
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017
1055

PAPER

SMT-Based Scheduling for Overloaded Real-Time Systems∗,∗∗

Zhuo CHENG†a), Haitao ZHANG††, Nonmembers, Yasuo TAN†, and Yuto LIM†, Members

SUMMARY In a real-time system, tasks are required to be completed
before their deadlines. Under normal workload conditions, a scheduler with
a proper scheduling policy can make all the tasks meet their deadlines.
However, in practical environment, system workload may vary widely.
Once system workload becomes too heavy, so that there does not exist a
feasible schedule can make all the tasks meet their deadlines, we say the
system is overloaded under which some tasks will miss their deadlines.
To alleviate the degrees of system performance degradation caused by the
missed deadline tasks, the design of scheduling is crucial. Many design
objectives can be considered. In this paper, we first focus on maximiz-
ing the total number of tasks that can be completed before their deadlines.
A scheduling method based on satisfiability modulo theories (SMT) is pro-
posed. In the method, the problem of scheduling is treated as a satisfiability
problem. The key work is to formalize the satisfiability problem using first-
order language. After the formalization, a SMT solver (e.g., Z3, Yices) is
employed to solve this satisfiability problem. An optimal schedule can be
generated based on the solution model returned by the SMT solver. The
correctness of this method and the optimality of the generated schedule
can be verified in a straightforward manner. The time efficiency of the
proposed method is demonstrated through various simulations. Moreover,
in the proposed SMT-based scheduling method, we define the scheduling
constraints as system constraints and target constraints. This means if we
want to design scheduling to achieve other objectives, only the target con-
straints need to be modified. To demonstrate this advantage, we adapt the
SMT-based scheduling method to other design objectives: maximizing ef-
fective processor utilization and maximizing obtained values of completed
tasks. Only very little changes are needed in the adaption procedure, which
means the proposed SMT-based scheduling method is flexible and suffi-
ciently general.
key words: real-time scheduling, SMT, overload, satisfiability problem

1. Introduction

Real-time systems play important roles in our society. For
example, chemical and nuclear plant control, space mis-
sions, flight control, telecommunications, and multimedia
systems are all real-time systems [2]. In such a system, sen-
sitivity to timing is the central feature of system behaviors,

Manuscript received September 3, 2016.
Manuscript revised December 9, 2016.
Manuscript publicized January 23, 2017.
†The authors are with School of Information Science, Japan

Advanced Institute of Science and Technology, Nomi-shi, 923–
1292 Japan.
††The author is with School of Information Science and Engi-

neering, Lanzhou University, China.
∗The preliminary version is in [1].
∗∗This work is partially supported by the National Science

Foundation of China (Grants No. 61602224) and the Fundamental
Research Funds for the Central Universities (Grants No. lzujbky-
2016-142 and No. lzujbky-2016-k07).

a) E-mail: chengzhuo@jaist.ac.jp (Corresponding author)
DOI: 10.1587/transinf.2016EDP7374

which means, tasks in the system are required to be com-
pleted before their deadlines. The execution order of the
tasks (i.e., schedule) is set by a scheduler. Under normal
workload conditions, a scheduler with a proper scheduling
policy can make all the tasks completed before their dead-
lines (i.e., meet their deadlines). However, in practical en-
vironment, system workload may vary widely because of
dynamic changes in the work environment. Once system
workload becomes too heavy so that there does not exist a
feasible schedule can make all the tasks meet their dead-
lines, we say the system is overloaded.

When overload problem happens, it is important to
minimize the degrees of system performance degradation
caused by the missed deadline tasks. A system that pan-
ics and suffers a drastic fall in performance when a prob-
lem happens, is likely to contribute to this problem, rather
than helping to solve it [3]. To achieve this target, the de-
sign of scheduling is crucial, as different scheduling poli-
cies will lead to different degrees of performance degrada-
tion. Many objectives for the design of scheduling policies
described in [4], [5] can be considered. For example, (i)
maximizing total number of tasks that meet deadlines, (ii)
maximizing effective processor utilization, (iii) maximizing
obtained values of completed tasks. Which objectives are
appropriate in a given situation depends, of course, upon the
application. We first focus on maximizing total number of
tasks that meet their deadlines. This objective is reasonable
upon the application that when a missed deadline task cor-
responds to a disgruntled customer, and the aim is to keep
as many customers satisfied as possible [3]. Then, we adapt
the SMT-based scheduling method to the design objectives:
maximizing effective processor utilization and maximizing
obtained values of completed tasks. The main contributions
of this paper are:

i) We propose a scheduling method based on satisfia-
bility modulo theories (SMT). In this method, the problem
of scheduling overload is treated as a satisfiability prob-
lem. The key work is to formalize the problem using first-
order language. After the formalization, a sat model is con-
structed to represent the satisfiability problem. This sat
model is a set of first-order logic formulas (within linear
arithmetic in the formulas) which express all the schedul-
ing constraints that a desired optimum schedule should sat-
isfy. After the sat model is constructed, a SMT solver (e.g.,
Z3 [14], Yices [15]) is employed to solve the formalized
problem. An optimal schedule can be generated based on a
solution model returned by the SMT solver. The correctness

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

1056
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

of this method and the optimality of the generated schedule
can be verified in a straightforward manner. We also con-
duct various simulations to evaluate the time efficiency of
the proposed method. The simulation results demonstrate
that the SMT-based scheduling method is more time effi-
cient compared to existing scheduling algorithms. To the
best of our knowledge, this is the first work to use SMT to
solve the overload problem in the real-time scheduling do-
main.

ii) The proposed SMT-based scheduling method is flex-
ible and sufficiently general. In the SMT-based scheduling
method, we define the scheduling constraints as system con-
straints and target constraints. This means if we want to
design scheduling to achieve other objectives (e.g., maxi-
mizing effective processor utilization), only the target con-
straints need to be modified while system constraints can
be totally reused. Alternatively, if we want to achieve the
same scheduling objective for another real-time system with
different system architecture (e.g., distributed real-time sys-
tems), only the system constraints need to be modified. We
believe, due to these advantages, the proposed SMT-based
scheduling method can help developers easily and efficiently
design scheduling for real-time systems with low design
cost.
Extension to the preliminary version [1]. Work in [1] only
applies the proposed SMT-based scheduling method to one
scheduling target, maximizing total number of tasks that
meet their deadlines, and does not give the design guide-
lines for other scheduling targets. It means, work in [1] does
not clearly address the advantage of the proposed scheduling
method, that is, when we apply the method to other schedul-
ing targets, only the target constraints need a little modifica-
tion while system constraints can be totally reused (More
details can be found in Sect. 5). Moreover, in this paper, the
results of the scheduling overheads measured by the number
of task preemption, discussions on considering other criti-
cal resources, and comparison of the proposed SMT-based
scheduling method and static priority based scheduling al-
gorithms are also given, which are not shown in [1].
Organization of this paper. In Sect. 2, we present the sys-
tem model and give the research background. The details of
the SMT-based scheduling are described in Sect. 3. Sim-
ulation and performance evaluation are shown in Sect. 4.
In Sect. 5, we adapt the SMT-based scheduling to different
scheduling targets. Discussions on considering other criti-
cal resources, and comparing the SMT-based scheduling and
static priority based scheduling methods are conducted in
Sect. 6. Section 7 summarizes the related works. Conclu-
sions and future work are given in Sect. 8.

2. System Model, Definition and Background

2.1 System Model

We adopt the general firm-deadline model proposed in [7]
for system with uniprocessor. The “firm-deadline” means
only tasks completed before their deadlines are considered

Table 1 Symbols and Definitions

Symbol Definition

t system time instant

T set of real-time tasks

τi real-time task, τi ∈ T , i is index of the task

ri request time instant of τi

ci required execution time of τi

rci remaining execution time of τi

di deadline of τi

fi, j j-th indivisible fragment of τi

fi,e last indivisible fragment of τi

si, j start execution time of fi, j

ci, j required execution time of fi, j

valuable, and any task missed its deadline is worthless to
system. A real-time system comprises a set of real-time
tasks waiting to execute. These tasks request processor to
execute when they arrive in the system. Each task τi is a
3-tuple τi = (ri, ci, di), where i is the index of a task, ri is
the request time instant, ci is the required execution time,
and di is the deadline. A reasonable task should meet that
ri + ci ≤ di. Symbol rci represents the remaining execution
time of task τi. Initially, it equals to ci. After τi has been
executed for δ (δ ≤ ci) time slots, rci = ci − δ. If rci = 0,
it means τi has been completed. Symbol T = {τ1, τ2, . . . , τn}
denotes the set of tasks comprised in the system, where n is
the number of tasks.

To allow task preemption, for all tasks in T , task τi

is defined as consisting of a series of indivisible fragment
(atomic operation), denoted by τi : (f1, f2, . . . , fm), where
m = |τi| is the number of fragments in task τi

†. fi, j denotes
the j-th fragment of τi, and the last fragment of task τi is
denoted by fi,e. We use si, j to represent the start execution
time of fi, j. Symbol ci, j denotes the required execution time
of fi, j, and ∀ f j ∈ τi,

∑
ci, j = ci. For 1 ≤ i < m, fi+1 can

start to run only when fi has been completed. A successfully
completed task τi means fi,e has been allocated ci,e time slots
in time interval [ri, di). A task τi should be discarded at
system time t, if it features rci > di − t, as such task cannot
be successfully completed. For convenience, symbols used
throughout the paper are summarized in Table 1.

Applied to this task model, we require all the parame-
ters of the tasks are known a priori. This requirement makes
the task model become a generalization of the widely stud-
ied periodic task model, in which all the tasks in the sys-
tem are released periodically. This means our method ap-
plies more widely than other methods dealing with overload
problem which are specified on periodic task model.

2.2 Definition

In a real-time system, scheduler can use different schedules
to schedule task set T .

†The proposed SMT-based scheduling can also deal with con-
dition that task preemption is prohibited, by just constraining every
tasks consisting only one indivisible fragment.

CHENG et al.: SMT-BASED SCHEDULING FOR OVERLOADED REAL-TIME SYSTEMS
1057

Fig. 1 Example for underloaded & overloaded

When there exists a schedule that can make all tasks
meet their deadlines, the system is underloaded, and the
task set is feasible. On the contrast, when there does not
exist a schedule that can make all the tasks meet their dead-
lines, the system is overloaded, and the task set is infeasible
(Ref. [2]).

An example in Fig. 1 is used to elaborate this definition.
As shown in Fig. 1 (a), at t = 0, T ′ = {τ1, τ2}, where T ′ is
the set of tasks that have arrived in the system (not includ-
ing tasks that have been successfully completed or missed
deadlines). Using earliest deadline first (EDF) algorithm to
schedule T ′ can make all tasks meet their deadlines, where
EDF first schedules the task with the earliest deadline. Thus,
the system is underloaded, and the task set T ′ is feasible.
EDF algorithm proposed in literature [11] has been proven
as an optimal scheduling algorithm on uniprocessor. That
is, if using EDF to schedule a task set cannot make all tasks
meet their deadlines, no other algorithms can. Thus, EDF
scheduling algorithm can be used to tell if a task set is fea-
sible.

After system passed a time unit, as shown in Fig. 1 (b),
τ1 has been successfully completed, and a new task τ3 ar-
rives in the system. At that time, T ′ = {τ2, τ3}. Using EDF
to schedule T ′ can only make τ3 meet its deadline. Task
τ2 should be discarded at t = 2, as rc2 > d2 − t, where
d2 = 3, rc2 = 2. Thus, the system is overloaded, and the
task set T ′ is infeasible.

2.3 Background

2.3.1 Three Representative Scheduling Algorithms

There are many scheduling algorithms used in various real-
time systems. In this subsection, we study three widely
used scheduling algorithms: shortest remaining time first
(SRTF), EDF, and least laxity first (LLF). Through an ex-
ample described in Fig. 2, we can study their performance
when system is overloaded. In the example, the lengths of
all the indivisible fragments in all the tasks are set to one.

Scheduling results: (i): SRTF first schedules the task
with the shortest remaining execution time. The schedul-
ing sequence is (τ3, τ1, τ1, τ4, τ1). By this sequence, τ4 and
τ1 can be completed sequentially. (ii): EDF first schedules
the task with the earliest deadline. The result of scheduling
sequence is (τ2, τ2, τ2, τ2, τ2, τ4). It can complete τ2 and τ4

sequentially. (iii): LLF first schedules the task with the least
laxity. For τi, the laxity li is computed as li = di − rci − t.
It can complete tasks τ2 and τ4 sequentially with the same

Fig. 2 Performance of scheduling algorithms

scheduling sequence generated by EDF.
All of the three scheduling algorithms achieve two as

the number of task completion. We wonder if it is the
maximum value. For this simple example with only four
tasks, we can enumerate all the schedule to find the max-
imum number of task completion. An optimal schedule is
(τ3, τ3, τ3, τ3, τ1, τ1, τ1, τ4) which can complete three tasks
τ3, τ1, and τ4 sequentially.

Based on the analysis above, through this example, we
can see that, for overloaded real-time system, a new schedul-
ing method is needed. This motives our work. A SMT-based
scheduling method will be proposed in Sect. 3.

2.3.2 Satisfiability Modulo Theories (SMT)

Satisfiability modulo theories check the satisfiability of
logic formulas in first-order formulation with regard to cer-
tain background theories like linear integer arithmetic or bit-
vectors [12]. A first-order logic formula uses variables as
well as quantifiers, functional and predicate symbols, and
logical operators [13]. A formula F is satisfiable, if there
is an interpretation that makes F true. For example, for-
mula ∃a, b ∈ R, (b > a + 1.0) ∧ (b < a + 1.1), where
R is real number set, is satisfiable, as there is an interpre-
tation, a
→ −1.05, b
→ 0, that makes F true. On the
contrast, a formula F is unsatisfiable, if there does not ex-
ist an interpretation that makes F true. For example, if
we define ∃a, b ∈ Z, where Z is integer set, the formula
(b > a + 1.0) ∧ (b < a + 1.1) will be unsatisfiable.

For a satisfiability problem that has been formalized by
first-order logic formulas, a SMT solver (e.g., Z3, Yices)
can be employed to solve such a problem. If all the logic
formulas are satisfiable, the SMT solver will return the result
sat and a solution model which contains an interpretation
for all the variables defined in the formulas that makes the
formulas true. For the case ∃a, b ∈ R, the model is: a
→
−1.05, b
→ 0. If there is an unsatisfiable logic formula,
SMT solver returns the result unsat with an empty model,
for the case ∃a, b ∈ Z.

3. SMT-Based Scheduling

3.1 Overview of the SMT-Based Scheduling

The overview of the SMT-based scheduling is illustrated in

1058
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Fig. 3 Overview of the SMT-based scheduling method

Fig. 3. In a real-time system, a schedule (execution order of
tasks) is generated by a scheduler. When overload problem
happens, under the specific system and desired scheduling
target, the scheduling problem can be treated as a satisfia-
bility problem.

In order to use SMT to solve this satisfiability problem,
the key work is to formalize the problem using first-order
language. We use a sat model to represent the formalized
problem. This sat model is a set of first-order logic formulas
(within linear arithmetic in the formulas) which express all
the constraints that a desired optimum schedule should sat-
isfy. There are two kinds of constraints: system constraints
and target constraints. System constraints are based on the
specific system. For example, for uniprocessor, a schedule
should make sure that the execution of two tasks cannot have
overlap in time domain. Target constraints are based on the
scheduling target. Specific to our target, a desired optimum
schedule should achieve the maximum number of task com-
pletion.

After the sat model is constructed, it can be inputted
into a SMT solver (e.g., Z3). A solution model will be re-
turned by the SMT solver. This solution model gives an
interpretation for all the variables defined in the sat model,
and under the interpretation, all the logic formulas in the
sat model are evaluated as true. It means the satisfiability
problem represented by the sat model is solved, and based
on this interpretation, a desired optimum schedule can be
generated.

3.2 Scheduling Constraints

This subsection describes all the constraints expressed in the
sat model.

System Constraints

3.2.1 Constraint on Start Execution Time of Tasks

As a task can only start to execute after it requests to run,
the start time of the first fragment of a task should be larger
than the request time instant ri.

∀τi ∈ T
si,1 ≥ ri

3.2.2 Constraint on Start Execution Time of Different
Fragments

The series of fragments consisted in a task should be exe-
cuted sequentially. Therefore, a fragment of a task can start
to run only when its previous fragments of the task have
been completed.

∀τi ∈ T ,∀ fa, fb ∈ τi

b > a =⇒ si,b ≥ si,a + ci,a

Symbol =⇒ denotes implication logical operator.

3.2.3 Constraint on Processor

A processor can execute only one fragment at a time. This
is interpreted as: there is no overlap of the execution time of
any two fragments.

∀τi, τ j ∈ T , i � j,∀ fa ∈ τi,∀ fb ∈ τ j

(si,a ≥ s j,b + c j,b) ∨ (s j,b ≥ si,a + ci,a)

3.2.4 Constraint on Task Dependency

In practical system, tasks usually have dependency relation
with each other. For example, task τ j may require the com-
puted result of τi, thus, τ j can start to run only after τi has
been completed. We denote such dependency relation as
τi ≺ τ j.

∀τi, τ j ∈ T
τi ≺ τ j =⇒ (s j,1 ≥ si,e + ci,e)∧
(si,e + ci,e > di =⇒ s j,1 = +∞)

This formula expresses that any two tasks that have depen-
dency relation τi ≺ τ j, the first fragment of task τ j can start
to run only when the last fragment of task τi has been com-
pleted. As the series of fragments consisted in a task are
executed sequentially, this formula can make sure that task
τ j starts to run only after τi has been completed. Moreover,
if task τi has not been successfully completed, task τ j cannot
start to run.

Target Constraints

3.2.5 Constraint on Scheduling Target

A successfully completed task τi should be completed be-
fore its deadline. As all the fragments consisted in a task
run sequentially, this constraint can be interpreted as: the
last fragment of a successfully completed task should be
completed before its deadline. Let n be the number of suc-
cessfully completed tasks, and its initial value is set to be
0.

CHENG et al.: SMT-BASED SCHEDULING FOR OVERLOADED REAL-TIME SYSTEMS
1059

Algorithm 1 Schedule Synthesis
Input: task set T
Output: schedule S
1: A := Assert(T , |T |)
2: M := CallSMTSolver(A)
3: ifM � ∅ then
4: return S based on modelM
5: end if
6: start := 0, end := |T |
7: while true do
8: mid := start + �(end − start)/2�
9: A := Assert(T ,mid)

10: M := CallSMTSolver(A)
11: ifM = ∅ then
12: end := mid − 1
13: else
14: A′ := Assert(T ,mid + 1)
15: M′ := CallSMTSolver(A′)
16: ifM′ � ∅ then
17: start := mid + 1
18: else
19: return S based on modelM
20: end if
21: end if
22: end while

∀τi ∈ T
if (si,e + ci,e ≤ di)

n := n + 1

end

Let symbol sn denote the maximum number of tasks in T
that can be successfully completed, and obviously, sn ∈
[0 |T |]. The constraints on scheduling target can be ex-
pressed as:

n ≥ sn

Note that, here we set n ≥ sn rather than n = sn is based on
our experience. With n ≥ sn, following the schedule syn-
thesis described in the next subsection, the time efficiency
of the SMT-based scheduling method is better compared to
with n = sn.

3.3 Schedule Synthesis

After all the constraints are defined, now we can employ
a SMT solver to generate a desired schedule. The process
of schedule synthesis is summarized in Alg. 1. Function
Assert(T , |T |) (line 1) interprets the constraints defined
in Sect. 3.2 as assertions (boolean formulas that can be in-
putted into a SMT solver) with |T | as the maximum number
of successfully completed tasks (i.e., set sn := |T | in con-
straint on scheduling target). The variables of these boolean
formulas are the start time si, j for ∀τi ∈ T ,∀ f j ∈ τi. Func-
tion CallSMTSolver(A) (line 2) calls a SMT solver to find
a solution model M for A. If such a model does exist, it
will be returned by the function, otherwise, an empty model
will be returned.

We first set sn := |T | in constraint on scheduling tar-
get, that is to expect all the tasks in T can be success-
fully completed. If this expectation can be satisfied, which
means overload problem does not happen, solution model
M will be returned. AsM contains all the values of si, j, for

Fig. 4 Results by using the SMT-based scheduling method for the exam-
ple shown in Fig. 2

∀τi ∈ T ,∀ f j ∈ τi, we can extract the start execution time of
all the fragments of all the tasks, which means the schedule
S for task set T can be generated (line 1–5).

When overload problem happens, tasks in T cannot all
be successfully completed. This condition is indicated by
an empty model returned by function CallSMTSolver(A),
which means constraint on scheduling target cannot be sat-
isfied. We need to decrease the setting value of sn. To
achieve the maximum number of task completion means
to find the maximum value of sn with which there ex-
ists a solution model. We use binary search to find the
maximum value of sn (line 6–22). With the maximum
value of sn, a solution model can be returned by func-
tion CallSMTSolver(A). Meanwhile, with sn := sn + 1,
CallSMTSolver(A) will return an empty model. This is
the criterion to judge if the value of sn is the maximum
value. When we get the solution model M with the maxi-
mum value sn, based onM, the schedule S can be generated
(line 19).

Through the procedure of the schedule synthesis, we
can make sure that the maximum value of sn can be found.
Meanwhile, as all the constraints of a desired optimum
schedule have been satisfied, which means S can achieve
the maximum number of task completion. This has demon-
strated the optimality of the schedule generated by the pro-
posed SMT-based scheduling method.

3.4 Scheduling Results

Recall the example shown in Fig. 2. In this example, T =
{τ1, τ2, τ3, τ4}. Based on the schedule synthesis shown in
Alg. 1, we can get the solution model M which defines
the values of si, j for ∀τi ∈ T ,∀ f j ∈ τi. The model is
as follows: s1,1 = 4, s1,2 = 5, s1,3 = 6, s2,1 = 8, s2,2 =

9, s2,3 = 10, s2,4 = 11, s2,5 = 12, s3,1 = 0, s3,2 = 1, s3,3 =

2, s3,4 = 3, s4,1 = 7. Based on this model, as shown in
Fig. 4 (without τ1 ≺ τ4), we can get the scheduling se-
quence S = (τ3, τ3, τ3, τ3, τ1, τ1, τ1, τ4) (as τ2 cannot be suc-
cessfully completed, it should not be included in S). This
scheduling sequence can complete three tasks τ3, τ1, and τ4

consequently, which is the maximum number of task com-
pletion for T .

If we add a task dependency relation τ2 ≺ τ4, we can
get the model: s1,1 = 1, s1,2 = 2, s1,3 = 6, s2,1 = 7, s2,2 =

1060
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Fig. 5 Success ratio of the SMT-based scheduling and the baseline algorithms
(The x-axis is the total number of input tasks, and the y-axis is the success ratio)

8, s2,3 = 9, s2,4 = 10, s2,5 = 11, s3,1 = 0, s3,2 = 3, s3,3 =

4, s3,4 = 5, s4,1 = 12. Based on this model, as shown in
Fig. 4 (with τ2 ≺ τ4), we can get the scheduling sequence
S = (τ3, τ1, τ1, τ3, τ3, τ3, τ1). This scheduling sequence can
complete two tasks τ3 and τ1 consequently, which is also
the maximum number of task completion for T with the
dependency relation τ2 ≺ τ4.

4. Simulation and Evaluation

In this section, we present the results of simulations which
are conducted to study the performance of the SMT-based
scheduling method. We have implemented a prototype tool
for the proposed SMT-based scheduling based on the sys-
tem model, constraints formulation, and schedule synthe-
sis described above. The underlying SMT solver employed
by the tool is Z3. Note that, after the scheduling problem
is formalized by first-order logic formulas, we can employ
any reliable SMT solver to solve the scheduling problem.
This means our method is not limited to a specific SMT
solver. Here we choose Z3 rather than other SMT solvers
(e.g., Yices, MathSAT [22], Zap [23]) is mainly because of
our expertise and also because Z3 has been proved as an
efficient reliable SMT solver [14].

4.1 Simulation Settings

The metrics used to evaluate the scheduling performance
are: i) success ratio, which denotes the ratio of the input
tasks that have been completed before their deadlines; and
ii) scheduling time. For the baseline scheduling algorithms
(SRTF, EDF, and LLF), as they are dynamic scheduling al-
gorithms, which schedule tasks when system is running, the
scheduling time represents the time that scheduling algo-
rithms spent in scheduling all the input tasks at system run-
time. For the proposed SMT-based scheduling method, as
it is a static scheduling method, which generates scheduling
table at design phase before system runtime, the schedul-
ing time represents the time that SMT solver (Z3) spent in
generating the scheduling table.

The input tasks are generated according to uniform dis-
tribution with arriving rate λwhich represents the number of
tasks that arrive in the system per 100 time units. For a fixed
time interval, a system with a larger value of λ means more
tasks arrive in the system during the time interval, which re-
sult in a heavier workload condition compared to a smaller

value of λ. As the workload can be changed by λ, the at-
tributes of tasks in our simulations are given a simple set-
ting. For each task τi, ci varies in [1 13]. The number of the
indivisible fragments of a task varies in [1 3] The assign-
ment of di is according to the equation: di = ri + s fi ∗ ci,
where s fi is the slack factor that indicates the tightness of
task deadline. For each task τi, s fi varies in [1 4]. Task
dependency relation among tasks is randomly assigned.

In a well-defined system, usually the length of system
overload time is not long, and the degree of system overload
is not serious. If a system is under overload condition for
a long time or the degree of the system overload is very se-
rious, it means the capacity of the system is not enough to
handle its work. Based on this observation, we set the values
of λ as 14, 12, and 10 to represent different degrees of sys-
tem overload conditions. The input total numbers of tasks
are set as 100, 200, and 300 to represent different lengths
of system overload time†. All the simulations are run on a
64bit 4-core 2.5 GHz Intel Xeon E3 PC with 32GB memory.

4.2 Evaluation

The simulation results are shown in Fig. 5 and Fig. 6. The
values shown in the figures are the average value of running
simulation 100 times. As the performance of the three base-
line algorithms (SRTF, EDF, and LLF) are almost the same
(the maximum differences among these three algorithms are
within 1% in terms of both success ratio and scheduling
time), for conciseness, we use one line Baseline Alg. to de-
note the performance of all the baseline algorithms in Fig. 5
and Fig. 6. The percentage numbers shown in the figure are
the percentages of the performance improvement by using
the SMT-based scheduling method compared to the baseline
algorithms.

For success ratio, through the analysis in Sect. 3, the
SMT-based scheduling can achieve the optimum result. As
shown in Fig. 5, the values of success ratio for the SMT-
based scheduling method are larger than the baseline algo-
rithms under all the combinations of λ and total number of
input tasks. In addition, from the Fig. 5, we can see that
system with different values of λ have different workload
conditions. When λ = 10, success ratio of the SMT-based

†For a specific value of λ, the overload time for system with
300 total number of input tasks is three times than system with 100
total number of input tasks.

CHENG et al.: SMT-BASED SCHEDULING FOR OVERLOADED REAL-TIME SYSTEMS
1061

Fig. 6 Scheduling time (in second) of the SMT-based scheduling and the baseline algorithms (The
x-axis is the total number of input tasks, and the y-axis is the scheduling time)

Table 2 Memory (megabytes) required by the SMT solver Z3 (The first
row is total number of input tasks)

100 200 300

λ = 14 2.9 3.1 3.3

λ = 12 2.9 3.1 3.3

λ = 10 2.9 3.1 3.2

scheduling is just little less than 1, which means system is
under light overload condition as most of the tasks can meet
their deadlines. While when λ = 14, success ratio of the
SMT-based scheduling is less than 0.9, which means sys-
tem is under more serious overload condition compared to
the condition when λ = 10. These results are consistent with
the explanation described in Sect. 4.1 and denote the validity
of λ in changing the degrees of system overload conditions.

For scheduling time, the performance of the SMT-
based scheduling method is also the best among all the
methods. From Fig. 6, it can be seen that the values of
scheduling time for the SMT-based scheduling are much
smaller than the values for the baseline algorithms, and the
improvements are quite obvious. This demonstrates the time
efficiency of the SMT-based scheduling method. For com-
pleteness, we also give the amount of memory that is re-
quired by the SMT solver Z3 to generate the scheduling ta-
ble. The results are shown in Table 2. From the table, we
can see that the required memories for the SMT solver Z3 to
generate the scheduling table is around 3.0 megabytes which
is quite a small amount considering most of the current con-
figurations of the systems. Moreover, from the table, we also
can see that parameter λ almost does not affect the required
memory, while total number of input tasks has a little af-
fection on the required memory. This is mainly because the
proposed SMT-based scheduling method generates schedul-
ing table at design phase rather at system runtime.

To evaluate scheduling overheads of different schedul-
ing methods, Fig. 7 shows the number of task preemption in
each task. From the figure, we can see that the performance
of the proposed SMT-based scheduling is almost the same as
the baseline algorithms EDF and SRTF, while LLF performs
a little better than other scheduling methods. This means the
performance improvement (make more tasks completed be-
fore their deadlines) of the SMT-based scheduling method
does not incur additional overheads.

Fig. 7 Number of preemption per task

5. Adaption for Other Scheduling Targets

As mentioned in Sect. 3, in the SMT-based scheduling
method, there are two kinds of scheduling constraints: sys-
tem constraints and target constraints. This kind of design
makes the proposed SMT-based scheduling method flexible
and sufficiently general for other design objectives by just
modifying the target constraints. In this section, we give two
examples on modifying the target constraints to apply the
SMT-based scheduling method to other design objectives.

5.1 Maximizing Effective Processor Utilization

Effective Processor Utilization (EPU) measures the fraction
of time that the processor spends on executing tasks which
are successfully completed before their deadlines. EPU may
be a reasonable measure in situations where customers pay
at a uniform rate for the use of the processor, but are billed
only if tasks given by the customers are successfully com-
pleted [5].

5.1.1 Constraint on Scheduling Target

A successfully completed task τi should be completed be-
fore its deadline. As mentioned in Sect. 3.2.5, since all the
fragments consisted in a task run sequentially, this constraint
can be interpreted as: the last fragment of a successfully
completed task should be completed before its deadline.
Let symbol e be effective processor time (the time that the
processor spends on executing tasks which are successfully

1062
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Algorithm 2 Schedule Synthesis for Maximizing Effective
Processor Utilization
Input: task set T
Output: schedule S
1: A := Assert(T , 1)
2: M := CallSMTSolver(A)
3: ifM � ∅ then
4: return S based on modelM
5: end if
6: start := 0, end := 1
7: while true do
8: mid := start + (end − start)/2
9: A := Assert(T ,mid)

10: M := CallSMTSolver(A)
11: ifM = ∅ then
12: end := mid − step
13: else
14: A′ := Assert(T ,mid + step)
15: M′ := CallSMTSolver(A′)
16: ifM′ � ∅ then
17: start := mid + step
18: else
19: return S based on modelM
20: end if
21: end if
22: end while

completed before their deadlines), and its initial value is set
to be 0.

∀τi ∈ T
if (si,e + ci,e ≤ di)

e := e + ci

end

Let symbol ssi,e denote the maximum value of si,e for tasks
in T that have been successfully completed. The effective
processor utilization, epu, can be calculated as:

epu =
e

ssi,e + ci,e

Let symbol sepu denote the maximum value of effective
processor utilization, and obviously, sepu ∈ [0 1]. The
constraints on scheduling target can be expressed as:

epu ≥ sepu

5.1.2 Schedule Synthesis

The process of schedule synthesis is summarized in Alg. 2.
This process of schedule synthesis is quite similar as the
process described in Alg. 1. Function Assert(T , 1) (line
1) interprets the system constraints defined in Sect. 3.2 and
target constraints descried in Sect. 5.1.1 as assertions with
sepu := 1 in constraint on scheduling target. If this ex-
pectation can be satisfied, which means overload problem
does not happen, model M will be returned by function
CallSMTSolver(A) (line 2). Based on M, the schedule
S can be generated (line 4).

When overload problem happens, sepu := 1 cannot be
satisfied. We need to decrease the setting value of sepu. We
use binary search to find the maximum value of sepu (line
6–22). With the maximum value of sepu, a solution model

can be returned by function CallSMTSolver(A). Mean-
while, with sepu := sepu + step, CallSMTSolver(A) will
return an empty model. This is the criterion to judge if the
value of sepu is the maximum value. Note that, the vari-
able step is predefined and can be used to control the search
space of SMT solver. Increasing step makes the algorithm
faster but also reduce the solution space.

Through the procedure of adapting the SMT-based
scheduling method to the scheduling target maximizing ef-
fective processor utilization, we can see that only little mod-
ification on i) target constrain and ii) schedule synthesis
needs to be made, while the system constraints defined in
Sect. 3.2 can be total reused. This demonstrates the flexibil-
ity of our proposed SMT-based scheduling method. In the
next subsection, we further show this advantage by adapting
the proposed method to another scheduling target maximiz-
ing obtained values of completed tasks.

5.2 Maximizing Obtained Values of Completed Tasks

When tasks are equally important, the values obtained by
the system through completing different tasks are the same.
Thus, in this case, the design objective maximizing obtained
values of completed tasks is the same as the design objec-
tive maximizing total number of tasks that meet deadlines.
However, when tasks are with different degrees of impor-
tance, these two objectives become different.

For system within tasks that are with different degrees
of importance, each task τi is a 4-tuple τi = (ri, ci, di, vi),
where vi is the value of task τi that can be obtained by the
system when τi is successfully completed.

5.2.1 Constraint on Scheduling Target

Let symbol v be the obtained values of the completed tasks,
and its initial value is set to be 0.

∀τi ∈ T
if (si,e + ci,e ≤ di)

v := v + vi

end

Let symbol sv denote the maximum obtained values of com-
pleted tasks, and obviously, sv is no less than 0 and no larger
than
∑

vi for ∀τi ∈ T . The constraints on scheduling target
can be expressed as:

v ≥ sv

5.2.2 Schedule Synthesis

Quite similar as Alg. 1 and Alg. 2, we can get the scheduling
synthesis for design objective maximizing obtained values
of completed tasks. For conciseness, we omit it.

CHENG et al.: SMT-BASED SCHEDULING FOR OVERLOADED REAL-TIME SYSTEMS
1063

Fig. 8 Success ratio of the SMT-based scheduling and the static priority based scheduling algorithms:
DM and RM (The x-axis is the total number of input jobs, and the y-axis is the success ratio)

6. Discussion

6.1 Extension for Other Critical Resources

When designing scheduling for real-time systems, proces-
sor is the mainly considered computation resources in this
paper. Actually, when other critical resources (e.g., printer)
are considered, the proposed SMT-based scheduling method
can be easily applied. To achieve this, we only need to add
a scheduling constraint when constructing the SAT model.
The constraint can be expressed as:

∀τi, τ j ∈ T , i � j,∀ fa ∈ τi,∀ fb ∈ τ j,∀rα ∈ R
(sαi,a ≥ sαj,b + tcαj,b) ∨ (sαj,b ≥ sαi,a + tcαi,a)

Symbol sαi,a represents the time instant at which frag-
ment fi,a requests the resources rα ∈ R, where R is the set
of critical resources. Symbol tcαi,a means the time slots that
fragment fi,a needs to occupy the resources rα. By adding
this scheduling constraint, we can make sure that no multi-
ple tasks access to a critical resource at the same time.

From this example, we can see that, for a newly en-
countered scheduling problem (e.g., considering other criti-
cal resources), through modifying or adding scheduling con-
straints, developers can easily solve the problem by applying
the proposed SMT-based scheduling method.

6.2 Compared to Static Priority Based Scheduling

Currently, static priority based scheduling algorithms (e.g.,
RM (rate monotonic), DM (deadline monotonic)) are widely
adopted in many real-time systems. Such kind of schedul-
ing algorithms is applied to the periodic or sporadic task
model [10]. In both models, tasks give rise to a potentially
infinite sequence of executions (usually called jobs). In the
periodic task model, the jobs of a task arrive strictly periodi-
cally, separated by a fixed time interval. In the sporadic task
model, each job of a task may arrive at any time once a min-
imum inter-arrival time has elapsed since the arrival of the
previous job of the same task. Under static priority based
scheduling algorithms, different jobs of a task are assigned
as the same priority.

In the task model studied in this paper, a task is ex-
ecuted only once. The proposed SMT-based scheduling

method only requires the parameters of the tasks in the sys-
tem are known a priori. This requirement makes the task
model applied to the SMT-based scheduling method can be
treated as a generalization of the periodic task model. As
in periodic task model, all the parameters of the tasks are
known a priori and the jobs of a task arrive periodically,
while our proposed SMT-based scheduling method does not
require jobs of a task arrive periodically. Because of this,
static priority based scheduling algorithms cannot be ap-
plied to the task model adopted in the previous simulation
study. Meanwhile, when they are applied to the periodic
task model, the proposed SMT-based scheduling method
can also be applied. However, when they are applied to
the sporadic task model, the SMT-based scheduling method
cannot be applied, as in sporadic task model, the arriving
time of a job cannot be known a priori.

In order to give a performance comparison of the
SMT-based scheduling method and the static priority based
scheduling algorithms (RM, DM), in this subsection, we
conduct simulations by using randomly-generated periodic
task set. The scheduling target, maximizing total number
of tasks that meet deadlines, is chosen as an example. In
the periodic task set, each task τi gives rise to an execu-
tion (called job†) every pi time units, where pi is the period
of task τi and varies in [30 200]. The settings of task pa-
rameters, ci, s fi and di, are the same as the setting used in
Sect. 4. Similarly, the input total numbers of jobs are set as
100, 200, and 300 to represent different lengths of system
overload time, and the values of λ are set as 14, 12, and 10
to represent different degrees of system overload conditions.

The simulation results are shown in Fig. 8, Fig. 9, and
Fig. 10. For success ratio, as shown in Fig. 8, the SMT-
based scheduling method performs better than DM and RM
under all the combinations of λ and total number of input
tasks. The percentage numbers shown in the figure are the
percentages of the performance improvement by using the
SMT-based scheduling method compared to DM and RM,
respectively. This result is consist with our previous analy-
sis that the SMT-based scheduling can achieve the optimum
result in terms of success ratio.

For scheduling time, the performance of the SMT-
based scheduling method is also the best among all the

†job can be analogous to task used in the previous simulation
study described in Sect. 4.

1064
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Fig. 9 Scheduling time (in second) of the SMT-based scheduling and the static priority based schedul-
ing algorithms: DM and RM (The x-axis is the total number of input jobs, and the y-axis is the schedul-
ing time)

Fig. 10 Number of preemption per job

scheduling methods. From Fig. 9, it can be seen that the im-
provements are quite obvious. Note that, as the results for
DM and RM are almost the same, for conciseness, we use
one line DM, RM to denote the performance of scheduling
algorithms DM and RM in Fig. 9. This result is also consist
with the results that obtained from our previous simulation
study described in Sect. 4.

Figure 10 shows the number of preemption per job.
We can see that the performance of the proposed SMT-
based scheduling is almost the same as DM and RM, which
means the performance improvement by using the SMT-
based scheduling method does not incur much additional
overheads. For the amount of memory that is required by the
SMT solver Z3 to generate the scheduling table, the simu-
lation results are almost the same as the results shown in
Table 2. For conciseness, we omit it.

7. Related Work

Research on scheduling has lasted for decades. Numerous
researches have been conducted. There are mainly two cat-
egories of works which are mostly related to our research.

7.1 Scheduling for Overloaded Real-Time Systems

In the literature on real-time systems, several scheduling al-
gorithms have been proposed to deal with the overload prob-
lem. A scheduling algorithm called DMB (dynamic misses
based) was proposed in [8]. It is capable of dynamically
changing the importance of tasks for adjusting their timing
faults rate (ratio of tasks that missed deadlines). The main
goal of DMB is to allow the prediction of timing faults dur-

ing system overload. In [9], the problem of selecting tasks
for rejection in an overloaded system is considered. Ran-
dom criticality values are assigned to tasks. The goal is to
schedule all the critical tasks and make sure that the weight
of rejected non-critical tasks is minimized. These methods
cannot apply to systems in which tasks are equally impor-
tant. Compared to these works, our method can apply to
both kinds of systems in which tasks are equally important
or with different degrees of importance.

Some approaches focus on providing less stringent
guarantees for temporal constraints. The elastic task model
(ETM) proposed in [6] aims at increasing task periods to
handle overload in adaptive real-time control systems. In
ETM, periodic tasks are able to change their execution rate
to provide different qualities of service. Authors in [7] in-
troduced skippable tasks which are allowed to miss dead-
lines occasionally. Each task is assigned to a skip parameter
which represents the tolerance of this task to miss deadline.
A scheduling algorithm was proposed to adjust the system
workload such that tasks adhere to their timing and skip con-
straints. Compared to these works, the parameters of tasks
in our system are set a priori, and the system workload is
decided by outside environment. Thus, the methods of ad-
justing system workload or changing parameters of tasks are
not suitable.

In [3], authors studied some special cases of overloaded
systems. They impose certain constraints on the values of
task attributes. For example, under a special case equal to
request times, all tasks have the same request time. Com-
pared to this work, our proposed SMT-based scheduling
only requires the request times of all the tasks are known
in advanced rather than having the same value, which means
our method is much more practical than the methods studied
in [3].

All of these works are specified on their design objec-
tives and cannot be applied to other design targets. Com-
pared to them, our proposed SMT-based scheduling method
is flexible and sufficiently general to adapt to different
scheduling targets.

7.2 Scheduling Based on SAT and SMT

Authors in [16] presented a SAT-based approach to address
the problem of periodic task and message allocation for dis-

CHENG et al.: SMT-BASED SCHEDULING FOR OVERLOADED REAL-TIME SYSTEMS
1065

tributed real-time systems. Through a special SAT solver
extension enhanced with real-time scheduling theory, the
proposed approach is guaranteed to find an optimal alloca-
tion for realistic task systems. In [19], authors studied the
problem of assigning speeds to resources serving distributed
applications with delay, buffer and energy constraints. They
proposed a approach by coupling a SAT solver with the
background theory of Real-Time Calculus (RTC).

Authors in [17] proposed a SAT-based technique to op-
timize throughput of homogeneous synchronous dataflow
graphs on multiprocessor platforms, in which maximum cy-
cle ratio analysis is integrated with SAT solver. With similar
ideas of the integrated approach used in [17], in [18], au-
thors also targeted the problem of makespan optimization of
task graph scheduling on multiprocessors. An integrated op-
timization framework was constructed with relevant back-
jumping and continued search operations that accelerates
the design space exploration.

In [20], [21], authors applied SMT solvers to address
the pipelined scheduling and mapping problem for syn-
chronous dataflow (SDF) graphs on shared memory multi-
cores with instantaneous inter-core communication. They
considered both throughput and latency constraints simulta-
neously, but limited the cases of acyclic SDF graphs (i.e.,
the applications with no feedback loops).

All the works mentioned above try to address some
scheduling problems based on SAT or SMT. However, all
the methods proposed in these works cannot be applied
to tackle the overload problem studied in this paper, as
their studied problems are mainly for systems under nor-
mal workload conditions. Even though, it should be no-
ticed that the methods collected and demonstrated in these
works can be potentially referred when we extend the pro-
posed SMT-based scheduling method to more complicated
systems, such as distributed real-time systems.

8. Conclusion

In this paper, to solve the overload problem of real-time sys-
tems, a SMT-based scheduling method is proposed. In the
proposed method, the problem of scheduling is treated as
a satisfiability problem. After using first-order language to
formalize the satisfiability problem, a SMT solver is em-
ployed to solver such a problem. An optimal schedule can
be generated based on a solution model returned by the SMT
solver. The correctness of this method and the optimality of
its generated schedule can be verified in a straightforward
manner. The results of various simulations, demonstrated
that the proposed SMT-based scheduling method is more
time efficient compared to existing scheduling algorithms.

In the SMT-based scheduling method, we define the
scheduling constraints as system constraints and target con-
straints. This means if we want to design scheduling to
achieve other objectives, only the target constraints need to
be modified. To demonstrate this advantage, we apply the
SMT-based scheduling method to three different design ob-
jectives. Very little modification is needed when adapting

the SMT-based scheduling method to different scheduling
targets, which means the proposed SMT-based scheduling
method is flexible and sufficiently general.

For the future work, a promising direction is to adapt
the SMT-based scheduling method to more complicated sys-
tems, such as distributed real-time systems.

References

[1] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim, “Scheduling overload
for real-time systems using SMT solver,” Proc. 17th IEEE/ACIS
Int. Conf. on Software Eng., Artificial Intell., Networking and Par-
allel/Distributed Computing, Shanghai, China, pp.189–194, May
30 – June 1, 2016.

[2] F. Zhang and A. Burns, “Schedulability analysis for real-time sys-
tems with EDF scheduling,” IEEE Trans. Comput., vol.58, no.9,
pp.1250–1258, April 2009.

[3] S.K. Baruah, J. Haritsa, and N. Sharma, “On-line scheduling to max-
imize task completions,” Proc. 15th IEEE Real-Time Syst. Symp.,
San Juan, Puerto Rico, pp.228–236, Dec. 1994.

[4] A. Burns, “Scheduling hard real-time systems: a review,” Software
Eng. J., vol.6, no.3, pp.116–128, May 1991.

[5] S.K. Baruah and J.R. Haritsa, “Scheduling for overload in real-time
systems,” IEEE Trans. Comput., vol.46, no.9, pp.1034–1039, Sept.
1997.

[6] G.C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for
adaptive rate control,” Proc. 19th IEEE Real-Time Syst. Symp.,
Madrid, Spain, pp.286–295, Dec. 1998.

[7] A. Marchand and M. Chetto, “Dynamic scheduling of periodic skip-
pable tasks in an overloaded real-time system,” Proc. 6th IEEE/ACS
Int. Conf. on Comput. Syst. and Applicat., Doha, Qatar, pp.456–464,
April 2008.

[8] C. Tres, L.B. Becker, and E. Nett, “Real-time tasks scheduling with
value control to predict timing faults during overload,” Proc. 10th
IEEE Int. Symp. on Object and Component-Oriented Real-Time
Distributed Computing, Santorini Island, Greece, pp.354–358, May
2007.

[9] S.-I. Hwang, C.-M. Chen, and A.K. Agrawala, “Scheduling an over-
loaded real-time system,” Proc. 15th IEEE Int. Phoenix Conf. on
Comput. and Commun., Arizona, USA, pp.22–28, March 1996.

[10] R.I. Davis and A. Burns, “A survey of hard real-time scheduling
for multiprocessor systems,” ACM Comput. Surv., vol.43, no.5,
pp.35:1–35:44, Oct. 2011.

[11] C.L. Liu and J.W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol.20, no.1,
pp.40–61, Jan. 1973.

[12] C. Barrett, R. Sebastiani, R. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, vol.185, IOS Press,
2009.

[13] L.D. Moura and N. Bjørner, “Satisfiability Modulo Theories:
An Appetizer,” Formal Methods: Foundations and Applications,
vol.5902, pp.23–26, 2009.

[14] L. Moura and N. Bjørner, “Z3: an efficient SMT solver,” Proc. 14th
Int. Conf. on Tools and Algorithms for the Construction and Anal. of
Syst., Budapest, Hungary, LNCS 4963, pp.337–340, Springer-Ver-
lag, 2008.

[15] B. Dutertre, “Yices 2.2,” Proc. 26th Int. Conf. on Comput. Aided
Verification, Vienna, Austria, LNCS 8559, pp.737–744, Springer In-
ternational Publishing, 2014.

[16] A. Metzner and C. Herde, “RTSAT - An optimal and efficient ap-
proach to the task allocation problem in distributed architectures,”
Proc. RTSS, pp.147–158, 2006.

[17] W. Liu, M. Yuan, X. He, Z. Gu, and X. Liu, “Efficient SAT-based
mapping and scheduling of homogeneous synchronous data flow
graphs for throughput optimization,” Proc. RTSS, pp.492–504,
2008.

http://dx.doi.org/10.1109/snpd.2016.7515899
http://dx.doi.org/10.1109/tc.2009.58
http://dx.doi.org/10.1109/real.1994.342713
http://dx.doi.org/10.1049/sej.1991.0015
http://dx.doi.org/10.1109/12.620484
http://dx.doi.org/10.1109/real.1998.739754
http://dx.doi.org/10.1109/aiccsa.2008.4493573
http://dx.doi.org/10.1109/isorc.2007.52
http://dx.doi.org/10.1109/pccc.1996.493608
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1007/978-3-642-10452-7_3
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1109/rtss.2006.44
http://dx.doi.org/10.1109/rtss.2008.49

1066
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

[18] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability modulo
graph theory for task mapping and scheduling on multiprocessor
systems,” IEEE Trans. Parallel Distribution Systems, vol.22, no.8,
pp.1382–1389, 2011.

[19] P. Kumar, D.B. Chokshi, and L. Thiele, “A satisfiability approach
to speed assignment for distributed real-time systems,” Proc. DATE,
pp.749–754, 2013.

[20] P. Tendulkar, P. Poplavko, and O. Maler, “Strictly Periodic Schedul-
ing of Acyclic Synchronous Dataflow Graphs using SMT Solvers,”
Verimag Research Report, pp.1–19, 2014.

[21] P. Tendulkar, Mapping and Scheduling on Multi-core Processors us-
ing SMT Solvers, Ph.D. Thesis, 2014.

[22] R. Bruttomesso, A. Cimatti, and et al., “The MathSAT 4 SMT
Solver,” Proc. CAV, pp.299–303, 2008.

[23] T. Ball, S.K. Lahiri, and M. Musuvathi, “Zap: Automated Theorem
Proving for Software Analysis,” Proc. LPAR, pp.2–22, 2005.

Zhuo Cheng holds B.E. and M.E. degree
from Tianjin University, China, and received
M.S. degree from Japan Advanced Institute of
Science and Technology (JAIST) in 2013. He
is currently a Ph.D. candidate in School of In-
formation Science, JAIST. His research interests
include real-time scheduling, and satisfiability
modulo theories.

Haitao Zhang is presently a lecture in
Lanzhou University, China. He received his
Ph.D. degree from Japan Advanced Institute of
Science and Technology (JAIST) in 2015. He
received his M.S. degree from JAIST & Tianjin
University (China) in 2012. His current research
interests include model checking, software test-
ing.

Yasuo Tan received his Ph.D. from To-
kyo Institute of Technology in 1993. He joined
JAIST as an assistant professor of the School of
Information Science in 1993. He has been a pro-
fessor since 1997. He is interested in Ubiqui-
tous Computing Systems especially Home Net-
working Systems. He is a leader of Residential
ICT SWG of New Generation Network Forum,
a chairman of Green Grid Platform at Home Al-
liance, an advisory fellow of ECHONET Con-
sortium, and a member of IEEE, ACM, IPSJ,

IEICE, IEEJ, JSSST, and JNNS.

Yuto Lim received the B.Eng. and M.
Inf. Tech. degrees from Universiti Malaysia
Sarawak, Malaysia in 1998 and 2000, respec-
tively. He received the Ph.D. degree in commu-
nications and computer engineering from Kyoto
University in 2005. He was a visiting researcher
at Fudan University, China. During 2005-2009,
he was an expert researcher at NICT, Japan.
Since 2009, he has been working at JAIST as
an associate professor. He is a member of IEEE,
IEICE, and IPSJ. His research interests include

wireless sensor networks, home networks, wireless mesh networks, net-
work coding, and CPS.

http://dx.doi.org/10.1109/tpds.2010.204
http://dx.doi.org/10.7873/date.2013.160
http://dx.doi.org/10.1007/978-3-540-70545-1_28
http://dx.doi.org/10.1007/11591191_2

