
1106
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

PAPER

Correcting Syntactic Annotation Errors Based on Tree Mining∗

Kanta SUZUKI†a), Nonmember, Yoshihide KATO††, Member, and Shigeki MATSUBARA†, Senior Member

SUMMARY This paper provides a new method to correct annotation
errors in a treebank. The previous error correction method constructs a
pseudo parallel corpus where incorrect partial parse trees are paired with
correct ones, and extracts error correction rules from the parallel corpus.
By applying these rules to a treebank, the method corrects errors. However,
this method does not achieve wide coverage of error correction. To achieve
wide coverage, our method adopts a different approach. In our method, we
consider that if an infrequent pattern can be transformed to a frequent one,
then it is an annotation error pattern. Based on a tree mining technique, our
method seeks such infrequent tree patterns, and constructs error correction
rules each of which consists of an infrequent pattern and a corresponding
frequent pattern. We conducted an experiment using the Penn Treebank.
We obtained 1,987 rules which are not constructed by the previous method,
and the rules achieved good precision.
key words: error correction, synchronous tree substitution grammar,
FREQT

1. Introduction

It is inevitable for annotated corpora to contain errors caused
by manual or semi-manual annotation process. Thus, detect-
ing and correcting errors in annotated corpora are important
tasks. Many studies suggested methods of detecting or cor-
recting errors in POS-tag or dependency annotation [2]–[7].
On the other hand, there is little work on error correction in
phrase structure treebank while there are several methods of
detecting annotation errors in a treebank [8]–[15].

One exception is the work of Kato and Matsubara [16].
Their method constructs a pseudo parallel corpus where in-
correct parse trees are paired with correct ones, and extracts
error correction rules from the parallel corpus. The rules
transform incorrect tree patterns to correct ones. By apply-
ing these rules to a treebank, the method corrects errors.
However, this method does not achieve wide coverage of
error correction.

To solve this problem, we propose another approach to
construct error correction rules. Our method does not con-
struct a pseudo parallel corpus. In our method, we consider
that an infrequent tree pattern which can be transformed to

Manuscript received August 24, 2016.
Manuscript revised December 9, 2016.
Manuscript publicized January 23, 2017.
†The authors are with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464–8601 Japan.
††The author is with the Information & Communications,

Nagoya University, Nagoya-shi, 464–8601 Japan.
∗The preliminary version of this paper was presented in the

10th International Conference on Language Resources and Evalu-
ation (LREC 2016) by the same authors [1].

a) E-mail: ksuzuki@db.ss.is.nagoya-u.ac.jp
DOI: 10.1587/transinf.2016EDP7357

a frequent one is an annotation error pattern. Based on a
tree mining technique, our method seeks such infrequent
patterns efficiently. The method constructs error correction
rules by pairing the infrequent tree patterns with the fre-
quent ones. We conducted an experiment using the Penn
Treebank [17]. We obtained 1,987 rules which are not con-
structed by the previous method, and the rules achieved
good precision.

This paper is organized as follows: Section 2 intro-
duces the previous method of correcting errors in a treebank.
Section 3 explains our method which is based on tree min-
ing. Section 4 reports experimental results using the Penn
Treebank.

2. Previous Work

Kato and Matsubara [16] proposed a method of correcting
annotation errors in a treebank. Their method is based on
synchronous tree substitution grammar (STSG) [18]. An
STSG defines a tree-to-tree mapping, and consists of rules
each of which is defined as a pair of trees called elementary
trees. The one tree is called a source, and the other is called
a target. Figure 1 shows an example of STSG rule. The
rule transforms the structure which matches the source into
the target’s structure. To correct annotation errors in a tree-
bank, the method constructs STSG rules which transform
incorrect structures to correct ones and applies them to the
treebank.

The STSG rules are constructed as follows:

1. Make a pseudo parallel corpus, which is a collection
of pairs of partial parse trees which cover a same word
sequence.

2. Extract STSG rules which represent a correspondence
in the pseudo parallel corpus.

To select useful rules for error correction, they define a
score function. Let 〈τs, τt〉 be a rule whose source is τs and
whose target is τt. The score of 〈τs, τt〉 is defined as follows:

Fig. 1 Example of STSG rule

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

SUZUKI et al.: CORRECTING SYNTACTIC ANNOTATION ERRORS BASED ON TREE MINING
1107

Score(〈τs, τt〉) = f (τt)
f (τs) + f (τt)

where f (τ) is the frequency of an elementary tree τ in a tree-
bank. They assume that the frequency of an incorrect parse
tree in a treebank is very low. The lower f (τs) is, the higher
S core(〈τs, τt〉) is. STSG rules with high scores are useful
for error correction.

For example, let us consider a treebank which includes
the parse trees shown in Fig. 2. The parse tree (a) is correct,
but (b) and (c) include a same annotation error. In (a) and
(b), the word sequence “to sell at the same time” has differ-
ent partial parse trees enclosed within the dotted line. The
method makes a pair of these partial parse trees and extracts
the STSG rule shown in Fig. 1 from the pair. Applying this
rule to the treebank, we can correct the error in (b). More-
over, the error in (c) can be corrected by this rule.

However, this method has a problem. It can not ex-
tract any rule from a partial parse tree assigned to a word
sequence which occurs only once in a treebank. Thus, an-

Fig. 2 Examples of parse trees

notation errors included in only such partial parse tree can
not be corrected by the method. Let us consider another case
where the treebank does not include (b). In (c), the word se-
quence “to trade on Nasdaq” has incorrect partial parse tree.
But, the method can not make a pair of partial parse trees en-
closed within the dotted lines in (a) and (c). This is because
these partial parse trees have different word sequences. This
means that it constructs no rule. As the result, the method
fails to correct the annotation error in (c).

3. Correcting Errors by Tree Mining

To solve the problem described in Sect. 2, we adopt a dif-
ferent approach. Our method does not construct a pseudo
parallel corpus. STSG rules are constructed based on a tree
mining technique.

3.1 Definition

In this section, we give some definitions.

3.1.1 Derivation Tree

In our method, a parse tree is represented by a derivation
tree. Figure 3 shows the derivation tree corresponding to the
partial parse tree enclosed within the dotted line in Fig. 2 (a).
A derivation tree for a parse tree is defined as follows: for
each inner node v of a parse tree, there exists a node v′ which
corresponds to v. v′ preserves the parent-child relations on
v. The label of v′ is the following grammar rule:

l(v)→ l(c1) l(c2) . . . l(cn)

where l(v) is the label of v and c1, c2, . . . , cn are the children
of v. We label the edge between v′ and c′i with i in order
to indicate that a grammar rule l(c′i) is applied to the i-th
element of the right-hand side of l(v′).

3.1.2 Pattern

We define a pattern as a connected subgraph included in a
tree. Figure 4 shows examples of patterns. τ1, τ2 and τ3 are
included in the derivation tree shown in Fig. 3. A pattern
with k nodes is called a k-pattern.

In a derivation tree pattern, if no grammar rule is ap-
plied to an element in the right-hand side of a grammar rule

Fig. 3 Derivation tree

1108
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Fig. 4 Examples of patterns

assigned to a node, we call such element a leaf element. A
leaf element corresponds to a leaf node of the original parse
tree pattern. In Fig. 4, leaf elements are underlined.

3.1.3 Error Correction Rule

As described in Sect. 2, Kato and Matsubara [16] assume
that the frequency of an incorrect pattern is very low. Ac-
cording to this assumption, we consider that an infrequent
pattern which can be transformed to a frequent one is an an-

notation error pattern. Our method seeks such patterns in a
treebank and constructs STSG rules which transform them
to the corresponding frequent ones.

The following formula represents whether or not two
patterns τ and τ′ can be transformed to each other:

Trans(τ, τ′) ≡ (root(τ) = root(τ′)
∧ yield(τ) = yield(τ′)

)

where root(τ) is the left-hand side of the grammar rule of
τ’s root and yield(τ) is the list of τ’s leaf element. τ3 and
τ8 shown in Fig. 4 can be transformed to each other since
Trans(τ3, τ8) is satisfied.

We say that a pattern τ is frequent if f (τ) ≥ σ where σ
is a threshold. Let T be a treebank. Let P(T) be the set of
all patterns in T and F(T) be the set of frequent patterns in
T . The following set Rule(T) is the set of rules our method
constructs from T :

Rule(T) = {〈τs, τt〉 ∈ P(T) × P(T) |τs � F(T) ∧ τt ∈ F(T)

∧ Trans(τs, τt)}

3.2 Outline of Our Method

If we enumerated all tree patterns included in a treebank,
we could easily obtain any kind of rules which can be ex-
tracted from the treebank. However, such naive method is
intractable because it requires an exponential computational
complexity. To construct rules efficiently, our method avoids
the enumeration of patterns which do not contribute to error
correction by using a tree mining technique.

The procedure of our method is as follows:

1. Enumerate frequent patterns in a treebank by using a
tree mining algorithm FREQT [19].

2. Seek infrequent patterns which can be transformed to
frequent ones.

3. Construct STSG rules which transform infrequent pat-
terns to frequent ones.

3.3 FREQT

In this section, we explain FREQT [19], which is the basis of
our method. FREQT efficiently enumerates all frequent pat-
terns in a tree set. Figure 5 shows the algorithm of FREQT.
First, FREQT creates the set F1 of all frequent 1-patterns
by traversing a treebank T . Next, the algorithm generates
candidate 2-patterns by expanding each frequent 1-pattern
τ ∈ F1 by attaching a new node. For each candidate 2-
pattern τ′, if f (τ′) ≥ σ, τ′ is added to F2. The algorithm
iteratively expands frequent (k − 1)-patterns, and adds fre-
quent k-patterns to Fk. By continuing this process until no
pattern is generated, FREQT enumerates all frequent pat-
terns.

FREQT uses the rightmost expansion technique.
FREQT expands a pattern by attaching a new node v to a

SUZUKI et al.: CORRECTING SYNTACTIC ANNOTATION ERRORS BASED ON TREE MINING
1109

Algorithm FREQT
Input: A threshold σ > 0, a treebank T .
Output: The set F of all frequent patterns in T .

1: F1 � ∅
2: for each 1-pattern τ which appears in T do
3: if f (τ) ≥ σ then
4: F1 � F1 ∪ {τ}
5: k � 2
6: while Fk−1 � ∅ do
7: Fk � ∅
8: for each τ ∈ Fk−1 do
9: for each τ′ s.t. τ⇒ τ′ do

10: if f (τ′) ≥ σ then
11: Fk � Fk ∪ {τ′}
12: k � k + 1
13: Return F = F1 ∪ F2 ∪ · · · ∪ Fk−1.

Fig. 5 Algorithm of FREQT

Fig. 6 Examples of expansions

node v′ on the rightmost branch of the pattern as a right-
most child of v′. The rightmost branch of a pattern is de-
fined as the path starting from the root to the rightmost leaf.
When l is the label of v, v′ is the p-th parent of the right-
most leaf and the label of new edge between v and v′ is i,
we call a generated pattern τ′ the (p, l, i)-expansion of τ and
we write τ ⇒ τ′. For example, in Fig. 4, τ8 is the (0,VP→
VB,2)-expansion of τ7. The rightmost expansion technique
enables FREQT to enumerate all candidate patterns without
overlapping. Figure 6 shows examples of expansions.

3.4 Constructing Error Correction Rules

After calculating F(T) by FREQT, our method seeks infre-
quent source patterns by expanding infrequent patterns. For
an infrequent pattern τs, if there exists some τt ∈ F(T) s.t.
Trans(τs, τt), our method constructs the rule 〈τs, τt〉.

3.4.1 Efficient Enumeration of Infrequent Source Patterns

To seek infrequent source patterns efficiently, we focus on
leaf elements of patterns. In our method, pattern expansion
proceeds by applying grammar rule to leaf elements from
left to right. Once a leaf element is skipped, it never has a
grammar rule. We call such element a determined leaf. In
Figs. 4 and 6, determined leaves are marked with an aster-
isk. Our method expands a pattern τ only if τ satisfies the
following condition:

Fig. 7 Example of transducer

∃τt(τt ∈ F(T)

∧ root(τ) = root(τt)

∧ dl(τ) is a prefix of yield(τt))

(1)

where dl(τ) is the list of determined leaves of a pattern τ.
Here, α · β is the list generated by concatenating a list β to a
list α. The condition (1) is rewritten as follows:

root(τ) · dl(τ) ∈ pre f ix(L) (2)

where L is the set defined as follows:

L = {α | ∃τt ∈ F(T), α = root(τt) · yield(τt)}
and pre f ix(L) is the set of prefixes of L’s elements. If
a pattern τ does not satisfy the condition (2), τ does not
contribute to constructing Rule(T). This is because for
any τ′ s.t. τ ⇒∗ τ′, there is no target pattern τt ∈ F(T)
which satisfies Trans(τ′, τt). For example, let us assume
F(T) = {τ1, τ2, . . . , τ6} in Fig. 4. Here, root(τ7) ·dl(τ7) is 〈S,
NP〉. This is a prefix of root(τ3) · yield(τ3) = 〈S, NP, TO,
VB, PP〉. Thus root(τ7) · dl(τ7) ∈ pre f ix(L). By expanding
τ7, we can obtain τ8. τ8 can be transformed to τ3, that is,
τ7 contributes to constructing Rule(T). On the other hand,
root(τ9) · dl(τ9) is 〈S, NP, VP, ADVP〉. This is not included
in pre f ix(L). For any τ′9 s.t. τ9 ⇒∗ τ′9, root(τ′9) · yield(τ′9)
are in the form of 〈S, NP, VP, ADVP, . . . 〉. This means that
Trans(τ′9, τt) does not hold for any pattern τt ∈ F(T), that
is, τ9 does not contribute to constructing Rule(T).

Our method checks whether or not a pattern satisfies
the condition (2) by using a transducer. We make a deter-
ministic transducer T D = (Σ,Q, q0, δ,O) which accepts L.
Figure 7 shows the transducer when F(T) is {τ1, τ2, . . . , τ6}
in Fig. 4. Q is the set of states contained in T D. Each state
corresponds to an element of pre f ix(L). The initial state q0

corresponds to an empty list. An input symbol is a word or
a label in the treebank. Σ is for the set of input symbols. Let
qα be a state which corresponds to a list α ∈ pre f ix(L). The
transition function δ : Q × Σ→ Q is defined as follows:

δ(qα, a) =

⎧
⎪⎪⎨
⎪⎪⎩

qα·a (α · a ∈ pre f ix(L))

undefined otherwise

If δ(q0, root(τ) ·dl(τ)) ∈ Q, a pattern τ satisfies the condition

1110
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Algorithm Create error correction rules
Input: A threshold σ > 0, a treebank T .
Output: The set Rule of error correction rules.

1: Calculate the set F of all frequent patterns in T by FREQT.
2: Make a transducer T D = (Σ,Q, q0, δ,O) from F .
3: C1 � ∅
4: Rule � ∅
5: for each 1-pattern τ which appears in T do
6: if q � δ(q0, root(τ)) ∈ Q then
7: C1 � C1 ∪ {〈τ, q〉}
8: if f (τ) < σ then
9: for each τt ∈ O

(
δ(q, yield(τ))

)
do

10: Rule � Rule ∪ {〈τ, τt〉}
11: k � 2
12: while Ck−1 � ∅ do
13: Ck � ∅
14: for each 〈τ, q〉 ∈ Ck−1 do
15: for each τ′ s.t.τ′ is the (p,l,i)-expansion of τ and f (τ′)>0 do
16: if q′ � δ(q, new dl(τ, p, i)) ∈ Q then
17: Ck � Ck ∪ {〈τ′, q′〉}
18: if f (τ′) < σ then
19: for each τt ∈ O

(
δ(q′, yield(τ′)/dl(τ′))

)
do

20: Rule � Rule ∪ {〈τ′, τt〉}
21: k � k + 1
22: Return Rule.

Fig. 8 Algorithm of creating error correction rules

(2). For a state q ∈ Q, T D outputs a set of frequent patterns.
The output function O : Q→ 2F(T) is defined as follows:

O(q) = {τ ∈ F(T) | δ(q0, root(τ) · yield(τ)) = q}
For all τt ∈ O

(
δ(q0, root(τ) · yield(τ))

)
, Trans(τ, τt) holds.

Figure 8 shows the algorithm of creating error correc-
tion rules. In the first step, the algorithm adds 1-patterns
which satisfy the condition (2) to a set C1 (lines 5 – 7).
For each pattern τ in Ck, Ck keeps the state q s.t. q =
δ(q0, root(τ) · dl(τ)). Then, for each pattern τ in C1, if τ is
infrequent, the algorithm creates error correction rules from
τ (lines 8 – 10). In the subsequent steps, the algorithm cre-
ates Ck (k ≥ 2) by expanding patterns in Ck−1 (lines 14 –
17). Here, new dl(τ, p, i) is a function which calculates a list
of leaf elements which newly become determined leaves in
the (p, l, i)-expansion of τ. That is, when a pattern τ′ is the
(p, l, i)-expansion of τ, dl(τ′) = dl(τ) · new dl(τ, p, i) holds.
Therefore, the following equation holds:

δ(q0, root(τ′) · dl(τ′)) = δ(q, new dl(τ, p, i))

where q = δ(q0, root(τ) · dl(τ)). Like the first step, for each
pattern τ′ in Ck, if τ′ is infrequent, the algorithm creates
error correction rules from τ′ (lines 18 – 20). Here, α/β is
the list s.t. α = β · α/β.

Figure 9 shows the algorithm of new dl(τ, p, l). v.RME
is the label of the edge which connects a node v and the
rightmost child of v. If v has no child, v.RME is 0.
L(v).RHS (i) is the i-th element of the right-hand side of v’s
label. |L(v).RHS | is the number of elements of the right-
hand side of v’s label. For example, in Fig. 4, τ8 is the (0,VP
→ VB,2)-expansion of τ7. So, new dl(τ7, 0, 2) = 〈TO〉 and
dl(τ8) = dl(τ7) · new dl(τ7, 0, 2) = 〈NP, TO〉.

Algorithm new dl(τ, p, i)

1: NDL � 〈〉
2: v � the rightmost leaf of τ
3: for j � 0 to p − 1 do
4: for k � v.RME + 1 to L(v).|RHS | do
5: NDL � NDL · L(v).RHS (k)
6: v � v.parent
7: for j � v.RME + 1 to i − 1 do
8: NDL � NDL · L(v).RHS (j)
9: Return NDL.

Fig. 9 Algorithm of new dl(τ, p, l)

Table 1 The number of rules which two methods obtained

our method
obtained not obtained total

K&M
obtained 392 3,946 4,338

not obtained 1,987
total 2,379 6,325

4. Experiment

We performed an experiment to evaluate our method. We
applied our method to 49,208 sentences in the Wall Street
Journal section of the Penn Treebank [17]. We implemented
our method in Java. The experiment was run on a PC (Intel
core i7 3.40GHz) with 8GB main memory, running Win-
dows 7 Professional. The threshold σ was set to 100. We
obtained 2,379 rules. This took about 34 minutes†. Ta-
ble 1 shows the number of rules which were obtained by
our method and Kato and Matsubara’s method. Our method
obtained 1,987 rules which Kato and Matsubara’s method
did not. This means that our method increases the coverage
of error correction. On the other hand, 3,946 rules can not
be obtained by our method. However, this is not disadvan-
tageous since we can use all rules together.

To measure the precision of the rules which our method
obtains, we applied the rules to the WSJ section††. Because
it is time-consuming and expensive to evaluate all the rules,
we only evaluated the rules with the 300 highest scores. A
person (not the authors) manually checks whether or not
each rule corrects errors. The precision p is measured in
the same way as [16]:

p =
of the positions where an error is corrected

of the positions to which some rule is applied

The number of the positions to which 300 rules are applied
is 605. The number of the positions where an error is cor-
rected is 466. Therefore, the precision of our method is
77.0%. The precision of the previous method [16] is 71.6%.
We measured the precision of each rule. The precision of
196 rules reached 100%. 155 of the 196 rules could not

†A naive method which enumerates all patterns could not
work.
††It is difficult to measure the recall of our method because it

requires the treebank which includes no error.

SUZUKI et al.: CORRECTING SYNTACTIC ANNOTATION ERRORS BASED ON TREE MINING
1111

Fig. 10 Examples of correcting syntactic annotation errors

be obtained by Kato and Matsubara’s method. Those re-
sults show that our method can obtain the useful error cor-
rection rules which the previous method can not obtain and
therefore increases the coverage of error correction. Fig-
ure 10 shows some examples of correcting errors which our

method corrects but the previous method does not. The par-
tial parse trees enclosed within the dotted lines are sources
and targets. Rule (1) deletes a useless node NP. Rule (2)
replaces a label JJ with the correct label TO. Rule (3)-(5)
corrects structural annotation errors.

1112
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Fig. 11 The distributions of rules for scores when the threshold σ is var-
ied

Figure 11 shows the distribution of the rules for scores
when the threshold σ is varied. These graphs show that our
method tends to obtain rules with high scores. This tendency
became stronger in the case where the threshold σ was set
to a high value, while the total number of obtained rules
decreased.

5. Conclusion

In this paper, we proposed a new method of correcting an-
notation errors in a treebank. Our method is based on tree
mining. An experiment showed that our method can ob-
tain rules which the previous method can not obtain. The
proposed method and the previous one are complementary.
That is, by both methods, we can expect to achieve wider
coverage of error correction.

If a source pattern has several target patterns, our
method simply transforms the source to the most frequent
target. Furthermore, there exist cases where source patterns
do not include errors. To improve the precision, we will
explore how to select a correct target and how to identify
whether or not an occurrence of a source pattern includes
errors.

Acknowledgments

This research was partially supported by the Grand-in-Aid
for Scientific Research (B) (No. 26280082) of JSPS.

References

[1] K. Suzuki, Y. Kato, and S. Matsubara, “Correcting errors in a tree-
bank based on tree mining,” Proc. 10th International Conference on
Language Resources and Evaluation, pp.1540–1545, 2016.

[2] E. Eskin, “Detecting errors within a corpus using anomaly detec-
tion,” Proc. 1st North American Chapter of the Association for Com-
putational Linguistics, pp.148–153, 2000.

[3] M. Dickinson and W.D. Meurers, “Detecting errors in part-of-speech
annotation,” Proc. 10th Conference of the European Chapter of the
Association for Computational Linguistics, pp.107–114, 2003.

[4] M. Murata, M. Utiyama, K. Uchimoto, H. Isahara, and Q. Ma, “Cor-
rection of errors in a verb modality corpus for machine translation
with a machine-learning method,” ACM Trans. Asian Language In-
formation Processing, vol.4, no.1, pp.18–37, 2005.

[5] M. Dickinson, “From detecting errors to automatically correcting
them,” Proc. 11th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pp.265–272, 2006.

[6] M. Dickinson and C.M. Lee, “Detecting errors in semantic annota-
tion.,” Proc. 6th International Conference on Language Resources
and Evaluation, pp.605–610, 2008.

[7] M. Dickinson, “Correcting dependency annotation errors,” Proc.
12th Conference of the European Chapter of the Association for
Computational Linguistics, pp.193–201, 2009.

[8] M. Dickinson and W.D. Meurers, “Detecting inconsistencies in tree-
banks,” Proc. 2nd Workshop on Treebanks and Linguistic Theories,
pp.45–56, 2003.

[9] T. Ule and K. Simov, “Unexpected productions may well be er-
rors.,” Proc. 4th International Conference on Language Resources
and Evaluation, pp.1795–1798, 2004.

[10] M. Dickinson and W.D. Meurers, “Prune diseased branches to get
healthy trees! How to find erroneous local trees in a treebank and
why it matters,” Proc. 4th Workshop on Treebanks and Linguistic
Theories, pp.41–52, 2005.

[11] A. Boyd, M. Dickinson, and W.D. Meurers, “Increasing the recall
of corpus annotation error detection,” Proc. 6th Workshop on Tree-
banks and Linguistic Theories, pp.19–30, 2007.

[12] M. Dickinson, “Similarity and dissimilarity in treebank grammars,”
Current Issues in Unity and Diversity of Languages: Collection of

http://dx.doi.org/10.3115/1067807.1067823
http://dx.doi.org/10.1145/1066078.1066080
http://dx.doi.org/10.3115/1609067.1609088

SUZUKI et al.: CORRECTING SYNTACTIC ANNOTATION ERRORS BASED ON TREE MINING
1113

the papers selected from the 18th International Congress of Lin-
guists, pp.1597–1611, 2009.

[13] A. Przepiórkowski and M. Lenart, “Simultaneous error detection at
two levels of syntactic annotation,” Proc. 6th Linguistic Annotation
Workshop, pp.118–123, 2012.

[14] S. Kulick, A. Bies, J. Mott, M. Maamouri, B. Santorini, and
A. Kroch, “Using derivation trees for informative treebank inter-
annotator agreement evaluation,” Proc. 2013 Conference of the
North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp.550–555, 2013.

[15] P. Faria, “Using dominance chains to detect annotation variants in
parsed corpora,” 10th IEEE International Conference on e-Science,
pp.25–32, 2014.

[16] Y. Kato and S. Matsubara, “Correcting errors in a treebank based
on synchronous tree substitution grammar,” Proc. ACL 2010 Con-
ference Short Papers, pp.74–79, 2010.

[17] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz, “Building a
large annotated corpus of English: the Penn Treebank,” Computa-
tional Linguistics, vol.19, no.2, pp.313–330, 1993.

[18] J. Eisner, “Learning non-isomorphic tree mappings for machine
translation,” Proc. 41st Annual Meeting of the Association for Com-
putational Linguistics, pp.205–208, 2003.

[19] T. Asai, K. Abe, S. Kawasoe, H. Sakamoto, H. Arimura,
and S. Arikawa, “Efficient substructure discovery from large
semi-structured data,” IEICE Trans. Inf. & Syst., vol.E87-D, no.12,
pp.2754–2763, 2004.

Kanta Suzuki received the B.E. degree in
2015 in information engineering from Nagoya
University. He is currently a graduate student
at the Graduate School of Information Science,
Nagoya University. His research interests in-
clude natural language processing and data min-
ing.

Yoshihide Kato received the B.E. degree,
the M.E. degree, and the Dr. of Engineering de-
gree in information engineering from Nagoya
University, in 1997, 1999 and 2003, respec-
tively. He was an Assistant Professor in Grad-
uate School of International Development, Na-
goya University, from 2003 to 2009. He was
a Researcher at Information Technology Cen-
ter, Nagoya University, from 2009 to Septem-
ber 2011, and a Designated Assistant Professor,
from October 2011 to March 2012. He is cur-

rently an Associate Professor at Information & Communications, Nagoya
University. His research interests include natural language processing and
information retrieval. He is a member of the IPSJ, the NLP and the ACL.

Shigeki Matsubara received the B.E.
degree in electrical and computer engineering
from Nagoya Institute of Technology in 1993,
and the M.E. degree, and the Dr. of Engineering
from Nagoya University in 1995 and 1998, re-
spectively. After becoming an Assistant Profes-
sor at Nagoya University, he became an Asso-
ciate Professor at Information Technology Cen-
ter in 2002, and he is currently an Associate Pro-
fessor in Graduate School of Information Sci-
ence. His research interests include natural lan-

guage processing, information retrieval and digital library. He is a member
of the IPSJ, the JSAI and the NLP.

http://dx.doi.org/10.1109/escience.2014.17
http://dx.doi.org/10.3115/1075178.1075217
http://dx.doi.org/10.1137/1.9781611972726.10

