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Uncontrolled Intersections
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SUMMARY This paper presents an ontology-based driving decision
making system, which can promptly make safety decisions in real-world
driving. Analyzing sensor data for improving autonomous driving safety
has become one of the most promising issues in the autonomous vehicles
research field. However, representing the sensor data in a machine un-
derstandable format for further knowledge processing still remains a chal-
lenging problem. In this paper, we introduce ontologies designed for au-
tonomous vehicles and ontology-based knowledge base, which are used for
representing knowledge of maps, driving paths, and perceived driving envi-
ronments. Advanced Driver Assistance Systems (ADAS) are developed to
improve safety of autonomous vehicles by accessing to the ontology-based
knowledge base. The ontologies can be reused and extended for construct-
ing knowledge base for autonomous vehicles as well as for implementing
different types of ADAS such as decision making system.

key words: ontology, knowledge representation, knowledge base,
SPARQL, C-SPARQL, autonomous vehicles, decision making systems, Ad-
vanced Driver Assistance System (ADAS)

1. Introduction

Autonomous driving is one of the most promising and chal-
lenging research topics in the automobile industries as well
as the IT industries, and academic research centers. Current
autonomous vehicles under development are equipped with
varied sensors such as mono camera, stereo camera, Lidar,
and Radar. By analyzing sensor data, the autonomous vehi-
cles can detect lanes for lane keeping or avoid accidents by
detecting pedestrians and other obstacles. Although objects
and lanes can be detected using these sensors, the vehicles
cannot understand the meanings of driving environments
without knowledge representation of the data. Therefore, a
machine understandable knowledge representation method
is critical to fill the gap between driving environments per-
ception and further knowledge processing.
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Sensor data and digital map information should be rep-
resented in the format that autonomous vehicles can under-
stand. Therefore, we use ontologies to represent relevant
knowledge, which is defined as an explicit specification of a
conceptualization [1]. Ontologies are the structural frame-
works to organize information, which have been used in
Artificial Intelligence, Semantic Web, and Biomedical In-
formatics as a form of knowledge representation about the
world or some part of it. The Semantic Web is an exten-
sion of the World Wide Web that enables interoperation be-
tween systems by sharing data[2]. Resource Description
Framework (RDF) is recommended by the World Wide Web
Consortium (W3C) for describing concepts in data model-
ing [3]. An ontology mainly consists of concepts (classes)
and the relationships (properties) among them. An instance
is described by a collection of RDF triples in the form of
<subject, property, object>, where property is also called
predicate [4]. Web Ontology Language (OWL) is also a se-
mantic markup language developed as a vocabulary exten-
sion of RDF, which has more vocabularies for describing
classes and properties [5].

To represent the stream data from the sensors equipped
on the autonomous vehicles, we use timestamp-based tem-
poral RDF representation to construct RDF Stream data [6].
Furthermore, to access the ontology-based data, we use
SPARQL Protocol and RDF Query Language (SPARQL),
which is a powerful RDF query language for accessing to
static RDF data [7]. C-SPARQL is an extension of SPARQL
designed to express continuous queries such as RDF stream
data [8]. To represent traffic regulations, we use Semantic
Web Rule Language (SWRL), which is used to express rules
as well as logics in Semantic Web applications [9].

The main purpose of constructing ontologies and
ontology-based knowledge base is to enable autonomous ve-
hicles to understand the detected objects from sensor data
and to make appropriate driving decisions in different sit-
uations. Advanced Driver Assistance Systems (ADAS) are
designed to improve car safety by perceiving a driving en-
vironments and making decisions for safe driving. We con-
structed ontology-based knowledge base for developing a
driving decision making system by adding ontology-based
traffic regulations. The driving decision making system can
aware dangerous situations at real-time and send warning
signals to avoid overspeed or collision. We assume that the
received sensor data of environment detection and collision
warning detection is accurate.
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Fig.1  Uncontrolled intersections and narrow roads.

Currently, many autonomous vehicles can run on con-
trolled intersections or on highways. However, running on
urban streets such as uncontrolled intersections and narrow
roads still remains as a challenging problem. In Japan, there
are many narrow roads where even human drivers feel diffi-
culty in driving. As shown in Fig. 1, when a car approaches
an uncontrolled intersection that has no traffic lights, the
driver has to carefully observe the other vehicles to decide
whether to give way or not. In Fig. 1, car C has the high-
est priority because it’s running straight. Then car A has
higher priority than car B, because it is going out from a
narrow road to a wider road’. Furthermore, the narrow road
is extremely difficult for two vehicles to run freely. It’s safer
to stop on the left side and give way to the other vehicle
to pass by slowly. Therefore, in this paper, we propose a
decision making system that can make safety decisions on
uncontrolled intersections and narrow two-way roads by ac-
cessing to an ontology-based knowledge base.

The remainder of this paper is organized as follows.
In Sect.2, we review some related works, which also uti-
lize ontologies for assisting vehicles. We introduce the
ontology-based knowledge base for autonomous vehicles,
which contains ontologies, instances of maps and paths, and
traffic rules in Sect. 3. In Sect. 4, we describe the decision
making system that utilizes the ontology-based knowledge
base to improve safety for autonomous vehicles. Section 5
presents and discuss the experimental results with both sim-
ulation and real-world data. We conclude this research work
and propose future work in Sect. 6.

2. Related Work

Ontologies have been applied in the intelligent transporta-
tion field to describe semantic knowledge of the traffic sce-
narios and to improve safety at intersections. In this section,
we review related research on ontologies for intelligent ve-
hicles.

A description logic knowledge was presented for
vision-based intersection understanding [10]. They devel-
oped a knowledge base for road networks, which contains

In Japan, cars run on the left-hand side. However, this can be
easily adjusted to the other side driving.
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TBox for describing general knowledge about road net-
works and ABox for capturing partial information about a
particular road or intersection. TBox is a set of terminolog-
ical axioms and ABox is a set of assertional axioms. The
incomplete sensor data was fused with the knowledge base
to detect inconsistency in the sensor data.

An ontology-based traffic model was introduced to rep-
resent typical traffic scenarios such as intersections, multi-
lane roads, opposing traffic, and bi-directional lanes[11].
Relations such as opposing, conflicting, and neighboring
were employed to represent the semantic context of the traf-
fic scenarios for decision making. The traffic model was
used as a basis for an autonomous vehicle simulator, which
was proved to be beneficial for implementing and evaluat-
ing different driving behaviors without low-level trajecto-
ries. However, the model does not contain semantic infor-
mation such as speed limitation or actual geometric infor-
mation of the roads.

A complex intersection ontology was introduced to en-
able vehicles to aware driving situations, which contains
concepts of car, crossing, road connection (lane and road),
and sign at crossing (traffic light and traffic sign) [12]. The
authors constructed a lean ontology to facilitate fast rea-
soning about traffic rules for involved vehicles. As a re-
striction, the passing destination road over the intersection
should be predefined for each vehicle. Furthermore, the in-
ference rules were not tested with simulation or real-time
test, and the computation time ranges from 1.1s to 3.6s in
heavy traffic situations.

Two ontology models about autonomy levels and situa-
tion assessment for Intelligent Transportation Systems (ITS)
were applied for co-driving [13]. One ontology defined the
relationship between the automation levels and the algorith-
mic needs. Another ontology was related to the situation as-
sessment level including the concepts of driver, ego-vehicle,
communication, free zone, moving obstacles, and environ-
ment. Inference rules were defined to link the situation as-
sessment ontology to the automation level ontology, which
contains five control levels of a car: longitudinal control,
lateral control, local planning, parking, and global planning.
Inference rules were proposed to compute the automation
level for each specific automated vehicle. This paper did not
present experimental results by embedding the ontologies
into real platforms (CyberCars).

An ontology-based context awareness ADAS was de-
veloped to enable vehicles to understand the interactions
between perceived entities and contextual data[14]. The
ontology contains context concepts such as mobile en-
tity, static entity, and context parameters. This machine-
understandable ontology enables the vehicle to understand
the context information when it approaches road intersec-
tions. Experiments showed that the vehicle was able to pro-
cess human-like reasoning on global road contexts with 14
rules written in SWRL. Although their proposed ontology
can be used in real time to retrieve the key entities that a
driver should consider, they did not evaluate their approach
on intersections with other vehicles.
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QualiTraj ontology was designed to represent time-
based characteristics of trajectories [15]. A profile was used
to represent a dynamic characteristics of a trajectory, which
has a sequence of segments. Each segment has qualitative
value such as “Increase”, “Decrease”, and “Steady”. They
also introduced the concept of Key Point, which was used
to represent location and timestamp attributes. The authors
used QualiTraj ontology to represent raw sensor data into
qualitative semantic representation.

An ontology for automated driving was constructed to
represent context information of static infrastructure and dy-
namic environment [16]. In order to differentiate relevant
traffic objects on the road from other objects like trees and
parked cars, algorithms for information aggregation of dy-
namic traffic objects and a-priori map information were in-
troduced. Their approach allowed fast information access,
that can be applied for autonomous driving.

A sophisticated digital map that can represent the de-
tails of road networks such as speed limit, allowed driving
direction, lane-level information and connected road seg-
ments is essential resource for autonomous vehicles to per-
ceive driving environment. Furthermore, an autonomous ve-
hicle needs a trajectory and concepts of different control in-
formation to understand driving motions and to make driv-
ing decisions. Therefore, we construct ontologies for au-
tonomous vehicles by considering these essential factors to
improve safety in autonomous driving, while the above re-
search works only considered each particular aspect. In con-
trast to above research, we focus on roads in urban areas of
Japan. The advantages of our research are as follows:

e By accessing the ontology-based knowledge base, we
can retrieve semantic knowledge about driving envi-
ronments, such as, speed limit, driving direction, lane
information, and connected road segment information
at real time.

o Right-Of-Way rules written in SWRL are used for in-
ferring rules to make safe driving decisions when the
vehicle receives collision warning signals. The traffic
rules are general rules rather than specifically designed
for special cases.

e Our decision making system is evaluated with both
simulation and field test using real-time sensor data.

o The proposed approach can be easily extended to deal
with complicated traffic situations by decomposing
them into a combination of simple traffic situations.

3. Knowledge Base

A knowledge base that can represent observed environ-
ment and map information is essential data resource for au-
tonomous vehicles. Autonomous vehicles should be able
to understand the knowledge and infer driving behavior
by processing the knowledge. Therefore, we construct
machine-understandable ontologies and ontology-based se-
mantic knowledge base for autonomous vehicles, which are
called TTI Core Ontologies.
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We provide the description of the knowledge base us-
ing Vocabulary of Interlinked Datasets (VoID) and some of
the statistical information are described in Table 1. VoID is
an RDF Schema vocabulary for expressing metadata about
RDF datasets [17]. There are 37,566 RDF triples, 1,424 en-
tities, 149 classes, and 75 properties (40 data properties,
and 35 object properties) in the data dump. The repository
of dataset is available on the website “http://www.toyota-ti.
ac.jp/Lab/Denshi/COIN/Ontology/TTICore-0.1/”. The on-
tologies can represent knowledge of sophisticated maps,
paths and driving control concepts that are necessary for
autonomous driving [18]. We mainly focused on collecting
concepts of road structures in urban areas of Japan, specifi-
cally, around Toyota Technological Institute (TTI) campus,
in Japan. We also collected different types of roads and
places from Wikipedia and driver’s handbooks. The control
ontology and car ontology only contain the concepts that are
required for our experiments. The ontologies can be eas-
ily extended by adding new concepts based on our ontology
structure.

The structure of semantic knowledge base is shown in
Fig.2, which is based on three main ontologies: map on-
tology, control ontology, and car ontology. The map on-
tology is used to create map instances and to define traffic
rules. The control ontology is mainly used to describe path
instances and also used to create traffic rules. The car on-
tology is used to create car instances and traffic rules with
other ontologies. The path instances are constructed based
on the map instances and control ontology. The knowledge
base contains these three ontologies, instances about maps,
paths, cars, and traffic rules written in SWRL.

3.1 TTI Core Ontologies
Three ontologies are constructed to describe knowledge of

maps, control related concepts, and information of cars. The
map, control, and car ontologies are “TTIMapOnto.owl”,

Table 1  Statistics of the knowledge base.
Name: Dataset for Safe Autonomous Driving
Homepage: http://www.toyota-ti.ac.jp/Lab/Denshi/COIN/
Data Dump: Ontology/TTICore-0.1/
'VoID Description: void.tt]
RDF Triples: 37,566
Entities: 1,424
Classes 149
Data Properties 40
Object Properties 35

Car
Ontology

Control
Ontology

Map
Ontology

Map
Instances

Instances

Fig.2  Structure of the Semantic Knowledge Base.
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Fig.3  Main classes of Map ontology.

“TTIControlOnto.owl”, and “TTICarOnto.owl”, respec-
tively. In the following sections, we describe the main con-
cepts in each ontology, which are currently used for devel-
oping ADAS in the Research Center for Smart Vehicles of
the Toyota Technological Institute (TTT).

3.1.1 Map Ontology

A sophisticated machine understandable map is required
for autonomous vehicles to perceive driving environ-
ments. Therefore, we construct a map ontology as illus-
trated in Fig.3 and Fig.4. The map ontology can de-
scribe road networks such as road, intersection, road seg-
ment, lane, crosswalk, and traffic light information, etc.
The map ontology contains 80 classes, 17 object prop-
erties, and 33 data properties. We use “map:” as the
abbreviation of map ontology prefix <http://www.toyota-
ti.ac.jp/Lab/Denshi/COIN/Map#>.

Figure 3 shows the main classes of map ontol-
ogy, where the subclasses of “RouteOfTransportation” are
mainly used for constructing the road networks. A road
consists of junctions and road segments, where a road seg-
ment consists of an arbitrary number of lanes. Currently,
we have concepts “Intersection”, “LaneAdapter”, “Round-
about”, and “Turn” as the subclasses of “Junction” class.
There are three subclasses of “Lane”, which are “OneWay-
Lane”, “TwoWayLane”, and “BusLane”. Roads are mainly
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m hasJunction
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------ wmhasLane
------ mhasRoadSegment
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- isRightOf

------ wmisRoadSegmentOf
------ mnearTo

------ mrelatedTrafficLight
------ mturnLeftTo

------ ®mturnRightTo

Fig.4  Object properties of Map ontology.

classified into “Highway” and “OrdinaryRoad”, where “Or-
dinaryRoad” has five subclasses “LocalRoad”, ‘“Munici-
palRoad”, “NationalRoad”, “PrefecturalRoad”, and “Pri-
vateRoad”.

The object properties shown in Fig. 4 are used for de-
scribing the relations among the individuals of the classes.
The object properties map:goStraightTo, map:turnLeftTo,
and map:turnRightTo are used to identify the driving direc-
tions when a car drives from one road part to another. We
use map:relatedTrafficLight to link the related traffic lights
that a driver should observe on a lane. Other properties are
used to describe the relations among different road parts.

We also use some data properties to describe speed
limit, road attributes, and GPS positions, etc. For exam-
ple, datatype property map:speedMax is used to describe the
speed limit and map:boundPOS is used to describe bound-
ary GPS points of junctions and road segments. We also
use map:osm.ref to link the road individuals with Open-
StreetMap road entities.

3.1.2 Control Ontology

Control ontology is constructed to describe driving actions
and paths of autonomous vehicles. Figure 5 and Fig. 6 show
the main classes and object properties included in the con-
trol ontology, respectively. We use “control:” as the ab-
breviation of control ontology prefix <http://www.toyota-
ti.ac.jp/Lab/Denshi/COIN/Control#>. This control ontol-
ogy contains 35 classes, 15 object properties, and 2 data
properties. As shown in Fig.5, we use instances of con-
trol:PathSegment to represent path segments of a trajectory
instead of using a collection of GPS points. A path segment
can be an intersection, a lane, a crosswalk, or a turn. The
Node class contains “StartNode” and “EndNode”, which are
the start and end GPS positions of a path.

We use the object property control:nextPathSegment
to link connected path segments and use the data property
control:pathSegmentID to index path segments as shown in
Fig. 6. When a vehicle is approaching to an intersection, we
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Fig.5 Main classes of Control ontology.

------ m approachTo

------ m collisionWarningWith
------ mendlLane

...... -gi"ewa?

------ mhasNode

------ mhasPathSegment
isNodeOf

‘= enterOf

- exitOf

------ misPathSegmentOf
------ mnexthode

------ mnextPathSegment
------ mpreviode

------ mprevPathSegment
------ m startLane

Fig.6  Object properties of Control ontology.

use control:approachTo to describe the situation. The object
property control:collisionWarningWith is defined to indicate
upcoming collisions between our vehicle and the other ve-
hicles. We use control:giveWay to represent whether our
vehicle should give way to the other vehicles according to
the Right-of-Way traffic regulations.

Currently, there are only two data properties: con-
trol:nodePos and control:pathSegmentID to represent the
position of a node and the index ID of a path segment.

3.1.3 Car Ontology

The car ontology contains concepts of different types of ve-
hicles and the devices, which are installed on a car such as
sensors and engines as shown in Fig.7. This ontology in-
cludes 32 classes, 3 object properties, and 16 data proper-
ties. We use “car:” as the abbreviation of car ontology prefix
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¥ @ Thing
v @ CarParts
-~ Engine
v Sensor
: Camera
CAN
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Fig.7  Main classes of Car ontology.

¥--mtopObjectProperty
@ currentPath

- isRunningOn

~-musedSensor

Fig.8  Object properties of Car ontology.

<http://www.toyota-ti.ac.jp/Lab/Denshi/COIN/Car#>.

The object property car:isRunningOn is used to assert
the current location of a car and car:usedSensor is used to
describe the sensors installed on the car (Fig. 8).

We constructed many data properties to describe a ve-
hicle, for example, “car_ID”, “car_length”, and “velocity”.
The default ID for our car is “0” and we use natural num-
bers to describe other vehicles’ IDs.

3.2 Instances

Instances are also known as individuals that model abstract
or concrete objects based on the ontologies. We model in-
stances such as maps, paths, and cars with the ontologies as
shown in Fig.2. We construct map data of a route in Tem-
paku ward of Nagoya Japan based on the map ontology and
control ontology. The statistical information about the map
dataset (TTITempakuMapData.owl) is described in Table 2.
The map dataset includes 116 intersections, 140 road seg-
ments, 5 crosswalks, 316 one-way lanes, 13 two-way lanes,
23 bus lanes, and 330 traffic lights with accurate GPS posi-
tions. There is one private road with speed limit of 25km/h,
4 local roads, 2 municipal roads, and 3 prefectural roads.
Figure 9  demonstrates how  these road
parts are assigned on a map. The road segment
(A+B: Hisakata2TTIRoadRS2) is separated into
two lanes A (Hisakata2TTIRoadRS2Lanel) and B
(Hisakata2 TTIRoadRS2Lane2), and it is connected with
two intersections H (Hisakata2TTIRoadIntl_2) and C
(Hisakata2 TTIRoadInt2_3). Figure 10 illustrates the
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relations among the individuals of road parts: one
local road (Hisakata2TTIRoad), three intersec-
tions (Hisakata2TTIRoadInt1_2, Hisakata2 TTIRoadInt2_3,

Table 2  Statistics of the map dataset.
Concepts in Map Ontology Number of Instances
Intersection 116
Road Segment 140
Crosswalk 5
One-Way Lane 316
Two-Way Lane 13
Bus Lane 23
Traffic Light 330
SpeedLimist25 1
SpeedLimit40 3
SpeedLimit50 6
Prefectural Road 3
Private Road 1
Local Road 4
Municipal Road 2
]

A: Hisakata2TTIRoadRS2Lane1
B: Hisakata2TTIRoadRS2Lane2
C: Hisakata2TTIRoadInt2_3
B A || D: Hisakata2TTIRoadRS3Lane1
E: Hisakata2TTIRoadRS3Lane2
F: TTICampRS1Lane1
G:TTICampRS1Lane2
H: Hisakata2TTIRoadInt1_2

E D

Fig.9

An example of map structure.
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Hisakata2TTIRoadInt3_4), two neighbor road segments
(Hisakata2TTIRoadRS2, Hisakata2TTIRoadRS3), and
four one-way lanes (Hisakata2TTIRoadRS2Lanel,
Hisakata2 TTIRoadRS2Lane2, Hisakata2TTIRoadRS3Lanel,
Hisakata2TTIRoadRS3Lane2). We use the object proper-
ties map:hasIntersection and map:hasRoadSegment to link
a road with an intersection and a road segment, respec-
tively. We use the object property map:isConnectedTo
to link between road segments and intersections, and use
map:isLaneOf to relate lanes with road segments as shown
in Fig. 10. This figure is expanded by focusing on the inter-
section C (Hisakata2 TTIRoadInt2_3).

Table 3 shows some triples of the instances that are not
shown in Fig. 10. The local road Hisakata2TTIRoad relates
to the OpenStreetMap entity osm_way:49394393%, which
has speed limit of 40km/h. We use map:boundPos to de-
scribe the boundary GPS points of intersections and road
segments. For lanes, we use map:enterPos and map:exitPos
to indicate the enter and exit positions. In Table 3, the RDF
triple <Hisakata2TTIRoadRS3Lane2, control:turnRightTo,
TTICampRS1Lane2> indicates that a car which is currently

Table 3  Triples of map instances.
Subject Property Object
Hisakata2 TTIRoad rdf:type map:LocalRoad
Hisakata2 TTIRoad map:speedMax “40”"kmh
Hisakata2 TTIRoad map:osm_way_id osm._way:49394393

Hisakata2 TTIRoadInt2_3
Hisakata2 TTIRoadInt2_3
Hisakata2 TTIRoadInt2_3
Hisakata2 TTIRoadInt2_3
Hisakata2 TTIRoadInt2_3

rdf:type
map:boundPos
map:boundPos
map:boundPos
map:isConnectedTo

map:Intersection

35.107489, 136.982424
35.107449, 136.982209
35.107391, 136.982317
Hisakata2 TTIRoadRS3

Hisakata2 TTIRoadRS3 rdf:type map:RoadSegment
Hisakata2TTIRoadRS3 map:boundPos 35.107449, 136.982209
Hisakata2 TTIRoadRS3 map:boundPos 35.107329, 136.981323

Hisakata2TTIRoadRS3Lane2 rdf:type
Hisakata2TTIRoadRS3Lane2 map:enterPos 35.107345, 136.981320
Hisakata2 TTIRoadRS3Lane2 map:exitPos 35.107462, 136.982203
Hisakata2 TTIRoadRS3Lane2 control:turnRightTo TTICampRS1Lane2
Hisakata2 TTIRoadRS3Lane2 control:goStraightTo Hisakata2TTIRoadRS2Lane2

map:OneWayLane

* & Hisakata2TTIRoa

[t ) Intersection ]

* & Hisakata2TTIRoa

dRS2Lane1 i dRS3Lane1
i‘ hasIndividual
== x
*' $ Hisakata2TTIRoa - "# Hisakata2TTIRca
dRS2Lane? ¢ Hisakata2TTIRoa dRS3Lane2
- dnt23 -
. A 7 N v .
isLansOf /// 60\63\0 yd N . \\\ isLaneOf
W) JAY ~ n,
Y ~" hasltersection ~ ey ~
) ~ & N\
7 \§ ~ | \&\ O’]b \
# Hisakata2TTIRoa ~ . _|*# Hisakata2TTIRoa | # Hisakata2TTIRoa
dRS2 ) d - dRS3
!.' \ “__hasRoadSegmen hasRoadSegment -~ !' \
. i \ - \
isConnectedTo ? ~, Pasy, . R - .
2}3 v Ay ﬁq”’ffu‘;f \‘\6\* e l ‘:13 isConnectedTo

(.

\

g

dint1_2

" RoadSegment l

= * @ Hisakata2TTIRoa
dint3_4

* & Hisakata2TTIRoa }

Fig. 10

Visualization of the connection of road parts.

TPREFIX osm_way:<http://www.openstreetmap.org/way/>
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Table4  Triples of the path E-C-G. Table 5  Examples of SWRL rules.
Subject Property Object 1 collisionWarningWith(?carX, ?carY)
path:ExamplePath rdf:type control:Path = CollisionWarning(?carX) A CollisionWarning(?carY)
path:ExamplePath control:startLane Hisakata2TTIRoadRS3Lane2 2 Intersection(?int) A isRunningOn(?carX, ?lanel)
path:ExamplePath control:endLane TTICampRS1Lane2

Hisakata2 TTIRoadRS3Lane2rdf:type control:StartLane
Hisakata2 TTIRoadRS3Lane2control:nextPathSegmentHisakata2 TTIRoadInt2_3
Hisakata2TTIRoadRS3Lane2control:pathSegmentID 0

Hisakata2 TTIRoadInt2_3 control:nextPathSegmentTTICampRS 1Lane2
Hisakata2 TTIRoadInt2_3 control:pathSegmentID 1

TTICampRS1Lane2 rdf:type control:EdnLane
TTICampRS1Lane2 control:pathSegmentID 2

running on E (Hisakata2TTIRoadRS3Lane2) will run on the
lane G (TTICampRS1Lane?2) if it turns right at the intersec-
tion C (Hisakata2 TTIRoadInt2_3).

Other than the map data, a vehicle also needs a
path instance, which contains connected path segments
and their index numbers. In the data dump, we provide
two path files: TTIPath (TTIPathData.owl) and YagotoPath
(TTIYagotoPathData.owl). The TTIPath contains 101 path
segments, which is around TTI campus as described in pa-
per[19]. The system introduced in [19] only checks over-
speeding situations without considering traffic rules while
running around TTI campus. The YagotoPath contains 140
path segments, which starts from TTI campus and ends at
the parking place of an apartment near Yagoto station. These
paths are constructed based on the map dataset and each path
segment is assigned an integer number starts from zero. An
example of path for E-C-G is described in Table 4, which
consists of three path segments indexed from O to 2.

A ToyotaCar instance file (TTICarData.owl) is also
provided as an example, which contains the information of
carID, model, and equipped sensors. Additional informa-
tion such as height, length, or wheel base can be added if
necessary.

3.3 Traffic Rules

The perceived knowledge of driving situation and environ-
ment should be processed and used for making driving deci-
sions by following traffic rules. Atintersections, the vehicles
should follow Right-of-Way rules and cross safely by avoid-
ing collisions. We used the Semantic Web Rule Language
(SWRL) to express Right-of-Way rules. We constructed 14
SWRL rules in the knowledge base to handle Right-of-Way
rules at uncontrolled intersections and on narrow two-way
roads. The SWRL based Right-of-Way rules were designed
based on Japanese driving license guide book. For example,
vehicles going straight or turning left should have higher
priority than the vehicles turning right when they are ap-
proaching the same intersection. These traffic rules can be
reused to express more complicated traffic rules, for exam-
ple, at controlled intersections by adding traffic light rules.
Table 5 lists some of the SWRL rules in our knowl-
edge base. In Rule 1, if carX receives a collision warning
with carY, we alert both cars and assert that they both have
a collision warning. Rule 2 in Table 5 infers carX’s driving
direction as control:TurnRight by considering the relations

A turnRightTo(?lanel, ?lane2)
A nextPathSegment(?lanel, ?int) A nextPathSegment(?int, ?lane2)
= TurnRight(?carX)

3 CollisionWarning(?carX) A CollisionWarning(?carY)
A GoForward(?carY) A TurnRight(?carX)
= Stop(?carX) A giveWay(?carX, ?carY)

4 MyCar(?carl) A isRunningOn(?carl, ?int)
A Intersection(?int) A collisionWarningWith(?carl1, ?car2)
= Stop(?carl) A giveWay(?carl, ?car2)

5  TwoWayLane(?lane) A isRunningOn(?carX, ?lane)
CollisionWarning(?carX) A CollisionWarning(?carY)
= ToLeft(?carX), giveWay(?carX, ?carY)

between lanes. We have similar rules for control:GoForward
and control: TurnLeft.

Rule 3, 4, and 5 are Right-of-Way rules before an un-
controlled intersection, at an uncontrolled intersection, and
on a two-way lane, respectively. Rule 3 means that if there
is a collision warning, the car which is going to turn right
should stop and give way to the other car that is driving
straight. Rule 4 means if the car receives a collision warn-
ing when it is running on an intersection, it stops and gives
way to the other car. For the safety, we always stop first and
then analyze if the other car is also waiting for our vehicle
or not. Rule 5 shows that if our car (carX) is on a two-way
lane and receives an upcoming collision warning, it should
always move to the left side and give way to the other car.

4. Ontology-Based Decision Making System

The ontology-based Knowledge base is constructed to en-
able autonomous vehicles to understand the knowledge of
driving environment. Therefore, we developed a deci-
sion making system, which accesses to the ontology-based
knowledge base to make driving decisions such as “Stop”,
“ToLeft”, or “Give Way”, etc.

Figure 11 shows the diagram of the decision making
system. The cloud shape represents data (whole knowl-
edge base and a temporal sub-knowledge base(SubKB)).
The other rectangle shapes represent functions and the ar-
row lines represent processing steps. The dotted arrows are
processing steps in special cases such as when the vehicle
changes from one road part to another or when it receives
collision warning signals. The main processing steps of the
system include:

1. The sensor data receiver gets sensor data via the sensor
data transmitter, which also sends detected vehicle’s
information while there is a potential collision. The
sensor data are converted into RDF stream data format
with the ontology.

2. The C-SPARQL engine observes the sensor stream
data to detect overspeeding situations.

3. The sensor data receiver sends the data to the SPARQL
query engine.
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. The SPARQL query engine accesses to the knowledge

base to retrieve information of our vehicle’s current
lane, next lane, and driving direction, etc.

. If the vehicle is at the point where it changes from cur-

rent path segment to the next path segment, we recreate
the temporal sub-knowledge base (SubKB), that only
contains nearby road segments and the SWRL rules.
By narrowing down the searching space of knowledge
base, we can significantly reduce rule reasoning time
for decision making.

. When the sensor data receiver gets collision warning

signal, we add the driving situation information such
as collision warning and the other vehicle’s position,
velocity, and driving direction into the SubKB. For ex-
ample, if we detected that our vehicle (carX) has a col-
lision warning with carY, we add a triple <carX, con-
trol:collisionWarningWith, carY> to the SubKB.

. The SWRL rule reasoner performs reasoning on the up-

dated SubKB and new inferred information is added
to the SubKB. For example, decisions such as “Stop”,
“ToLeft”, or “Give Way” with the other vehicle’s ID.

. The SPARQL query engine accesses to the inferred

SubKB to retrieve the decisions and the vehicles that
our vehicle should give way to.

. The decision signals are sent to the path planning sys-

tem via the sensor data transmitter to update driving
path or driving behavior. Newly added inferred knowl-

SWRL Rule
Reasoner

A |

Knowledge Base

Diagram of decision making system.

edge is removed from the temporal SubKB.

The decision making system mainly consists of a sen-
sor data receiver, a C-SPARQL engine, a SPARQL query en-
gine, a temporal ontology-based SubKB, and a SWRL rule
reasoner. In the following, we describe each component in
detail.

4.1 C-SPARQL Query Engine

RDF stream data are represented in the format of RD-
FQuadruple <Subject, Property, Object, Timestamp>. For
example, the RDFQuadruple <ex:ToyotaCar, car:velocity,
“11.117"xsd:float, 1406360324543> represents the veloc-
ity of a ToyotaCar at time 1406360324543, where the times-
tamp uses the time in milliseconds. We use geo:lat’ and
geo:long to represent the latitude and longitude information
from the GPS sensor.

We register the OverSpeedCheck C-SPARQL query
as shown in Table 6, to query on the RDF stream data.
The C-SPARQL query checks if a car’s average velocity in
the past 500ms exceeds its own allowed maximum speed
(maxSpeed, i.e. 120km/h). The RANGE is the duration to
receive sensor stream data for analysis and the STEP size is
the frequency of a sensor receiver.

TPREFIX geo: <http://www.w3.0rg/2003/01/geo/wgs84_pos#>
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Table 6
limit.

C-SPARQL query for checking if a car overspeeds its speed

REGISTER QUERY OverSpeedCheck AS

SELECT ?car

FROM STREAM
<http://www.toyota-ti.ac.jp/Lab/Denshi/COIN/stream>
[RANGE 500ms STEP 50ms]

WHERE { ?car car:velocity ?speed . }

GROUP BY ?speed

HAVING (AVG(?speed) >= maxSpeed )

4.2 SPARQL Query Engine

The SPARQL query engine contains many predefined
SPARQL queries that are used to retrieve knowledge from
the knowledge base. SPARQL is a powerful RDF query
language that enables Semantic Web users to access to the
ontology-based knowledge base. The query that retrieves
connected road segments is introduced in the previous sec-
tion. Here, we will introduce some queries that are used to
retrieve road map information and decision result inferred
using the SWRL rule reasoner.

The following SPARQL query in Example 1 is used to
retrieve the next path segment with two variables - current
path segment (tempaku:currPS) and current pathSegmentID
(“currentID*"xsd:int). The first pathSegmentID is 0 and in-
crements by 1. By assigning the pathSegmentID, we can
easily identify the next path segment even the current path
segment has more than one pathSegmentID when it’s revis-
ited.

Example 1:

SELECT

WHERE {
tempaku:currPS  control:nextPathSegment ~ ?next.
tempaku:currPS  control:pathSegmentID “current]D”""xsd:int.
Tnext control:pathSegmentID TnextID.

Filter( MextID = (currentID + 1) ) }

DISTINCT ?next

To retrieve the maximum allowed speed of current path
segment, we use the SPARQL query in Example 2. The path
segment can be either a road segment or an intersection.

Example 2:

SELECT ?max

WHERE {{
tempaku:currPS  map:isLaneOf Iroadsegment.
Iroadsegment map:isRoadSegmentOf  ?road.
Iroad map:speedMax max. }

UNION {
7road map:hasIntersection map:currentPathSegment.
7road map:speedMax max. } }

The following SPARQL query in Example 3 is
used to retrieve all the cars that our experimental car
(car:ToyotaEstima) should give way to when it receives a
collision warning signal. The triple including the object
property control:giveWay is added to the subKB when the
decision making system infers according to the Right-of-
Way rules in SWRL.
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Input : currRS # Current Road Segment
Output: SubKB # Sub-Knowledge Base
dirList « getConnectedRS(currRS);
rsList « dirList;
SubKB « 0
foreach rs € dirList do
| rsList.add( getConnectedRS(rs) );

end
foreach rs € rsList do

SubKB.add( getAllInfo(rs) )

if <rs, map:hasLane, lane> then

| laneList.add( lane )
else

end
end
foreach lane € laneList do
| SubKB.add( getAlllnfo(lane) )
end
SubKB.add( SWRLRules )
return SubKB

Algorithm 1: Sub-Knowledge Base construction.

Example 3:
SELECT DISTINCT ?cars
WHERE { car:ToyotaEstima control:giveWay ?cars. }

We also have a SPARQL query, which retrieves a target
node GPS position for updating when the car changes from
one road segment to the next one. A target node is defined
as the map:exitPos of a lane if the car is currently running
on a lane, or map:enterPos of the next lane if the car is cur-
rently running on an intersection. The distance of the car
and a target node is calculated at real-time according to the
Haversine Formula [20]. When the car approaches to the
target node, we retrieve the next target node using SPARQL
query and update it. We also constructed other SPARQL
queries to retrieve the types of a path segment, get triples of
an instance, and relations between instances, etc. Jena API'
is used for executing SPARQL queries on the knowledge
base.

4.3 Sub-Knowledge Base (SubKB) Construction

The ontology-based knowledge base contains maps, prede-
fined path, and traffic rules in SWRL. The map will be ex-
tended and more traffic rules will be added, which will in-
crease the reasoning time to make a decision. In order to
reduce reasoning time, the decision making system should
access to a small portion of the knowledge base that is rel-
evant for current driving situation. Therefore, we create a
temporal Sub-Knowledge Base (SubKB), which only con-
tains nearby map information.

Algorithm 1 describes the procedure of constructing a
temporal SubKB based on current position. The current road
segment currRS can be a lane or an intersection. At first,
we get a list of road segments (dirList) directly connected
to currRS using the following SPARQL query in function

"http://jena.apache.org/documentation/ontology/
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getConnectedRS(currRS). Then, we get the connected road
segments for each road segment rs in the dirList and put
them all in the rsList.

SELECT DISTINCT ?connectedRS
WHERE {
{ currRS map:isLaneOf 7rs .
?rs map:isConnectedTo ?connectedRS. }
UNION
{ currRS map:isConnectedTo ?connectedRS. } }

For each road segment rs in the rsList, which are con-
nected to currRS within 2-depth, we get all the triples of
them and put in the temporal SubKB using getAlllnfo(rs).
If the road segment has lanes, we put all the lanes into the
laneList. Then, for each lane in the laneList, we get all the
triples of the lane instance and put them into the SubKB. The
function gerAlllnfo(rs) retrieves all the triples of the instance
rs from the knowledge base. We also add all the SWRL
rules into the SubKB and return it as a temporal knowledge
base for current position. In Fig. 9, if our vehicle is running
on the lane E, the SubKB contains all the information of 2-
depth connected lanes (A, B, D, E, G, F, and lanes below
E), road segments (A+B, D+E, F+G, and the road segment
below D+E), and intersections (C and an intersection below
D+E).

4.4 SWRL Rule Reasoner

When the autonomous vehicle receives a collision warning
signal from a collision detection system, the SWRL rule rea-
soner is executed according to different types of traffic sit-
uations. The SWRL rule reasoner performs reasoning on
the temporally created knowledge base SubKB rather than
the whole knowledge base. Since we mainly focus on un-
controlled intersection and narrow road cases, the following
situations may occur:

o Before an intersection: Give way or move forward in
comply with Right-of-Way rules.

e At an intersection: Stop and give way to the other cars
when upcoming collisions are detected.

e On a two-way lane: Move to the left side and give way
to the other cars coming from the opposite side of the
two-way lane.

When the rule inferencing is performed by the SWRL
rule reasoner, we use a SPARQL query to check if we need
to give way to the other cars. SWRL rules in the knowl-
edge base are inferred with Pellet reasoner, which provides
standard and cutting-edge reasoning services for OWL on-
tologies [21]. Pellet API" and OWL API'" are applied for
reasoning. According to surveys, Pellet is an open source,
which supports SWRL rules and OWL API [22].

Thttp://clarkparsia.com/pellet/
Thttp://owlapi.sourceforge.net/

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.7 JULY 2017

5. Experiment

In this section, we discuss the experimental results of the
ontology-based decision making system. First, we will in-
troduce the experimental area, and the sensor data which
are transmitted through User Datagram Protocol (UDP) [23]
at real-time. The experiments are conducted in two ways.
First, we test by simulating different traffic situations to test
if the system can make correct decisions at all possible sit-
uations. Then, we test with the real-time sensor data sent
from the sensor data transmitter by driving an Estima car on
the predefined driving path. Figure 12 shows the PreScan
simulator car and Fig. 13 shows the intelligent Estima car,
which was used for our experiments.

5.1 Experimental Area

The experimental path starts from Toyota Technological In-
stitute (TTI) and ends at TTI resident apartment near Yagoto
station in Nagoya city of Japan. The following experimen-
tal data are from one part of the Yagoto area, which contains
both an uncontrolled intersection and a narrow two-way lane
as shown in Fig. 14. A lane adapter (G: Yagotolshizak-
aGrandirLaneAdapterl) connects an uncontrolled intersec-
tion (A: Yagotolshizakalnt4_5) and a two-way narrow road
(H: YagotolshizakaGrandirRS1). This kind of roads are
very common in Japan and it’s a challenging task for au-
tonomous vehicles to drive safely because:

e Since there are no traffic lights at the uncontrolled in-
tersection, the vehicle has to observe the other vehicles
and make a decision to give way or not. Therefore, in

Fig.12  PreScan Simulator Car.

Fig.13  Intelligent Car.
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A: Yagotolshizakalnt4_5
B: YagotolshizakaRS4Lane1
C: YagotolshizakaRS4Lane2
D: YagotolshizakaRS5Lane1
E: YagotolshizakaRS5Lane2
F: YagotolshizakaCrossWalk1
\  G: YagotolshizakaGrandirLaneAdapter1
'« | H: YagotolshizakaGrandirRS1

Fig.14  Experimental area.

addition to the other vehicles’ information, the knowl-
edge of Right-of-Way traffic rules at uncontrolled in-
tersections are necessary for making a decision.

e Even human drivers are cautious when running on two-
way narrow roads as shown in Fig. 14. The vehicle
should understand that although the road allows cars
to run in both directions, the limited space is difficult
for two cars drive freely.

5.2 Data

Table 7 shows the format of sensor data transmitted at real-
time to the sensor receiver of decision making system. At
each timestamp, the sensor data transmitter sends data in
the order of timestamp, latitude, longitude, velocity, head-
ing angle, carID, and collision warning signal. Here, if the
collision warning signal is 0, it means that no upcoming col-
lision is detected. Otherwise, it means that an upcoming col-
lision is detected and sends the detected vehicle’s informa-
tion along with our experimental vehicle’s information. The
default ID for our experimental vehicle is 0 and the other
detected vehicle’s IDs are non-zero integers.

The instances in the knowledge base for experiments
are based on the map ontology and control ontology. The
experimental vehicle is assigned a path file for experiments.
The instances of other vehicles that have collision warn-
ings with our experimental vehicle are added to the temporal
SubKB at real-time and then deleted from the SubKB after
driving decisions are inferred.

5.3 Simulation Experiment

To evaluate the ontology-based decision making system in
the experimental area as shown in Fig. 14, we simulated all
the possible traffic situations that would happen at the un-
controlled intersection and on the narrow two-way road.

e Paths: As shown in Fig. 15, there are six possible paths
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Fig.15  Uncontrolled intersection

Fig.16  Narrow two-way lane.

for a vehicle when it approaches the uncontrolled in-
tersection. When a car is running on the two-way lane,
there are two possible paths as shown in Fig. 16.

e Vehicles: When our vehicle approaches the intersec-
tion as shown in Fig. 15, the maximum number of other
vehicles that may have upcoming collision with our ve-
hicle is two. We only consider the nearest vehicles on
each lane or intersection and the other following vehi-
cles are neglected because the vehicles will be consid-
ered when they become the nearest to our vehicle at a
different timestamp.

To infer the Right-of-Way rules at uncontrolled inter-
sections and on narrow two-way roads, we need the infor-
mation of the other vehicle’s driving direction. It is easy
to identify driving direction on a narrow road by consider-
ing heading angle, which can be either the same direction or
opposing direction. However, it is still a challenging prob-
lem to identify if the detected vehicle is going to turn left or
turn right when they approach an intersection. The collision
detection system used in our experiment cannot retrieve the
intended driving direction of the other vehicles by observing
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Table 7  An example of transmitted sensor data.
Timestamp Latitude Longitude Velocity (m/s) Heading Angle Car ID Collision Warning
1712884 35.13467 136.9641 1.406401 —348.869 0 1
1712884 35.13444 136.9641 3.894356 194.5781 1 1
1712985 35.13467 136.9641 1.478781 -349.403 0 1
1712985 35.1345 136.9639 3.73306 194.0251 1 1
1713076 35.13467 136.9641 1.629769 —-350.565 0 1
1713076 35.13473 136.9638 3.611545 194.9413 1 1
1713156 35.13467 136.9641 1.784153 -351.792 0 0
1713237 35.13467 136.9641 1.931167 -353.119 0 0
1713328 35.13467 136.9641 2.074262 —354.594 0 0
1713419 35.13467 136.9641 2.144296 -355.393 0 0
1713510 35.13468 136.9641 2.277657 —357.105 0 1
1713510 35.13482 136.9641 4.012344 194.3415 1 1
1713601 35.13468 136.9641 2.406614 —358.897 0 0
1713783 35.13468 136.9641 2.53862 —0.84693 0 0
1713874 35.13469 136.9641 2.669124 —2.92268 0 0
1713954 35.13469 136.9641 2.726286 —-3.95872 0 0
1714045 35.13469 136.9641 2.837927 —-6.08027 0 0
1714136 35.13469 136.9641 2.948412 —-8.28217 0 0
1714227 35.13469 136.9641 3.055672 —-10.6708 0 0

\

4

Experimental results for a path with 3 vehicles.

Fig.17

the head lights of the other vehicles. Therefore, we assume
that we can observe the other vehicle’s intended driving di-
rection as human drivers do with a predefined driving direc-
tion.

In total, we tested 24 two-vehicle cases and 32 three-
vehicle cases with 6 possible paths to evaluate our decision
making system at the uncontrolled intersection. Figure 17
shows the three-vehicle cases for the path of a car which
turns right at the intersection and drives on the narrow two-
way road. The “give way” labels beside the other vehicles
means that our vehicle should give way to the car which may
have upcoming collision with our vehicle.

For example, in the first case (top left) of Fig. 17, our
vehicle should give way to both cars because one vehicle
is driving straight and the other vehicle is driving out from
narrow road to the wider road. According to the Right-of-
Way rules, a car driving straight has a higher priority than a
car turning right or left at an uncontrolled intersection. If a
car is going to drive into a narrow two-way road, it should
wait for the other car which is going to drive out from the
narrow two-way road. In the last two cases of Fig. 17, our

vehicle does not need to give way to the car running on the
narrow two-way lane, because the driving direction will be
the same. Furthermore, if two cars are going to enter the
same lane, the car turning left has a higher priority than the
car turning right.

On the narrow two-way road, our vehicle gives way to
the other vehicle coming from the opposing direction and
moves to the left side of the road as the dotted path shown in
Fig. 16. This decision is made according to Rule 1 and Rule
5in Table 5. The “ToLeft” signal is sent to the path planning
system to change the current path by finding a position on
the left side to stop and to give way to the other vehicle.

5.4 Real-World Data Experiment

To evaluate whether the decision making system can make
correct decisions at real-time, we tested with the intelligent
vehicle (Toyota Estima) on the same driving path. The intel-
ligent vehicle is equipped with many sensors such as Velo-
dyne Lidar, GPS-IMU, and cameras. A computer is installed
in the intelligent vehicle, which contains the ontology-based
knowledge base and processes sensor data at real-time. For
the real-world data experiment, we hired an experienced
driver to drive on the predefined path several times.

The sensor data transmitter sends sensor data in the for-
mat as shown in Table 7 while the intelligent vehicle runs on
the path as shown in Fig. 18. The path segments for the ex-
periments are B — > A — > G — > H, and so on. Table 8
shows the decisions made in different timestamps according
to the data in Table 7. The SWRL reasoner of the decision
making system is executed only when the vehicle receives a
collision warning. From timestamp 1712884 until 1714045,
our vehicle waits and gives way to the other vehicles un-
til the warning is cleared for a specific time period. Here,
we assume that the detected vehicles running straight from
E(YagotolshizakaRS5Lane2) to A(Yagotolshizakalnt4_5).

In the following, we describe the decisions and situa-
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A: Yagotolshizakalnt4_5

B: YagotolshizakaRS4Lane1

C: YagotolshizakaRS4Lane2

D: YagotolshizakaRS5Lane1

E: YagotolshizakaRS5Lane2

F: YagotolshizakaCrossWalk1

| G: YagotolshizakaGrandirLaneAdapter1
\ H: YagotolshizakaGrandirRS1

Fig.18  Before Yagotolshizakalnt4_5.

Table 8
Timestamp Estima Position Detected Vehicle

1712884  YagotolshizakaRS4Lanel YagotolshizakaRS5Lane2 Wait, Give Way
1712985  YagotolshizakaRS4Lanel YagotolshizakaRS5Lane2 Wait, Give Way
1713076  YagotolshizakaRS4Lanel YagotolshizakaRS5Lane2 Wait, Give Way

Experimental results with real-world data.

Decision

1713156  YagotolshizakaRS4Lanel N/A Receive
1713237  YagotolshizakaRS4Lanel N/A Receive
1713328  Yagotolshizakalnt4_5 N/A Receive
1713419  Yagotolshizakalnt4_5 N/A Receive
1713510 Yagotolshizakalnt4_5 YagotolshizakaRS5Lane2 Wait, Give Way
1713601 Yagotolshizakalnt4_5 N/A Receive
1713783  Yagotolshizakalnt4_5 N/A Receive
1713874  Yagotolshizakalnt4_5 N/A Receive
1713954  Yagotolshizakalnt4_5 N/A Receive
1714045  Yagotolshizakalnt4_5 N/A Receive
1714136  Yagotolshizakalnt4_5 N/A Go
1714227 Yagotolshizakalnt4_5 N/A Receive

tions in different timestamps.

e Timestamp: 1712884 ~ 1713076:
State: As shown in Fig. 18, the intelligent vehi-
cle is running on B(YagotolshizakaRS4Lanel) and
is going to run on the uncontrolled intersection
A(YagotoIshizakalnt4_5). We detected a poten-
tial collision with another vehicle, which is run-
ning straight from E(YagotolshizakaRS5Lane2) to
A(YagotoIshizakalnt4_5).
Decision: Wait and give way to the other vehicle.

o Timestamp: 1713156 ~ 1713237:
State: The vehicle is running slowly on the lane
B(YagotolshizakaRS4Lanel) and no collision warning
is detected. It keeps waiting for the “GO” decision.
Decision: Receiving sensor data.

e Timestamp: 1713328 ~ 1713419:
State: The vehicle is running on the intersection
A(YagotoIshizakalnt4_5) and no collision warning is
detected.
Decision: Receiving sensor data.

o Timestamp: 1713510:
State: As shown in Fig. 19, the intelligent vehicle is
running on the intersection A(Yagotolshizakalnt4_5),
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A: Yagotolshizakalnt4_5

B: YagotolshizakaRS4Lane1

C: YagotolshizakaRS4Lane2

D: YagotolshizakaRS5Lane1

E: YagotolshizakaRS5Lane2

F: YagotolshizakaCrossWalk1
'\ G: YagotolshizakaGrandirLaneAdapter1
| H: YagotolshizakaGrandirRS1

Fig.19  On Yagotolshizakalnt4_5.

and the other vehicle is running straight on
E(YagotolshizakaRS5Lane2).
Decision: Wait and give way to the other vehicle. (Our
vehicle can move if the other vehicle stopped for a
specific period, i.e. 500ms, or until receiving five non-
collision-warning signals continuously)

o Timestamp: 1713601 ~ 1714045:
State: The vehicle is running on the intersection
A(YagotoIshizakalnt4_5) and no collision warning is
detected.
Decision: Receiving sensor data.

e Timestamp: 1714136:
State: We send Go decision if we don’t receive col-
lision warning in the following five continuous sensor
data.
Decision: Go.

As the experimental results shown above, the decision
making system makes correct decisions at the uncontrolled
intersection cases by perceiving driving situations. The ve-
hicle awares the road structure and other vehicle’s infor-
mation that may have upcoming collision with it. By per-
forming reasoning on SubKB, the calculation time is signif-
icantly reduced comparing with the system which uses the
whole knowledge base [24]. The size of knowledge base
used in [24] was about 407kb, while the size of a tempo-
ral SubKB in this work is about 19kb ~ 40kb. Therefore,
the size of knowledge base for reasoning is reduced to about
1/20 ~ 1/10.

Table 9 shows the calculation time for making a de-
cision using previous system introduced in [24] and our
current decision making system with SubKB. The decision
making time does not include sub-KB construction time,
and the decision making time depends on the performance
of ontology reasoner at each situation. Although the con-
struction time for sub-KB depends on the size of the whole
KB, it does not affect the decision making time because they
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Table9  Comparison of decision making time.
Whole Knowledge Base Sub-Knowledge Base
Maximum 965ms 236ms
Minimum 305ms 37ms
Average 470ms 53ms

are not simultaneous processes. As the comparison result
shows, the decision making time depends on the size of the
knowledge base. By only considering nearby road segments
for decision making, we can significantly reduce the calcu-
lation time by providing the same decisions. The average
time for making a decision is about 53ms, which is close to
the sensor data transmission duration.

6. Conclusion and Future Work

This paper presents that knowledge of driving environment
can help autonomous vehicles understand driving situations
and make correct driving decisions to avoid collisions. We
use machine-understandable ontologies to describe maps
and driving situations to enable autonomous vehicles under-
stand the meanings of driving environments. In this paper,
we described the ontology-based knowledge base for safe
autonomous driving that can be used for developing Ad-
vanced Driver Assistance Systems. The knowledge base is
based on three ontologies: map ontology, control ontology,
and car ontology. An ontology-based decision making sys-
tem is introduced, which can improve safety by making de-
cisions at uncontrolled intersections. Experimental results
show that the system can promptly make a decision by us-
ing Sub-Knowledge Base and avoid collisions by following
Right-Of-Way traffic rules.

We have constructed basic ontologies for autonomous
driving and proved that ontology-based knowledge base is
applicable for real-time decision making systems. In future
work, we will extend the knowledge base and improve the
decision making system to deal with more complicated in-
tersections. The knowledge base will be extended to cover
more areas of Tempaku ward and include more information
such as buildings and subway stations, bus stops, and links
to other Linked Open Data sets [7]. The ontologies can be
extended by adding concepts of new environments or driv-
ing control to deal with various types of driving environ-
ments and traffic situations. For example, to make decisions
at complicated intersections with traffic lights and varied
number of lanes, we can decompose these kinds of compli-
cated cases into several simple situations and integrate the
individual results for the final decision. In this paper, we
mainly focused on sub-KB construction to reduce the deci-
sion making time and did not evaluate the stability of our
system. The operational stability can be evaluated by using
Field-Programmable Gate Array (FPGA) hardware and we
will work on it in future work.
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