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The Improvement of the Processes of a Class of Graph-Cut-Based
Image Segmentation Algorithms

Shengxiao NIU†, Nonmember and Gengsheng CHEN†a), Member

SUMMARY In this paper, an analysis of the basic process of a class of
interactive-graph-cut-based image segmentation algorithms indicates that
it is unnecessary to construct n-links for all adjacent pixel nodes of an im-
age before calculating the maximum flow and the minimal cuts. There
are many pixel nodes for which it is not necessary to construct n-links at
all. Based on this, we propose a new algorithm for the dynamic construc-
tion of all necessary n-links that connect the pixel nodes explored by the
maximum flow algorithm. These n-links are constructed dynamically and
without redundancy during the process of calculating the maximum flow.
The Berkeley segmentation dataset benchmark is used to prove that this
method can reduce the average running time of segmentation algorithms
on the premise of correct segmentation results. This improvement can also
be applied to any segmentation algorithm based on graph cuts.
key words: graph cut, image segmentation, energy function, maximum flow

1. Introduction

Interactive image segmentation is a means of quickly sepa-
rating objects from the background of an image using simple
user inputs. This technology has been widely used in many
computer vision tasks, such as image editing, image anal-
ysis, and image recognition. In this technology, the most
widely used method is the graph-cut-based segmentation
algorithm.

The first interactive-graph-cut-based image segmenta-
tion algorithm was presented in 2001 [1]. Over the past
fifteen years, several upgraded versions based on it have
appeared in academia. These algorithms realize many im-
provements in many different ways. Some make progress
by modifying the energy function, such as adding shape pri-
ors [2]–[5] or texture priors [6]–[8] to the energy function
to render segmentation more accurate. Some help decrease
the runtime of the algorithm. For example, the lazy snap-
ping algorithm causes segmentation with super pixels pro-
vided by watershed segmentation instead of image pixels to
reduce the computing time required to solve for maximum
flow [9], and the multilevel banded segmentation algorithm
speeds up the runtime by separating a smaller version of the
original image first and then the original version using pre-
vious segmentation results [10]. Some use different forms
of user input to simplify the interactive complexity, such as
Grabcut algorithm [11], which separates the foreground
from the background using only a bounding box. Some
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methods improve the maximum flow algorithm [12], [13]
and greatly increase the speed of solving for maximum flow
in vision applications.

All of the above-mentioned graph-cut-based algo-
rithms can be summed up in the following basic steps: de-
signing an energy function, constructing t-links for every
image pixel (or super pixel) node and constructing n-links
for every pair of adjacent pixel nodes based on user input
and the energy function to build a graph, and using a max-
imum flow algorithm to solve for maximum flow and mini-
mal cuts to map to the final segmentation results [1].

These basic steps were carefully researched, and the
time required to construct all the n-links before calculating
the maximum flow when the energy function is complicated
was found to be excessive, and none of the graph-cut-based
segmentation algorithms can skip this step. However, an
analysis of the maximum flow algorithm in the last step
shows that only a few of these n-links are actually used in the
maximum flow algorithm, so is not necessary to construct a
large number of n-links. Our Improvement lies in delay-
ing the n-link construction operation, which is implemented
dynamically for the pixel nodes explored by the maximum
flow algorithm during the process of solving for the maxi-
mum flow. This improvement not only reduces the runtime
but is also relatively flexible. It can be applied to any graph-
cut-based segmentation algorithm.

2. Analysis of the Maximum Flow Algorithm Used in
Graph-Cut-Based Segmentation Algorithms

So far, the most common maximum flow algorithm used
in graph-cut-based segmentation algorithms has been the
BK algorithm [12]. However, in 2011, Goldberg presented
the IBFS algorithm [13], improving upon the BK algorithm.
These two algorithms are based on augmenting path and will
be analyzed as examples in the following section.

Augmenting path can be defined as follows: During
the process of calculating the maximum flow, in each iter-
ation, the algorithm tries to find an s-t path that consists of
unsaturated edges in a graph. If a path is found, then the al-
gorithm pushes the enough flow which saturates one edge of
the path at least through the path. This process can be called
augmenting path. Each augmentation process increases the
total flow from the source node to the sink node. The max-
imum total flow is reached when no s-t path that consists of
unsaturated edges can be found in the graph [12].
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2.1 Analysis of the Initial Paths in the Maximum Flow Al-
gorithm

All maximum flow algorithms based on augmenting path
have the same pattern: they first search for paths and then
augment them. According to previous works, in a graph
built with a 2D image, every pixel node has two t-links, one
connecting to the source terminal node, and the other to the
sink terminal node, and the weight of each t-link is calcu-
lated using the regional term of the energy function in the
Appendix. The paths to be augmented first are between the
source terminal node and the sink terminal node through the
pixel nodes whose t-links connect two of them, and these
are also initially the shortest paths for the maximum flow al-
gorithm to search for. The length of these paths is 2 and
the number of paths is the same as the number of pixel
nodes [1]. The realization detail of the maximum flow al-
gorithms corresponding to the process of augmenting these
initial paths involves calculating the difference of two t-link
weights from every pixel node and recording it, then tem-
porarily classifying every pixel node into three categories:
source class nodes have differences being greater than 0,
sink class nodes have difference less than 0, and undefined
class nodes have differences equal to 0.

2.2 Analysis of the Search Start Nodes of Path Search in
the Maximum Flow Algorithm

After calculating the difference of two t-link weights from
every pixel node, in the BK algorithm, the pixel nodes
whose t-link difference is not equal to 0 are stored in an
active queue, and, in the IBFS algorithm, two kinds of pixel
nodes whose t-link differences are greater than 0 and less
than 0 are stored in the source queue and sink queue, re-
spectively. The pixel nodes in active queues serve as start
nodes from which remaining augmenting paths are searched
for by both algorithms. To prevent overlooking a path to be
augmented, these two algorithms take all pixel nodes whose
t-link difference is not equal to 0 as search start nodes. In
most cases, in a graph, the weights of edges are calculated
using the energy function, and the t-link difference of every
pixel node is not equal to 0. So the number of these start
nodes remains mostly the same as that of the pixel nodes.

Referring to the BK algorithm, we divide all pixel
nodes into two categories, source nodes, and sink nodes.
The pixel nodes are classified as source nodes and sink
nodes according to whether or not their t-link difference is
greater than 0 or less than 0, respectively. If the t-link differ-
ences of the pixel nodes are equal to 0, we classify them as
source nodes by default. Both the BK and IBFS algorithms
use initial search strategies such that each path search start
from every pixel node. However, this process is very inef-
ficient, which may be attributable to the fact that, at the be-
ginning of the path search process, many searches are found
to be invalid because they produce no path to augmenta-
tion owing to the large number of pixel nodes in the same

category as their adjacent nodes. As demonstrated in the
following section, we can prove that all paths to augment
must cross the border between the area of source nodes and
the area of sink nodes (hereinafter referred to as the ST bor-
der) in a graph. The path search process begins with only
those pixel nodes located at the ST border and can also fin-
ish the calculation of the maximum flow without omitting
any path to augment. This substantially reduces the number
of invalid searches.

Theorem 1: In graph-cut-based image segmentation al-
gorithms, when the maximum flow is calculated, all paths to
augment must cross the ST border.

Proof: Any path to augment must include at least one
source node and one sink node to ensure that flow would
move from the source terminal through the t-link of a source
node, other edges in the path, and the t-link of a sink node
to the sink terminal. The paths to augment meeting the con-
ditions given above must cross the ST border.

Theorem 2: In graph-cut-based image segmentation al-
gorithms, any augmentation-path-based maximum flow al-
gorithm whose path search begins with those pixel nodes
located at ST border can also be used to solve for maximum
flow correctly.

Proof: According to Theorem 1, all paths to augment
cross the ST border. Path searches beginning with those
pixel nodes located at the ST border by breadth first search
(BFS) or depth first search (DFS) can also find all paths to
augment node-by-node, and the maximum flow algorithms
based on Ford-Fulkerson method [15] can ensure that the
maximum flow can be solved correctly so long as all paths
to augment are found. Some experiments were performed
to prove Theorem 2.

3. Details of Implementation

Theorem 2 is the foundation of the new algorithm proposed
in this paper. If only those pixel nodes located at the ST
border are taken as search start nodes, there is no need to
construct n-links for every pixel node in advance, as in pre-
vious works [1]. Instead, only the necessary n-links are con-
structed, dynamically, during the process of path search, and
others are never constructed. In other words, it is totally un-
necessary to construct n-links connecting pixel nodes not
explored during path search. So the maximum flow algo-
rithm does not need to calculate the boundary terms of the
energy function for pixel nodes not explored during path
search, and can avoid the cost of the boundary term calcu-
lation. The following experiments prove there to be a large
number of pixel nodes for which it is unnecessary to con-
struct n-links.

Our proposed improvements on the process of conven-
tional graph-cut-based image segmentation algorithms are
described in detail as follows.

3.1 Graph Initialization without N-Links

In conventional graph-cut-based image segmentation
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Fig. 1 The BK algorithm flow chart. The steps containing the key word “Improvement” in the chart
are our improvements to the original BK algorithm.

algorithms, two t-links from every pixel node are con-
structed using the regional term of the energy function and
two n-links from every pair of adjacent pixel nodes are con-
structed using the boundary term of the energy function.
However, in the improved algorithm, as shown in Fig. 1,
only t-links are constructed without constructing any n-links
before the calculation of the maximum flow.

3.2 ST-Border Pixel Search

In conventional graph-cut-based image segmentation algo-
rithms, at the beginning of the calculation of the maximum
flow, the two t-link weights from every pixel node are sub-
tracted and the difference is saved. Then the pixel nodes
whose t-link difference is greater than 0 are classified as
source nodes and those with differences less than 0 are clas-
sified to sink nodes, and the pixel nodes whose t-link differ-
ences are unequal to 0 serve as the search start nodes. How-
ever, in our algorithm, after classification (the pixel nodes
whose t-link difference is equal to 0 are classified as source
nodes by default), an extra graph-rescanning operation is
launched to identify all pixel nodes located at the ST bor-
der, which are exclusively employed as search start nodes.
Theorem 2 is found to ensure that this modification can
also find all paths to augment and solve for maximum flow

correctly.
As shown in Fig. 1, the implementation detail is that af-

ter t-link weights are subtracted and all pixel nodes are clas-
sified, all adjacent nodes from every pixel node are searched,
and, if any one adjacent node is not in the same category as
the center pixel node, the center pixel node will be consid-
ered to be located at the ST border, and all pixel nodes found
in this way will be pushed into active queues. These pixel
nodes are the search start nodes in the improved algorithm
and the number of them is far smaller than that of all pixel
nodes.

3.3 Flow Augmentation with Dynamic N-Link Construc-
tion

Once a pixel node is searched for or used by the algorithm
such as a node dequeued from a queue, it is considered “ex-
plored”, and others are considered “unexplored.” The only
time that an n-link needed to be used is when the pixel node
connected by the n-link is explored. We use BK algorithm
as example. Figure 1 summarizes the workflow of BK al-
gorithm. In each flow augmentation iteration, there are two
processes where all adjacent nodes of an explored pixel node
must be searched and corresponding n-links must be used.
One is “path search” process where a new node is dequeued
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and taken as a start node from the active queue and BK
algorithm searches a path for augmentation from the new
node. The other is “orphan adoption” process where iso-
lated subtrees caused by edge saturation of flow augmenta-
tion are connected to valid search trees. Figure 1 highlights
the process 1 and process 2. In only these two processes,
BK algorithm explores any unexplored pixel node and the n-
link constructed between the explored and unexplored pixel
nodes is used.

The improvements are made by constructing n-links for
every explored pixel node before the algorithm searches any
unexplored pixel node adjacent to the explored pixel node in
those two processes. Every n-link only can be constructed
once and used immediately after construction, and the algo-
rithm will determine whether an n-link has been constructed
before constructing a new n-link between two pixel nodes.
This way can ensure that an n-link connecting to an unex-
plored pixel node has already been constructed when the al-
gorithm explores the unexplored pixel node and needs to use
the n-link, and no n-link connecting any unexplored pixel
node is constructed if the algorithm does not explore the
unexplored pixel node. As shown in Fig. 1, in BK algo-
rithm flow, the n-links between the explored node “atv n”
dequeued from the active queue and all its adjacent unex-
plored nodes are constructed before Step “Process 1” and
the n-links between the explored node “orp n” dequeued
from the orphan queue and all its adjacent unexplored nodes
are constructed before Step “Process 2”.

The above-mentioned technique of “two processes”
can apply not only to BK algorithm, but also to all BK-style
maximum flow algorithms with “path search” and “orphan
adoption” processes such as IBFS algorithm. In addition,
if another style maximum flow algorithm has to be used,
those key processes where n-links need to be used similar
to the “two processes” in BK algorithm should be redefined
according to the specific case.

4. Experiments

In this paper, all algorithms were realized using the C++
programming language and tested using the following plat-
form: Ubuntu14.04 operation system, Intel core i5-2400
cpu. To prove that the improved algorithm can be used with
any kind of graph-cut-based image segmentation algorithm,
three combinatorial algorithms were designed and the im-
proved algorithm was embedded into these three algorithms
for testing. These three algorithms use different interactive
methods (brush and bounding rectangle), different energy
functions (lazy snapping [9] and Grabcut [11]), and different
maximum flow algorithms (BK and IBFS). In the maximum
flow algorithms, the image pixel was used directly instead
of the super pixel.

• Combination 1: Brush interactive method + lazy snap-
ping energy function (λ = 50) + BK algorithm
• Combination 2: Brush interactive method + lazy snap-

ping energy function (λ = 50) + IBFS algorithm

Table 1 Pixel-by-pixel comparison of the segmentation results of the
original and improved algorithms

Table 2 Statistics of the proportion of the pixel nodes connected by con-
structed n-links in the improved combinational algorithms

• Combination 3: Bounding rectangle interactive method
+ Grabcut energy function (iteration once) + BK algo-
rithm

Here, 500 images from the Berkeley Segmentation
Data Set (BSDS500) are used as the test cases [14], and
foreground strokes and bounding rectangles were drawn on
these 500 images with a mouse. Four border lines per image
served as the background strokes.

4.1 Correctness Proof

To further prove the correctness of Theorem 2 and the seg-
mentation results of the improved algorithm, the original
versions of the three combinational algorithms and the im-
proved versions containing the improved algorithm were
tested, and the segmentation results (corresponding to the
minimal cuts) were compared pixel by pixel to confirm
whether the improved algorithms produced the same seg-
mentations as the original ones.

As shown in Table 1, in all experiments, the improved
versions provided equivalent results to those of the original
versions, which also proves the correctness of Theorem 2.

4.2 Statistics of N-Link Construction in the Improved Al-
gorithms in Calculating the Maximum Flow

We determined the percentage of the pixel nodes connected
by constructed n-links for the three improved combinational
algorithms. The number of pixel nodes connected by con-
structed n-links is here expressed in terms of “n” and the
number of all pixel nodes in terms of “P.” Three average
values of the variable n/P were determined in the experi-
ments concerning the 500 images using the three improved
combinational algorithms.

As shown in Table 2, an average of only 40% of the
pixel nodes were connected by constructed n-links in every
image of BSDS500 in the experiments involving Combina-
tion 1 and Combination 2, and there was an average of 25%
pixel nodes for Combination 3. And, as shown in Fig. 2,
in the experiments involving Combination 1 and Combina-
tion 2, there are one third of the 500 images whose n/P value
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Fig. 2 Statistics of the number of images of different n/P values in the
three improved combinational algorithms. Each column shows for the
quantity of the images whose n/P value is in the range of two n/P values
of the current and previous column.

Table 3 Statistics of the average speedups of the running time of the
three combinational algorithms before and after improvement

is less than 0.3, and in the experiment involving Combina-
tion 3, there are more than half of the 500 images meeting
the same condition. This indicates that many of the n-links
are not needed.

4.3 Comparison of the Speedups

The runtime of the three combinational algorithms was
tested before and after improvement and all speedups were
recorded. As shown in Table 3, the average speedup of
each combinational algorithm is greater than one. This indi-
cates that the proposed improved algorithm can be applied
to many different interactive image segmentation algorithms
and decrease their runtime. As shown in Fig. 3, the lower the
n/P value, the more pronounced the increase in speed in each
experiment. In this way, the proposed improved algorithm
is more applicable to situation where the value of n/P is low.

4.4 Other Features of the Proposed Improved Algorithm

In addition, two extra experiments for Combination 1

Fig. 3 The speedups of the running time of the three combinational al-
gorithms before and after improvement versus the n/P values of each image
in the experiments with the three improved combinational algorithms. Ev-
ery point in each graph represents the result of one test of one image from
BSDS500.

Table 4 Statistics of the average speedups under conditions of different
ranges of the n/P value in the extra experiments of combination 1

algorithm were designed: the first involves repeating the
experiments involving Combination 1 in Sect. 4.3 with the
500 images of BSDS500 expanded by a factor of four us-
ing bilinear interpolation method, but with no change in the
relative position of user marks, and the results are listed in
line 3 of Table 4. The other experiment involves repeating
that process while substituting the expression containing an
exponential function λ · |xi − x j| · e−β‖C(i)−C( j)‖2 [11] for the
original boundary term of the energy function of the lazy
snapping algorithm in Combination 1 because the expres-
sion has showed greater computational cost than the orig-
inal, and similar segmentation results were obtained with
λ = 10 and β = 0.03, and the results are given in line 4
of Table 4. The parameter λ is the same as the one in the
Appendix. |xi − x j| is the difference of the binary labels of
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Fig. 4 The speedups of the running time of the algorithms before and
after improvement in the three extra experiments of Combination 1 versus
the n/P values of each image in the experiments with the improved combi-
nation 1 algorithm. Every point in each graph represents the result of one
test of one image from BSDS500.

two adjacent pixels i and j. ‖C(i) − C( j)‖2 is the Euclidean
distance of two adjacent pixels i and j in color space and
the parameter β is an empirical constant [11]. The results
of the original Combination 1 experiment in Section C are
recorded in line 2 of Table 4.

As shown in Table 4 and Fig. 4, although the resolu-
tion of the test image was increased by a factor of four,
the speedup of the improved Combination 1 algorithm was
nearly unaffected. This indicates that the proposed improved
algorithm is not affected by the image resolution. Besides,
when the boundary term of the energy function was replaced
with an expression containing a higher computational cost
function, the speedup of the improved algorithm increased.
It can be concluded that the more complicated the energy
function, the more pronounced the increase in speed of
our proposed algorithm. At present, many other improved
graph-cut-based image segmentation algorithms have more
complicated energy functions where many other priors are
added, and that can render our proposed improved algorithm
more useful.

4.5 Time Complexity

The construction cost of n-links in the graph-cut-based seg-
mentation algorithm is O(n) where n is the pixel number of
the whole image. What we improved in our proposed algo-
rithm is reducing the construction cost of n-links. But this

improvement does not change the worst-case running time
complexity for the construction of n-links. So the construc-
tion cost of n-links is still O(n) after improvement.

5. Conclusion

After an analysis of the basic process of conventional graph-
cut-based image segmentation algorithms, many of the n-
links constructed in conventional algorithms were found to
be redundant. Delaying n-link-construction until the process
of calculating the maximum flow and constructing all nec-
essary n-links dynamically was found to eliminate many of
the redundant n-links constructed and reduce the runtime of
the segmentation algorithms.

This improvement not only reduces the runtime of the
algorithm but can also be applied to any graph-cut-based
image segmentation algorithm without the influence of im-
age resolution, and, particularly, to those segmentation algo-
rithms whose energy function is complicated and has high
computational costs. Meanwhile it is also easy to replace
the energy function with another using some programming
skills such as function templates.

In the future work, besides researching how to reduce
the redundant n-links construction, we will further research
how to reduce the redundant t-links construction. This will
make our algorithm more efficient.
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Appendix: Energy Function in Graph-Cut-Based Seg-
mentation

E(A) = R(A) + λ · B(A) (A· 1)

A is a binary vector with each element representing a state
of one pixel in the whole image. E(A) is an energy function
and a specific vector A obtained by minimizing the energy
function defines a segmentation in the image.

The coefficient λ in (A· 1) is a weight parameter which
represents a relative importance of B(A) and R(A). The re-
gional term R(A) describes the degrees which a pixel be-
longs to “object” and “background”. The boundary term
B(A) describes a penalty for a discontinuity of the state be-
tween two adjacent pixels [1].
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