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PAPER

Dynamic Scheduling of Workflow for Makespan and Robustness
Improvement in the IaaS Cloud

Haiou JIANG†a), Student Member, Haihong E†b), and Meina SONG†c), Nonmembers

SUMMARY The Infrastructure-as-a-Service (IaaS) cloud is attracting
applications due to the scalability, dynamic resource provision, and pay-
as-you-go cost model. Scheduling scientific workflow in the IaaS cloud is
faced with uncertainties like resource performance variations and unknown
failures. A schedule is said to be robust if it is able to absorb some degree of
the uncertainties during the workflow execution. In this paper, we propose a
novel workflow scheduling algorithm called Dynamic Earliest-Finish-Time
(DEFT) in the IaaS cloud improving both makespan and robustness. DEFT
is a dynamic scheduling containing a set of list scheduling loops invoked
when some tasks complete successfully and release resources. In each loop,
unscheduled tasks are ranked, a best virtual machine (VM) with minimum
estimated earliest finish time for each task is selected. A task is scheduled
only when all its parents complete, and the selected best VM is ready. In-
termediate data is sent from the finished task to each of its child and the
selected best VM before the child is scheduled. Experiments show that
DEFT can produce shorter makespans with larger robustness than existing
typical list and dynamic scheduling algorithms in the IaaS cloud.
key words: dynamic workflow scheduling, the IaaS cloud, makespan, ro-
bustness

1. Introduction

Over the decades, cloud computing has emerged as a new
distributed computing system due to features like appli-
cation scalability, heterogeneous resources, dynamic re-
source provisioning, and pay-as-you-go cost model. In the
IaaS model of cloud computing, resources are provided in
the form of VMs, which are dynamically managed, moni-
tored, maintained, and governed by market principles. Ap-
plications can benefit from virtually unlimited resources
with minimum hardware investment. As a result, scientific
workflows, which are usually modeled as Directed Acyclic
Graphs (DAG) with data dependencies among tasks and
present applications of high throughput, computation, and
complex large scale data analysis, are increasingly adopting
cloud computing.

Workflow scheduling is regarded as one of the ma-
jor challenges in scientific workflow management in the
IaaS cloud. Scheduling is defined as mapping tasks to
the computing resources by optimizing performance met-
rics such as execution time and cost [1]. Problem of work-
flow scheduling usually is NP-hard. Various heuristic and
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meta-heuristic approaches have been developed to solve the
workflow scheduling in the heterogeneous computing sys-
tem, Grids, and Cloud [1]–[4]. The majority of these ap-
proaches can produce good schedules given that the state
of resources is static. However, in the IaaS cloud, there
are uncertainties a scheduler needs to deal with. Resource
performance variations affect the overall workflow perfor-
mances. If a resource slows down, the tasks scheduled and
queued on that resource have to wait to be executed, conse-
quently impact the start time of other dependent tasks and
increase the overall makespan. Failures caused by hardware
failures, software failures, interferences between cohosted
VMs [5], etc. are also inevitable in such large complex dis-
tributed systems and may affect the overall workflow perfor-
mances. Dynamic scheduling can deal with the uncertainties
by scheduling a task only when it becomes ready, namely,
when all the tasks that the current task depends upon have
completed their execution. It considers runtime state of the
system and is adaptive in nature.

In this paper, we present a dynamic workflow schedul-
ing algorithm in the IaaS cloud, called Dynamic Earliest-
Finish-Time (DEFT). DEFT contains a set of list scheduling
loops, which are invoked when some tasks complete and
release resources. In each loop, the unscheduled tasks are
sorted, a VM with minimum estimated earliest finish time is
selected for each unscheduled task. Ready tasks are sched-
uled, while other tasks keep the VM selection records, and
intermediate data is sent from finished tasks to their children
according to the task-VM record. Coefficient of Variation
(CV) is used in this paper for the robustness to measure how
DEFT will schedule workflows with stable makespans in the
IaaS cloud with uncertainties. Experiment results show that
DEFT not only minimizes the workflow makespans but also
produces schedules with larger robustness against uncertain-
ties in the IaaS cloud.

The remainder structure of the paper is as follows. Sec-
tion 2 discusses the related work. Section 3 describes the
models of the system, problem definitions and attributes,
and the measurement of robustness. Section 4 presents the
details of DEFT, discusses the complexity of the algorithm,
and illustrates the algorithm with an example. The simula-
tion results will be presented in Sect. 5. And Sect. 6 gives
the conclusion and future work.

2. Related Work

The DAG-based workflow scheduling problem keeps evolv-
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ing with computational platforms, from the age of homo-
geneous systems, to heterogeneous systems, Grids, and
Cloud [7]. Due to its NP-hard nature, most of algorithms
are heuristic based and can be classified into three cate-
gories: list algorithms, clustering algorithms and task du-
plication based algorithms. List scheduling algorithms
are generally preferred since they generate good quality
schedules with less complexity [7]. HEFT (Heterogeneous
Earliest Finish Time) [6], CPOP (Critical Path on a Pro-
cessor) [6], PETS (low complexity Performance Effective
Task Scheduling) [7], HCPT (Heterogeneous Critical Parent
Trees) [8], HPS (High-Performance task Scheduling) [9],
Lookahead [10], SDBATS (Standard Deviation-Based Al-
gorithm for Task Scheduling) [11], and PEFT (Predict Ear-
liest Finish Time algorithm) [12] are typical list algorithms.
HEFT, CPOP, HCPT, SDBATS, Lookahead and PEFT have
two phases, including a task prioritizing phase to decide
scheduling sequence of tasks, and a processor selection
phase to assign a processor to each task sequentially for a
minimum makespan. HPS and PETS have a level sorting
phase to sort tasks into groups that can be executed in par-
allel before the task prioritizing and the processor selection
phase. HEFT is well-known and frequently referenced with
its lower time complexity, and PEFT is the latest excellent
DAG scheduling algorithm with the same time complexity
as HEFT. The above algorithms perform well in the static
environment supposing that the resource is always available
and the performance is static.

In practice, especially in dynamic IaaS cloud, such
static schedulers seldom lead to good performances since
the actual task execution time at runtime usually deviate a lot
from their static predictions estimated before the workflow
execution. Some static DAG schedulers try to deal with the
unpredictability by assuming the resource computing rate
or task execution time variation to follow a specific distribu-
tion. H. Arabnejad and J. Barbosa [13] model the computing
rate variation of each leased VM by introducing a degrada-
tion percentage based on a normal distribution. X. Tang et
al. [14] assume the processing time and the communication
time to be independent and follow the exponential distribu-
tion or the normal distribution estimated by building a his-
toric table and using statistical profiling. D. Poola et al. [15]
model the task execution time variation as a normal distri-
bution with a mean value of zero. However, it is difficult to
specify analytically the exact distribution of the VM com-
puting rate or the task execution time in the IaaS cloud. W.
Zheng and R. Sakellariou [16], [17] solve the problem by us-
ing a non-analytical Monte Carlo method. The method first
samples from the input space consisting of the random task
execution time predictions of the given application, then
generates a long list of different static schedules by em-
ploying a specific static scheduling heuristic. The schedule
with minimum mean makespan of all the input samples is
selected. The result of the algorithm is affected by the range
of sample space, the number of samples, and the number of
static schedules.

Some dynamic scheduling algorithms are developed

dealing with uncertainties by scheduling or rescheduling
a task in the runtime. Q. Zheng [18] proposes an offline
scheduler and makes adaptations during runtime based on
the current information about the task start and completion
times. It alleviates the chain effect caused by task over-
runs by rescheduling tasks to faster resources if the pre-
decessors are likely to increase the makespan. However,
it does not reschedule tasks to faster resources for smaller
makespans since the rescheduling only happens after the
overruns. P-HEFT (HEFT for parallel tasks) [19] applies
dynamic scheduling for a batch of jobs described DAG with
different arrival times. In each scheduling loop, ready tasks
of different jobs are scheduled in parallel using an adaptation
of HEFT. DCP-G [20] dynamically schedules ready tasks
sequentially by identifying DCP (Dynamic Critical Path) of
the unscheduled tasks in each scheduling loop, and selects
the resource providing the minimum execution time for the
task in Grids. The problem of P-HEFT and DCP-G is, all
the intermediate data that should be sent as soon as a task is
finished is delayed until its child is scheduled to a resource.
In DEFT, intermediate data is sent when a task completes
and its child has a record of a best VM. Waiting time for in-
termediate data will be diminished and the overall makespan
will be minimized.

There is no consensus on a good definition of robust-
ness for a schedule. Some definitions are related to the
workflow deadline. L. Boloni and D. C. Marinescu [21] de-
fine the slack of a task as the amount of time that can be
delayed without delaying the deadline of the workflow and
define the slack of a schedule as the sum of the slacks of
all the tasks of the workflow. D. Poola et al. [15] define ro-
bustness as 1) the likelihood of the workflow to finish be-
fore the given deadline or 2) the amount of time a workflow
can be delayed without violating the deadline constraint. Z.
Shi et al. [22] give two definitions of robustness based on
tardiness of deadline and deadline miss rate. Other defi-
nitions are related to makespan, measuring the stability of
the makespan for any realization of the same schedule. L.
C. Canon et al. [23] measure the robustness by scheduling
tasks of a DAG to a target environment several times and
computing the makespan distribution. Makespan standard
deviation, makespan differential entropy [21], probabilistic
that the makespan is within two bounds [24], and the worst
makespan it is possible to have in 99% of cases are defined
and compared based on the makespan distribution. We use
the same measurement by scheduling tasks of a DAG to
a target environment several times and see how stable the
makespans are. However, we use CV to measure robustness
that is more representative and easy to compute.

3. Scheduling Problem Formulation

This section illustrates how we model the IaaS cloud, the
workflow, and the scheduling problem. Then the robustness
is defined.
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3.1 Basic Models and Attributes

In the IaaS cloud, resources are provided by the IaaS cloud
service providers to the users in the form of VMs. The con-
figuration of VM differs in memory, CPU measured in mil-
lion instructions per second (MIPS) and OS. When a sci-
entific workflow is submitted to the cloud, certain type of
VMs are provided as a resource pool according to the user’s
requirement or the workflow configuration. Performances
of the network and VMs of each type are considered hetero-
geneous.

Scientific workflow is usually modeled as a DAG with
data dependencies among tasks. The DAG of workflow is
represented by G = {V, E}, where V = {v1, v2, · · · , vn} is the
set of n tasks of a workflow, also called nodes in this pa-
per, and E = {(vi, v j) | vi, v j ∈ V} is the data dependencies
between these tasks. An edge (vi, v j) ∈ E shows the prece-
dence constraint that task vi should complete its execution
before task v j starts, vi is called the parent of v j, donated
as parent(v j), and v j is called the child of vi, donated as
child(vi). The task without any parent is called the entry
task and the task without any child is called the exit task.
All the nodes from the entry nodes to the parents of vi are
the predecessors of vi, and all the nodes from the children of
vi to the exit nodes are the successors of vi.

There are some attributes used in the workflow
scheduling we will refer to in this paper.

1) Computing cost is the estimated execution time to
complete a task vi on VMj at time t, donated as wt

i j. Average
computing cost of task vi on M VMs of the requested type
at time t is defined as:

w̄t
i =

M∑
j=1

wt
i j

/
M =

M∑
j=1

(Li/R
t
j)

/
M (1)

Where Li is the length of task vi in million instructions, and
the Rt

j is computing rate of VMj at time t.
2) Communication cost ct

i j is the average estimated
time spent on transferring intermediate data from task vi to
task v j based on the network performance at time t, defined
as:

ct
i j = D + dataij/B

t
i j (2)

Where D is the average latency of data transfer and Bt
i j is

data transfer rate between VMt
i hosting task vi and VMt

j host-
ing task v j at time t, dataij is the amount of the intermediate
data that task vi sends to task v j. Note that ct

i j = 0 if tasks vi

and v j are assigned to the same VM or two VMs cohosted
on the same server.

3) Makespan, which is also called schedule length in
some research [6], [7], [12], of a workflow is the time span
from the workflow submission to the completion of the last
task of the workflow.

makespan = max{FT(nexit)} − ST (3)

Where ST is the submission time of the workflow and FT(vi)
is the finish time of task vi. Where there is more than one
exit tasks, the makespan is the maximum finish time of all
the exit tasks.

Makespan is normalized for comparison. Normalized
makespan, called NSL (Normalized Schedule Length) for
short, is defined as follows:

NSL = makespan/LCPmin (4)

LCPmin =
∑

vi∈CPmin

min
VMj∈VM

{wi j}

+
∑

vi∈CPmin
vk∈CPmin

vk∈child(vi)

(dataik/ max
VMj∈VM
VMl∈VM

Bjl) (5)

LCPmin is the theoretical minimum makespan of the work-
flow, which is the minimum length of critical path (CP) of
DAG. CP is the longest path from the entry node to the exit
node. The computation cost of each task is calculated by ex-
ecuting it on the fastest VM, and the communication cost is
calculated by setting the data transfer rate to the maximum
bandwidth of the network. Real makespan cannot be shorter
than LCPmin , and the NSL is always larger than 1.0.

4) Earliest Start Time (EST) of task vi on V Mj at time
t is defined as:

EST(vi,VMj; t)

= max{Availtj, max
vp∈parent(vi)

(FT(vp) + c
FT(vp)
pi )} (6)

Where FT(vi) is the finish time of task vi, and Availtj is
the earliest time when VMj is available and ready to exe-
cute task vi from time t. Equation (6) means that a task
starts when all its parents have finished, all the data is trans-
ferred, and the VM is ready to execute it. For the entry node
EST(vi,VMj; ST) = ST , where Where S T is the submission
time of the workflow.

5) Data Latest Transfer Time (DLTT) is the latest time
that the parent vp executed on VMt

p should send intermediate
data to the child vi assigned to VMt

i at time t in case of not
delaying the EST of vi. It is the EST of vi subtracted by the
data transfer cost from V Mt

p to VMt
i , shown as follows:

DLTT(vi,VMt
i , vp,VMt

p; t) = EST(vi,VMi; t) − ct
pi (7)

6) Earliest Finish Time (EFT) of task vi on VMj at time
t is calculated as the EST of a task vi plus the computing
cost of vi on VMj at time t:

EFT(vi,VMj; t) = EST(vi,VMj; t) + wt
i j (8)

3.2 Measurement of Robustness

Robustness of a schedule is the stability of the makespans
for any realization of the same schedule. Schedule a work-
flow in the dynamic IaaS cloud for N times, Mi is the
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makespan of the ith scheduling result, CV (Coefficient of
Variations) is used to measure the robustness of the sched-
uler in this paper, defined as the ratio of the Standard Devi-
ation σ to the average makespan μ:

CV =
σ

μ

μ =
1
N

N∑
i=1

Mi, σ =

√√√
1
N

N∑
i=1

(Mi − μ)2

(9)

CV shows the extent of variability of actual makespans
in relation to the average makespan. Obviously, a smaller
CV means that the makespans are more likely to be close
to the average value, showing a more stable distribution of
the makespans. The smaller the CV is, the more robust the
scheduler is. CV performs over Standard Deviation in that
it does not correlate to the average value and is easy to com-
pute as well.

4. The Proposed DEFT Scheduling Algorithm

Static scheduling has obvious shortage in the dynamic IaaS
cloud with uncertainties. It schedules all the tasks on the
VMs at the start of the workflow. VM computing rate and
network bandwidth may change in the runtime. When a VM
slows down, tasks scheduled and queued on it may be de-
layed, consequently impact the start time of other dependent
tasks and increases the overall makespans. Failed tasks may
also delay successors as well as tasks queued after the failed
tasks on the same VMs. In this section, we introduce a novel
scheduling algorithm for the IaaS cloud with uncertainties,
called Dynamic Earliest-Finish-Time algorithm (DEFT).

4.1 DEFT

DEFT contains a set of loops invoked whenever some tasks
complete and release VMs. DEFT is based on a heuris-
tic that if tasks considered in each loop can gain minimum
makespans based on the current computing and network per-
formance, makespan of the whole workflow can be mini-
mized. Each scheduling scheduling loop is list based, and
contains three phases, namely, tasks prioritizing, VM selec-
tion, data transfer phase.

Task prioritizing phase. In each scheduling loop, un-
scheduled tasks are prioritized using ranku. It is calculated
based on the current VM computing rate and network band-
width. ranku of task vi at time t, donated as ranku(vi; t), is
defined as follows:

ranku(vi; t) = w̄t
i + max

v j∈child(vi)

[
ranku(vj; t) + ct

i j

]
(10)

where w̄t
i is the current average computing cost of vi, and ct

i j
is the current communication cost from vi to its child v j. For
the exit task, ranku(vexit; t) = 0.

VM Selection Phase. Tasks are sorted by the non-
increasing order of ranku values, and the task with the higher

ranku is given the higher priority. Task with the higher pri-
ority can first select and record the “best” VM that allows
for the minimum EFT according to Eq. (8). Insertion policy
is used that tries to insert a task in the earliest idle time slot
between two already recorded tasks on a VM, if the slot is
large enough to accommodate the task.

A task is ready if all its parents are finished. When the
best VM is available, the ready task can be scheduled and
executed on it. Remaining tasks, including tasks which are
not ready and ready tasks which are not scheduled just save
the (task, bestVM) record. In the next scheduling loop, if the
best VM changed based on the new runtime performance,
including VM available time, task finish time, VM comput-
ing rate, network bandwidth, etc., the (task, bestVM) record
is updated.

Data Transfer Phase. For a finished task vi, inter-
mediate data from vi to each of its children v j is sent at
time DLTT. DLTT is calculated based on current network
bandwidth and latency between VMi hosting vi and VMj

recorded as the best VM for v j, according to Eq. (7). At
each scheduling loop, record (time, sourceTask, sourceVM,
destinationTask, destinationVM, data) is saved, where time
is DLTT(vj,VMj, vi,VMi; t), source task is vi, source VM is
VMi, destination task is v j, destination VM is VMj, and data
is the intermediate data from vi to v j. Data is sent accord-
ing to the DLTT record in the runtime. If the (task, bestVM)
record of v j is changed after data is sent, old data is dis-
carded and new data is sent at the new DLTT. If the new
DLTT is earlier than the current time, v j will be delayed,
and EST(vj) is updated as well. When a VM receives some
data, it checks the (task, bestVM) record list and the DLTT
record list. The data is cached if the VM is the the des-
tination, otherwise, the data is discarded. Considering the
(task, bestVM) record may change before a task is sched-
uled, and the task may fail before complete, DLTT record
will not be deleted until the task complete successfully.

In data transfer phase, DLTT is calculated for all the
children of finished tasks. Best VMs for the children are
selected in VM selection phase. Since tasks that are not
the children of the finished tasks can neither be ready nor
be assigned to the earlier idle time slot before the children,
there is no use to consider them. Therefore, tasks considered
in each scheduling loop are the unscheduled children of the
finished tasks.

Initially, all the entry nodes are ready to schedule and
stored in Scope. A scheduling loop is invoked at the be-
ginning or when some tasks complete and release VMs.
All the unscheduled children of finished tasks are added to
Scope (Line 3). Then ranku of each task in Scope is cal-
culated based on the current computing rate and network
bandwidth according to Eq. (10) (Line 4-5). Readys is up-
dated by adding tasks whose parents are all finished (Line
6-7). Then tasks are sorted by the non-increasing order
of ranku (Line 9). Best VM is selected for each task in
the sorted Scope (Line 11). New (task, bestVM) record is
add to Maps (Line 12-13). Maps and Datas are updated
if the (task, bestVM) record is changed in the current loop
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Algorithm 1 Pseudo code of the DEFT algorithm
Input: The workflow DAG with n tasks {v1, v2, · · · , vn}

VM = {VM1,VM2, · · · ,VMm}: m VM in the IaaS cloud
Fins: tasks finished before each loop
Scope: list of tasks considered in each loop, initially is {ventrance}
Readys: list of ready tasks, initially is {ventrance}
Maps: list of (task, bestVM) map record
Datas: list of data transfer record

1: while Scope is not null do
2: if Fins is not null at time t do
3: update Scope
4: for task vi ∈ Scope do
5: compute ranku(vi; t) using equation(10)
6: if vi is ready
7: Readys← vi

8: end for
9: sort tasks in Scope by non-increasing order of ranku

10: for task vi ∈ Scope do
11: find bestVMi that minimize EFT(vi, bestVMi; t)
12: if vi � Maps
13: Maps← (vi, bestVMi)
14: else if (vi, bestVMi) � Maps do
15: update bestVM for vi in Maps
16: update records whose destination is vi in Datas
17: end if
18: if vi ∈ Readys and bestVMi is available
19: schedule vi to bestVMi

20: end for
21: delete scheduled tasks from Maps, Readys, Scope
22: for task v f ∈ Fins do
23: for task vc ∈ child(vf ) do
24: compute DLTT(vc, bestVMc, vf ,VMf ; t) using equation(7)
25: Datas← (DLTT , vf ,VMf , vc, bestVMc, data)
26: end for
27: delete record whose destination is v f from Datas
28: end for
29: end if
30: empty Fins
31: wait()
32: send data at time DLTT in Datas

(Line 14-16). Then ready tasks whose best VMs are avail-
able are scheduled (Line 18-19) and records are deleted
from Maps, Readys, and Scope (Line 21). For each fin-
ished task v f , DLTT from v f to each child is calculated, and
(DLTT , vf ,VMf , vchild, bestVMchild, data) is added to Datas
(Line 22-25). Record with v f as the destination task is delete
from Datas (Line 27). Finally, data is transferred according
to Datas in the runtime (Line 32).

4.2 Detailed Description of the DEFT Algorithm

In this section, we describe each step of the DEFT algorithm
in detail. Then we analyze the time complexity.

Suppose a workflow with n tasks is scheduled to m
VMs in the IaaS cloud. In each scheduling loop, DEFT com-
pute ranku for the tasks in Scope and select the best VMs for
the tasks. Since ranku defined in Eq. (10) is recursively cal-
culated by traversing the DAG from the exit task to the target
task, all the unscheduled tasks are considered in the task pri-
oritizing phase. The time complexity of computing ranku in
a scheduling loop is O(k2m), for k unscheduled tasks and m
VMs. The time complexity of VM selection phase and data

transfer phase is O(s ∗m), where s is the number of tasks in
Scope and s ≤ k. So, the total time complexity of each loop
is O(k2m). In the worst case where there is only one task
scheduled in each loop, there are n scheduling loops, and
the time complexity of the lth loop is O((n − l)2 ∗ m). The
total time complexity is O(12 ∗m+22 ∗m+ · · ·+(n − 1)2 ∗m),
that is O(n3 ∗ m).

4.3 An Example

To better illustrate DEFT, we show an example comparing
DEFT to PEFT [6], DCP-G [12], and DCP-G [20].

HEFT and PEFT are typical static algorithms us-
ing static information to generate scheduling map at the
scheduling time. HEFT uses the same definition of ranku

and selection strategy as ours in prioritizing phase and VM
selection phase. PEFT proposes the concept of OCT (Opti-
mistic Cost Table) in the task prioritizing phases.The OCT
value of a task vi on VMj is recursively defined by Eq. (11)
by traversing the DAG from the exit task to the entry task:

OCT(vi,VMj)

= max
vk∈child(vi)

[
min

VMp∈VM
{OCT(vk,VMp) + wkp + cik}

]
(11)

where wkp is the computing cost of vk running on VMp, and
cik is the communication cost from vi to vk. For the exit
task, OCT(vexit,VMp) = 0 for all the VMp ∈ VM. cik = 0
if VMj = VMp, or if VMj and VMp are hosted on the same
server. In the VM selection phase, task vi is assigned to VMj

minimizing OETF(vi,VMj), defined by Eq. (12):

OEFT (vi,VMj) = EFT(vi,VMj) + OCT(vi,VMj) (12)

DCP-G selects and schedules tasks in the runtime. The
task selected for scheduling is the one that is on the dynamic
critical path, which has the same earliest start time and latest
start time updated dynamically in the runtime, with no un-
mapped parent tasks and has the lowest earliest start time.
The the VM with minimum execution time for that task is
selected.

The scheduling results are shown in Fig. 1. There are
10 tasks of a DAG workflow scheduled on 3 fully connected
heterogeneous VMs. Initially, network bandwidth between
VMs are the same. Communication cost and the DAG is
shown in Fig. 1 (a). Computing cost of each task on each
VM is shown in the left four columns of Fig. 1 (c). At t=30s,
computing rate of VM3 doubles, and the computing cost of
each task on it is shown in the right column of Fig. 1 (c).
Transfer rates between VM3 and the other two VMs also
doubles, and the communication cost of each task on it is
shown in Fig. 1 (b).

HEFT and PEFT use initial performance to schedule
tasks. Tasks are sorted and queued on the same VMs after
the performance variation. Final makespan of HEFT is 122s
Fig. 1 (d), and PEFT is 122s Fig. 1 (e). DCP-G schedules
each critical task dynamically in the runtime, and the final
makespan is 116s Fig. 1 (f).
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Fig. 1 Scheduling examples of HEFT, PEFT, DCP-G, and DEFT.

DEFT contains scheduling loops invoked dynamically
in the runtime. When T6 finishes at t = 41s, the scheduling
loop starts with the remaining task sorted as {T4, T3, T8, T7,
T9, T10}. Scope is {T4, T3}, Ready is {T4, T3}. Best VM for
T4 is VM3, with EST=41s. Then VM3’s available time for
T3 is at t=43s (computing cost of T4 on VM3 is 2s), com-
puting cost is 21.5s. In the scheduling loop when T1 finishes
at t = 21s, best VM for T3 is VM2. There is no data transfer
since T3 is recorded to be assigned to the same VM as T1.
Therefore, if T3 is scheduled to VM3 in the scheduling loop
at t=41s, data is sent from VM2 at t = 41s and received
by VM3 at t = 56.5s. In this case, ES T (T3,V M3; 41s) =
max{56.5, 43}+21.5 = 56.5+21.5 = 78s. At t = 41s, VM2’s
available time for T3 is at t=48s, computing cost is 27s, and
communication cost is 0s since T3 is recorded to be assigned
to the same VM as T1. In this case, EFT (T3,V M2; 41s) =

max{41, 48} + 27 = 48 + 27 = 75s. Therefore, the best VM
for T3 is VM2. The final scheduling of DEFT is shown in
Fig. 1 (g), and the makespan is 114.5s.

5. Experimental Results

In this section, we present the comparative evaluations of
DEFT and PEFT, DCP-G in the IaaS cloud. We first de-
scribe experimental settings. Then we show the comparative
evaluations of the three algorithms.

5.1 Experimental Settings

We use the DynamicCloudSim [25] toolkit to simulate the
IaaS cloud. DynamicCloudSim extends the CloudSim [26]
simulation toolkit by introducing models for: (1) inhomo-
geneity in the performance of computational resources, (2)
uncertainties and dynamic changes to the performance of
VMs, and (3) straggler machines and failures during the task
execution.

We use the default setting of the data center in Dynam-
icCloudSim. The data center contains 100 servers of In-
tel Xeon E5430 2.66 GHz, 200 servers of AMD Opteron
270 2 GHz, and 200servers of AMD Opteron 2218 HE 2.6
GHz. 100 VMs are randomly hosted on the servers and al-
located to random performance parameters. The default I/O
throughput of VMs is 20 MB/s. The servers are fully con-
nected. The external bandwidth of VMs is 0.25 MB/s, and
the latency of data transfer is not considered.

In DynamicCloudSim, dynamic change of CPU rate of
VMs, I/O throughput, are network bandwidth are simulated
in the same way. The time of the next performance change is
sampled from an exponential distribution with a given rate
parameter, and the new value of the given characteristic is
sampled from a normal distribution with the mean set to the
default value of the given characteristic. Higher values in
both the rate parameter of the exponential distribution and
RSD (relative standard deviation) of the normal distribu-
tion correspond to higher levels of dynamics. We use the
tuple 〈change number, dynamic degree〉 to donate the per-
formance changes. Since the time of the next performance
change is randomly sampled and the makespans of a work-
flow vary using different scheduling methods, we use the
ranges of the number of changes instead of the fixed values,
{1-10, 10-20, 20-30, 30-40}. The low dynamic degree is the
default setting of RSD, which is 0.054 for CPU, 0.033 for
I/O, and 0.04 for network bandwidth, and the high dynamic
degree is RSD=0.5 for CPU, I/O, and network bandwidth.
The values used in the experiments are marked: {〈10, l〉,
〈10, h〉, 〈20, l〉, 〈20, h〉, 〈30, l〉, 〈30, h〉, 〈40, l〉, 〈40, h〉} for
short.

We use the typical scientific workflow Montage, which
has been repeatedly utilized for evaluating scheduling
mechanisms and computational infrastructures for scientific
workflow execution in the past. The DAG structure of each
workflow, including task dependencies, computational char-
acteristics, the input and output files of the tasks, etc. is de-
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Fig. 2 Average NSL and CV in the default setting.

Fig. 3 NSL with respect to different settings of performance changes.

scribed in Pegasus DAX (Directed Acyclic Graph in XML)
format. Each size of the workflow, from 50 to 1000, have
20 instances generated by WorkflowGenerator [27]. Each
workflow is run 100 times in the experiment, and the mean
makespan and CV of the makespans are computed.

5.2 Evaluation Results

In this section, we compare the makespan and robustness
performances of PEFT, DCP-G and DEFT in the IaaS cloud.

Figure 2 shows the NSLs and robustness of the 20
workflows consisting 1000 task nodes using PEFT, DCP-
G and DEFT in the default setting of performance changes.
All the workflows using DEFT have smaller makespans than
using PEFT, and 19 workflows using DEFT have smaller
makespans than using DCP-G. DEFT can produce more ro-
bust schedules than PEFT for 19 workflows, and DCP-G for
18 workflows.

Figure 3 and Fig. 4 shows makespans and robustness
of the three algorithms with respect to different settings of
performance changes. The workflow with the minimum CV
differences of the three algorithms in Fig. 2 is chosen. NSLs
of the workflow are 2.56 of PEFT, 2.47 of DCP-G and 1.86
of DEFT in the static environment where CPU, I/O, and net-
work bandwidth do not vary during execution of the work-
flow.

Figure 3 presents the boxplots showing the minimum,
25 percent, mean, 75 percent, and maximum values of the
NSL of the three scheduling methods with respect to dif-

Fig. 4 CV with respect to different settings of performance changes.

ferent settings of performance changes. DEFT can always
have the smallest NSLs. The average NSLs of PEFT, DCP-
G, and DEFT at the low dynamic degree are 2.83, 2.52,
and 1.82, respectively, for performance of CPU, I/O, and
network bandwidth changes less than 10 times during the
execution of the workflow, and are 2.79, 2.47, and 1.95,
respectively, for performance changes over 30 times. The
improvement of DEFT over PEFT and DCP-G are 35.69%
and 27.78% for performance changes less than 10 times,
and 30.11% and 21.05% for performance changes more than
30 times. The average NSLs of PEFT, DCP-G, and DEFT
at the high dynamic degree are 5.04, 3.91, and 2.92, re-
spectively, for performance changes less than 10 times, and
4.06, 3.65, and 2.90, respectively, for performance changes
over 30 times. The improvement of DEFT over PEFT and
DCP-G are 42.06% and 32.89% for performance changes
less than 10 times, and 28.57% and 20.55%for performance
changes over 30 times.

Figure 4 shows CVs of PEFT, DCP-G, and DEFT with
respect to different settings of performance changes. CVs
of DCP-G and DEFT are similar as they schedule tasks dy-
namically in the runtime. The average CVs of the low dy-
namic degree are 0.16 of PEFT, 0.124 of DCP-G, and 0.123
of DEFT. The average CVs of the high dynamic degree are
0.23 of PEFT, 0.176 of DCP-G, and 0.164 of DEFT. The
improvement of DEFT and DCP-G over PEFT are 9.36%
and 8.86% for performance changes less than 10 times at
the low dynamic degree, and are 29.05% and 35.03% for
performance changes more than 30 times at high dynamic
degree.

Scheduling time is considered as the scheduling over-
head, which constitutes a significant amount of time used
by the scheduler to generate the schedule. Figure 5 shows
the total scheduling time of workflows with different sizes
of the three scheduling methods running in the default set-
ting of the dynamic IaaS cloud data center. It shows that
the scheduling time overhead of the three methods are sim-
ilar if the workflow size is small (consisting less than 300
tasks). With the workflow size increases, the overhead of
DCP-G and DEFT increases linearly, while PEFT does not
vary too much. However, it should be noticed that the av-
erage makespan of the workflows with 1000 tasks is around
7000 seconds, and the total scheduling time of the workflow
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Fig. 5 Scheduling time of different workflow sizes.

is around 9 seconds. The scheduling time overhead is ac-
ceptable compared to the makespan of the workflows in our
experiment. Moreover, DEFT provides a good choice for
workflows with the execution time of tasks large enough to
tolerant the overhead, which is about 10ms.

6. Conclusion and Future Work

Scientific workflows are increasingly adopting the IaaS
cloud where computing resources are provided in the form
of VMs, dynamically managed, monitored, maintained, and
governed by market principles. In this paper, we deal with
the challenges of scheduling workflows to the IaaS cloud
with uncertainties like resource performance variations and
unknown failures. A dynamic scheduling algorithm, called
DEFT, is proposed to improve both makespan and robust-
ness. DEFT contains a set of list scheduling loops invoked
when some tasks complete and release resources. In each
loop, runtime informations are used to sort tasks, select
VMs, and send intermediate data. Experiments show that
DEFT can produce shorter makespan than existing typical
list-based scheduling, PEFT, and dynamic scheduling, DCP-
G. It also produces more robust schedules in the IaaS cloud
with uncertainties.

Existing algorithm uses the dynamic scheduling to al-
leviate impact of uncertainties like the resource performance
variations and unknown failures. In the future work, we
will research some monitor functions to discover potential
failures and a predict model to better understand the perfor-
mance variations.
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