposed method is represented as Eq. (3). According to
(3), all observed and unknown variables can be considered
as stochastic variables with the joint probability distribution
specified. Therefore the proposed method is of more robust-
ness and accuracy. In the proposed method, the distributions
of all random variables are in the conjugate exponential fam-
ily, and Gibbs sampler can be utilized to infer each variable
by repeatedly sampling the conditional distributions. The
detail inferences of Gibbs sampler are displayed in algo-
rithm 1.

_logp({Ds W, Z, Q,S3 {ﬂk}9 {gip}s )’w,)’nJ’v”X) =
05y, Y IIX~DWoZ)-QoSIE+05P " dld,

Aan brr(K - 1)
+ 0.5y, Zi ||w,~||% + Zk Beta(nk ' T)
+ Zik log Bernoulli(z;|my)
+05y, > gl + ) Beta(lag, by)

+ Zip log Bernoulli(s;|0;,)

+log l(yyle, I (yale, Y (vlg, h)
+ const 3)

Moreover, we observe y; = X ox; instead of x; to make
prediction for missing data by using the remain data, where
X, =10, 1}* is the sampling matrix with EiZ'iT = Iz,,. For
f=1,--,P X = 0 represents that the fth pixel of the
vector x; is lost.

Algorithm 1

Input: Noisy data X, hyper-parameters
Output: Restored data X,z
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Initialization: Num = 100, K = 256

for iter = 1 : Num
for k=1:K

Sampling  di: p(di|-) ~ N(ua,,2a4,)

-1
2.2
'Qdk = (PIP + Yn Z Wikzik)
;
Ky, = YnLa, Z Wik ZikX (i, k)
f

Xi-t)y=Xi—Dw;0z) — q;05; + (Wix © zix.)dy

Sampling  zi : p(zil—) ~ Bernoulli( P1 )
P11t Ppo

p1 = 1 exp(=0.5y, (Wi dy di — 2wad] x 1))
po=1-m
Sampling  w; : pwi|=) ~ NWik| thyirs Quvit)
Quik = (‘YW + )’nZ,?;;dde)_l
Mwik = Yngwikdzx(i,*k)
Sampling m:

b (K -1
p(mel—) ~ Beta(a—lg + Z Ziks % +M - Z Zik)

L

end
Sampling  y,,:

PYul-) ~ F(c +0.5MK,d + Z O.SWiTWi).
Sampling  y,: l
p(yal=) ~ F(e +0.5PM, f + Zi llx; — D(w; 0 z;) — q; 0 Si||§)

. S
S 1 Sip. inl—) ~ B Il
ampling  s;,:  p(sipl—) ernou Z(Vl " Vo)

vi = 0ip eXP(—O-SVV(Q,-Zp = 2¢ipXiys)), vo=1-0;
X5 =X;i— D(w;oz)

Sampling ¢q;:  p(qipl=) ~ N(tgip, Qqip)
Quip = O +¥a575,)™" Haip = VaQaipSipX i)
Sampling 6,:

p(l,-) ~ Beta(ag + Z Sipsbg + M — Z s,-p)
Sampling 7,: i i
Pyyl=) ~ r(g +0.5PM, h + Z o.Squi)

end
Calculating X500 = DA

Additionally, there are several solutions to the same
spectral pixel due to the usage of overlapping 3D blocks,
so the restored HSI is constructed by averaging all overlap-
ping 3D blocks. Performing this operation for X,,sore, We
can get the final HSI after restoration.
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3. Experimental Results

The performance of the proposed restoration model is
demonstrated on two hyperspectral datasets visually and
quantitatively. One is Indian Pines data, with the spatial
size of 145 x 145, which was acquired by Airborne Visi-
ble/Infrared Imaging Spectrometer in June 1992. It has 200
spectral bands of 10 nm widths from 0.4 um to 2.45 um and
a spatial resolution of 20 m. The second data set, Botswana,
consists of 145 spectral wavelengths with 1476 x 256 pix-
els. It was acquired by the NASA EO-1 satellite with the
Hyperion sensor on May 31, 2001. It is in 10 nm windows
with 30 m spatial resolution over a 7.7 km strip. A subset
of size 150 x 200 x 145 is used here. Note that noisy and
water absorption bands were removed from both datasets in
the experiment.

To investigate the performance of the proposed
method, we choose four different methods for compari-
son, including K-SVD [6], BM3D [7], ANLM3D [11] and
BM4D [12]. The necessary parameters in the four compared
methods are finely tuned or automatically selected to gener-
ate the optimal simulated results. For the proposed method,
the spatial size of blocks is 4 x4, and spatial information can
be employed by this in a certain degree. The size of dictio-
nary and the iteration number of Gibbs sampling are set as
K = 128 and 100 separately. The hyper-parameters of the
Gaussian noise are set as ¢ = f = 107°. For setting the re-
maining hyper-parameters, two cases are taken into consid-
eration. 1) The HSIis contaminated by Gaussian noise, dead
pixel lines or a mixture of them. The rest hyper-parameters
aresetas: ay =by=ag=by=10%c=d=g=h=107°,
2) The HSI is contaminated by a mixture of Gaussian and
impulse noise or a mixture of Gaussian noise, impulse noise
and dead pixel lines. The rest hyper-parameters are set as:
ar =by=ag=by=10% c=d=g=h=107. Once
the types of noises are selected, the hyper-parameters will
be also determined and have no necessary to be tuned.

The experimental results are evaluated in two ways.
Firstly, visual comparisons are shown in the restored images
and spectral signatures. Due to the huge amounts of data
pixels and spectral bands, a few of them are presented in this
paper. Secondly, peak signal to noise ratio (PSNR) is used
to quantitatively measure the similarity between the restored
and reference images based upon the mean square error.
Structure similarity (SSIM) and feature similarity (FSIM)
are utilized to measure structural consistency and percep-
tual consistency between each initial band and restored band
respectively [25]-[27]. Normally, the higher the measure
value is, the better quality the image has. The mean spectral
angle (MSA) between different spectral pixels is employed
to numerically evaluate spectral fidelity of the restored re-
sults [28], [29]. The MSA is calculated by Eq. (4).

1 &K< KOT . o)
MSA = . Z Z:cos‘l {7(?) . lfa) ] 4)
== I [l

”xij i
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where xgj) and xl(;) represent the restored spectral pixels and
original spectral pixels located at (i, j), respectively. u and
v are the number of pixels in the two spatial dimensions. T
represents the transpose of matrix. Generally, the smaller
the MSA values are, the better the spectral fidelity is. The
following experiments consist of three subsections. Sec-
tion 3.1 presents the restored results of the HSI polluted by
various noises; Sect. 3.2 reports the inferring results of the
HSI with some data missing, which also gives the results
of the HSI degraded by noise contamination and missing
data simultaneously; Sect. 3.3 explains the necessary of the
sparse noise term.

3.1 Denoising

In the first simulated experiment, four kinds of noises are
added to the datasets.

1) Zero-mean Gaussian noise is added to all bands,
with the noise variance o fixed or varying across bands
randomly.

Tables 1 and 2 show the PSNR values of restored re-
sults with five different approaches and Tables 3 and 4 dis-
play the MSA values before and after denoising, in which
the two simulated datasets are corrupted by Gaussian noise
with the noise standard deviation o = [5, 15,25, 35, 50].
The best measure values are bolded to improve the compar-
isons. Clearly, the proposed method has the highest PSNR
values and the lowest MSA values than other four compared

Table1  PSNR comparison with different methods for Indian Pines data
PSNR
5 15 25 35 50
Corrupted HSI 34.1463 24.6095 20.174 17.7596 14.1553
KSVD 35.8408 31.24 27.8295 25.7287 22.3953
BM3D 38.6757 33.1185 30.8745 29.6837 28.498
ANLM3D 38.8343 33.9009 31.5687 29.962 28.7341
BM4D 41.18 355003  33.8228  32.1876  30.5854
Ours 42.8863 39.3473 37.3712 34.5684 32.4548
Table2  PSNR comparison with different methods for Botswana data
PSNR
5 15 25 35 50
Corrupted HSI ~ 34.1473 24.6107 20.1724 17.252 14.1511
KSVD 35.9896 30.8125 27.6338 25.1636 25.6029
BM3D 37.6772 32.3446 30.1449 29.0141 27.0309
ANLM3D 39.6791 33.9057 31.6826 30.0964 28.902
BM4D 42.1063 36.2804 33.6897 32.0322 30.7741
Ours 43.3222 39.2766 37.0629 35.5206 33.6706
Table3 MSA comparison with different methods for Indian Pines data
MSA
5 15 25 35 50
Corrupted HSI ~ 0.0277 0.0829 0.1378 0.1917 0.2704
KSVD 0.0279 0.0341 0.0434 0.0541 0.0718
BM3D 0.0243 0.0303 0.0362 0.0428 0.0579
ANLM3D 0.0193 0.0297 0.038 0.0454 0.0558
BM4D 0.0138 0.0259 0.0299 0.0352 0.0416

Ours 0.0140 0.0211 0.0249 0.0293 0.0357
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Table4 MSA comparison with different methods for Botswana data
MSA
5 15 25 35 50
Corrupted HSI ~ 0.0755 0.2208 0.3526 0.46907 0.6161
KSVD 0.0445 0.0914 0.1435 0.1957 0.1336
BM3D 0.0447 0.0813 0.0886 0.1073 0.147
ANLM3D 0.0365 0.0605 0.0797 0.0981 0.1267
BM4D 0.0299 0.0549 0.0626 0.0705 0.0836
Ours 0.0227 0.0368 0.0441 0.0504 0.0599
——KSVD
o
——BM3D z
(2]
—— ANLM3D o
—— BM4D
Ours
= =
)] [%2]
(%)) [

0 100 200 0 100 200
Bands Bands

Fig.1 PSNR, SSIM and FSIM values of each band with different meth-
ods for Indian Pines data

ones. This means that our method can better promote the
image quality and preserve the spectral information on each
located pixel while removing Gaussian noise. According
to Tables 1-4, KSVD and BM3D generate the worse val-
ues than other methods, which are attributed to the fact that
KSVD and BM3D denoise the HSI band by band and de-
stroy the spectral correlations. This inferiority is much obvi-
ous in estimating spectral fidelity as shown in Tables 3 and
4. ANLM3D has a higher PSNR values than KSVD and
BM3D, but it does worse work than BM3D in some MSA
values. BM4D has the better values than KSVD, BM3D
and ANLM3D, but it is obviously inferior to the proposed
method.

Figures 1 and 2 display the performance curves of
PSNR, SSIM and FSIM values for India Pines data and
Botswana data separately, in which noise standard devia-
tions change across bands within the interval [15,30]. In
Figs. 1 and 2, the curves have the obvious fluctuations due
to the varying o with the bands. It is easily found that the
performances of different algorithms are almost the same at
some bands, which arises from the fact that much smaller
Gaussian noise has been added to these bands than their ad-
jacent bands.

Obviously, the PSNR, SSIM and FSIM values with the
proposed approach are higher than the competitors at most
bands, which have a more stable trend at the same time. This
is because the proposed method can well learn noise char-
acteristics and adaptively infer the noise standard deviation.
KSVD and BM3D show the lower values in both Fig. 1 and
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50
——KSVD o 40
——BM3D %
—— ANLM3D o 3p
—— BM4D
Ours 20
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1 1
S S
»n 0.5 » 0.8
%] w
0 0.6
0 50 100 150 0 50 100 150
Bands Bands

Fig.2 PSNR, SSIM and FSIM values of each band with different meth-
ods for Botswana data

Fig.2. And they denoise all bands with fixed noise levels,
which fail to dispose the structural and feature information
on degraded images. Exploring both spatial and spectral in-
formation, ANLM3D and BM4D yield the higher measure
results than KSVD and BM3D. And both of them present
the unstable performance as shown in Fig.1 and Fig.2.
By sampling the infinite parameter space, the proposed
method can obtain the optimum solution to the HSI recov-
ery whether the noise standard deviation within each band is
equal or not. For one Gibbs sampling iteration, the computa-
tional complexity of the proposed method is near to O(K(P+
M) + PM). And it should be pointed out that the suggested
method consumes more time than the four compared ones.

2) Impulse noise with the deviation from 0.01 to 0.02
is added to 10 bands selected randomly.

3) Dead pixel lines are simulated for the randomly se-
lected bands. The width of the dead pixel lines is from one
line to three lines. In the following experiment, we add dead
pixel lines to eight bands in the same position separately,
which are from band 43 to band 46 and from band 129 to
band 132.

4) Stripes are added to the randomly selected bands.
The width of the stripes is from one line to three lines. Due
to the similarity between dead pixel lines and stripes, we
leave out the presentation of results for stripes in this work.

Figure 3 presents the images of band 45 for Indian
Pines data after the removal of the mixed impulse noise
and dead pixel lines. Also, we consider that hyperspectral
images are polluted by the mixed Gaussian noise, impulse
noise and dead pixel lines. The restoration results of band
130 for Indian Pines data are shown in Fig. 4.

It can be easily observed that the proposed method
achieves outstanding performance in the visual results.
KSVD employs the iterative method to learn the dictio-
nary adaptively and improves the image quality greatly com-
pared with the corrupted ones. But KSVD learns the dic-
tionary atoms one by one and destroys the structures of
sparse coefficients, which results in the loss of the edges and
other structural details as shown in Fig. 3 (c) and Fig. 4 (c).
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(d) BM3D (e) ANLM3D

355

| () BM4D (g) Ours

Fig.3  Restoration of band 45 with a mixture of impulse noise and dead pixel lines

(b Cbnupte ima ge
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(d) BM3D (¢) ANLM3D
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(f) BM4D Ou

Ours

(@

Fig.4  Restoration of band 130 with the mixed Gaussian noise, impulse noise and dead pixel lines

Meanwhile, it needs carefully parameter tuning, e.g., noise
level, the size of dictionary and blocks. Due to the highly
spatial consistencies (see in Fig. 3 (a) and Fig. 4 (a)), BM3D
has a large amount of similar blocks to achieve the restora-
tion. By computing the average of the similar noisy blocks,
it can effectively smooth the noises and makes a much better
visual impression than KSVD. However, BM3D smoothes
out some image structures and details while performing the
recovery, and it is highly sensitive to noise level. Both K-
SVD and BM3D are the bandwise approaches, which ne-
glect the spectral continuity and correlations in HSI.
ANL3D can effectively utilize the high nonlocal self-
similarity to better balance smoothing and details preser-
vation. It fails to preserve the edges and some of the
fine details for recovering seriously degraded images, in
which local image structure be corrupted heavily. BM4D
can achieve visual improvements by adopting the three-
dimensional nonlocal self-similarity data cube. Using the

BM4D method, the high spectral correlations between the
continuous bands are not fully exploited; instead, only local
correlations between some neighboring bands are explored.
And its results smooth out some fine details.

There are obvious dead pixel lines as displayed in
Fig. 3 (c)—(f) and Fig. 4 (c)—(f), which means the four com-
pared approaches fail in restoring the seriously degraded
HSI. According to Fig. 3 (g) and Fig. 4 (g), the obvious su-
periority of the proposed method can be easily found in de-
tail preservation and the mixed noise reduction, which im-
ply that the proposed approach is of possibility to predict
the miss pixels. Generally, the proposed approach achieves
more promising denoising performance, which is in line
with the quantitative results in Tables 1-4, Fig. 1 and Fig. 2.

3.2 Predicting the Missing Data

In this subsection, 2% of the test data are randomly observed
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Fig.5 Spectrum of different pixels for Indian Pines data
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Fig.6  Spectrum of different pixels for Botswana data

to estimate the performance of the proposed method, and in
other words, 98% of the test data are missing. Then the full
HSI is recovered by employing the 2% data. Figure 5 shows
the true spectral signatures, the corrupted spectral signatures
and inferred spectral signatures at different pixels, based on
randomly observing 2% of Indian Pines data. In Fig. 6, the
same is done for Botswana data. Noticing that, in the curves
of corrupted values, the values of missing data are equal to
zero, while the values of observed data are larger than zero.
It is visually clear that the inferred spectra are very near to
the true values. This means that the proposed method can
efficiently restore the spectrum of HSI with very little data
observed, and offers the capability of identifying and terrain
classification for HSI analysis.

Furthermore, we consider the more realistic case that
the HSI is degraded by noise contamination and missing
data simultaneously. And Botswana data is utilized for
simulating in this case, which is degraded by a mixture of
Gaussian noise with standard deviation of 25 and the miss-
ing of 98% data. From the aspect of visual impressions,
Fig. 7 displays the restored results, where the false-color im-
ages are represented by band combination of 85 (red), 36
(green) and 70 (blue). According to Fig.7, the suggested
method shows convincible results with greatly preserving
the structure and detail information. Above all, the proposed
method has the great superiority in both the spectral signa-
tures preservation and the visual appearance for predicting
the missing pixels.
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(a) Initial HSI (b) Corrupted HSI

(c) Restored HSI

Fig.7 Recovery image of Botswana data with Gaussian noise standard
deviation of 25 and 98% data missing

. (c Algorithm-dis .

(d) Ours

Fig.8 Restoration of band 45 with a mixture of impulse noise and dead
pixel lines

3.3 Discussion

To explain the necessary of sparse noise terms, we consider
the Indian Pines data in this subsection, which is polluted
by the impulse noise with the deviation 0.02 and dead pixel
lines. The method generated by disabling sparse noise term
of the proposed one is named as Algorithm-dis. As pre-
sented below, Fig. 8 shows the visual impression of band 45
obtained by the proposed method and Algorithm-dis. Fig-
ure 9 shows the horizontal profiles of band 45 at location
(115,30), and Fig. 10 displays the spectral signatures at lo-
cation (115, 30).

According to Fig. 8, it can be easily found that both
of the algorithms improve the image quality greatly com-
pared with the corrupted ones in Fig. 8 (b). The Algorithm-
dis can only reduce part of the impulse noise, as presented
in Fig. 8 (c). And it fails in preserving the fine objects. As
presented in Fig. 8 (d), the proposed method can effectively
remove the impulse noise and dead pixel lines while pre-
serving the local details such as edges and textures. Obvi-
ously, the proposed method achieves the better performance
than Algorithm-dis.

After the denoising processing, the fluctuations are re-
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Fig.9  The horizontal profiles of band 30 at location (115, 30)
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Fig.10  The spectral signatures at location (115, 30)

duced in some degree. As shown in Figs. 9-10, the results
obtained by the proposed method are closest to the curves
of true value, which means the proposed method can greatly
remove the mixed noise while well preserving the edge and
texture information. From Figs. 9-10 (b), it can be observed
that the curves have some obvious fluctuations, due to the
existence of impulse noise and dead pixel lines. The results
calculated by Algorithm-dis fail in effectively restoring the
shape and amplitude of the clean HSI and loses some details,
which can be seen from Figs. 9—10 (c).

4. Conclusion

In this paper, a hierarchical sparse Bayesian learning method
is developed to address the HSI restoration problem by ef-
ficiently learning and representing the valid data and the
noise characteristics. The conjugacy of the model posterior
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is explored by using the beta process, which is exploited
to adaptively manifest the sparseness. The Gibbs sampler
is then applied to infer the HSI restoration model. Unlike
most studies in the literature, which considered Gaussian
noises alone in the analysis, we learned the mixed noise
while adopting the spatial information.

By comparison with the state-of-the-art methods, the
experimental results illustrate the effectiveness of the pro-
posed method on simultaneously and greatly reducing the
mixture of Gaussian noise, impulse noise, dead pixel lines
or stripes. And it also demonstrates its accuracy in predict-
ing the missing data. Further research will be directed to-
wards learning the hidden structure of the test data as the
priors of the model.
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