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PAPER

Reduction of Quantum Cost by Making Temporary Changes to the
Function

Nurul AIN BINTI ADNAN†a), Nonmember, Shigeru YAMASHITA†b), Senior Member,
and Alan MISHCHENKO††c), Nonmember

SUMMARY This paper presents a technique to reduce the quantum
cost by making temporary changes to the functionality of a given Boolean
function. This technique is one of the very few known methods based on
manipulating Exclusive-or Sum-Of-Products (ESOP) expressions to reduce
the quantum cost of the corresponding circuit. The idea involves adding
Mixed Polarity Multiple-Control Toffoli (MPMCT) gates to temporarily
change the functionality of the given function, so that the modified func-
tion has a smaller quantum cost. To compensate for the temporary change,
additional gates are inserted into the circuit. The proposed method finds a
small ESOP expression for the given function, and then finds a good pair
of product terms in the ESOP expression so that the quantum cost can be
reduced by applying the transformation. The proposed approach is likely
to produce a better quantum cost reduction than the existing methods, and
indeed experimental results confirm this expectation.
key words: quantum cost, changing functionality, Mixed Polarity Multiple
Control Toffoli gates, ESOP

1. Introduction

Quantum computers are expected to outperform conven-
tional computers due to the use of some known quantum al-
gorithms. These quantum algorithms are designed to solve
important problems such as database search and factoriza-
tion. In order to demonstrate the ability of quantum com-
puting in the near future, quantum algorithms should be ef-
ficiently implemented. In general, many of the established
quantum algorithms include a part to calculate Boolean
functions corresponding to a problem instance; quantum
algorithms usually consist of common parts and unique
parts [1]. Common parts do not differ for each problem
instance. On the other hand unique parts differ for each
problem instance. For example, one of the famous quantum
algorithms, Grover search algorithm [2], consists of the so-
called oracle part and the other part. The oracle part is used
to calculate a Boolean function depending on a problem.

Therefore, an efficient design technique for realization
of a Boolean function is crucial even for quantum circuits,
as pointed out in the literature (e.g., [1])
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To design a reversible circuit, we need to use primitive
reversible gates. Among existing reversible gates, Mixed
Polarity Multiple-Control Toffoli (MPMCT) gates are often
used to implement a reversible circuit for Boolean functions.
This is because the functionality of MPMCT gates natu-
rally corresponds to AND-EXOR expressions as mentioned
later. Indeed most existing researches generate an initial cir-
cuit consisting of MPMCT gates [3], [4] based on a small
Exclusive-or Sum-Of-Product (ESOP) expression [5]. After
that we decompose a large gate (i.e., with the large number
of inputs) into elementary (i.e., physically realizable) gates.
Once an initial circuit is obtained, further post-optimization
techniques such as library-based, transformation-based and
template-based optimization can be applied [7].

In this paper, we propose a totally new technique for
generating initial quantum circuits for Boolean functions
with reduced quantum cost. Intuitively, our technique works
as follows. We attempt to make temporary changes to the
original function by adding some MPMCT gates, so that
the changed function leads to a smaller quantum circuit.
We evaluate “good” temporary changes and pick the one
that reduces the total quantum cost, including the additional
MPMCT gates, as much as possible.

Further, based on the idea, we propose an iterative
heuristic method to reduce the quantum cost for practical
(i.e., large) circuits. Our technique is of particular interest
since it can be considered as a good pre-optimization method
to make temporary changes to the given function, unlike the
existing methods that keep the function unchanged. Over
the years, many ESOP minimization-based quantum circuit
design methods have been proposed, but to our knowledge,
ours is the only work (i.e., [6]) that formally discusses how
ESOP expressions can be manipulated to reduce the quan-
tum cost of the corresponding circuit by making temporary
changes to the original function.

This paper is organized as follows. The next section
explains the basic concepts used in this work. Section 3
proposes our idea to reduce the quantum cost by manipu-
lating the ESOP expressions. Section 4 explains our pro-
posed heuristic approach based on the idea with motiva-
tional examples. Section 5 shows our experimental results,
and Sect. 6 concludes the paper and discusses future work.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 A NOT gate Fig. 2 A CNOT gate

2. Preliminaries

2.1 Qubit

In classical computers, a bit is used to store the information;
a bit can be in one of the two states, 0 or 1. In contrast, in
quantum computers, quantum bits (usually called qubits) are
used. A qubit can be found in superposition states, that is, in
multiple states (i.e., in both states, 0 or 1) at the same time.
The implementation of superposition states in qubits is very
important as it allows for representing multiple outcomes of
a particular computation. This advantage explains the power
of quantum computers.

2.2 Quantum Gates

A quantum computer can be constructed from a universal set
of logic gates. These logic gates are inherently reversible,
that is, they map each possible input pattern into a unique
output pattern. Here we introduce some reversible gates
used in this paper.

(a) NOT Gate

NOT gate is the simplest example of a one-qubit re-
versible gate. A reversible NOT gate has one input and one
output, as illustrated in Fig. 1. It has no control and inverts
any value of bit (either 0 or 1) that passes through the gate.

(b) CNOT Gate

A controlled-NOT (CNOT) gate has a single control
bit, and a single target bit, as illustrated in Fig. 2. A CNOT
gate inverts the value of the target bit if the control bit is
set to 1. All values passing through the control bit remain
unchanged.

(c) Mixed Polarity Multiple Control Toffoli (MPMCT)
Gate

A reversible gate with all positive controls is called a
Multiple-Control Toffoli (MCT) gate, while a reversible gate
having both positive and negative controls is called a Mixed
Polarity Multiple Control Toffoli gate (MPMCT). The size
of an MPMCT gate is the number of controls plus one.

An MPMCT gate with target bit xt, positive controls
{xi1 , xi2 , · · · , xik } and negative controls {xik+1 , · · · , xim } maps
xt to (xi1 xi2 · · · xik xik+1 · · · xim ) ⊕ xt. The exclusive OR op-
eration is denoted by ⊕. The value of the target bit of an
MPMCT gate is inverted if all the positive and negative con-
trols are set to 1 and 0, respectively. On the other hand,
the values of both control bits and unconnected bits pass
through the gate unchanged.

Figure 3 contains an example of 3 MPMCT gates. The

Fig. 3 MPMCT gates

Fig. 4 Reversible circuit model

target bit is indicated by ⊕ symbol, while a black dot symbol
is used to denote the positive control and a white dot is used
to denote the negative control. The function for gates in
Fig. 3 can be calculated as f(x) = x1 · x2 · x3 · x4 ⊕ x1 · x2 · x3

⊕ x1 · x2. A negative control is identified by an overline in
the logic expression.

2.3 Quantum Cost

In the quantum computation research community, it is usu-
ally assumed that physically realizable elementary gates in
the quantum computation cannot have more than two qubit
interactions. Therefore, in most of the research publications
on quantum circuit design, the cost of a quantum gate with
many inputs is defined as the number of basic (i.e., less than
three inputs) gates to realize the gate. This cost is often
called a quantum cost.

In this paper, we use the quantum cost defined in the
previous work [8], as shown in Table 1. The table shows
the cost of an MPMCT gate with m control bits when m − 3
auxiliary bits are available. Even if we have more efficient
ways to realize an MPMCT gate in the future, our frame-
work does not need to change; we simply change the cost
values accordingly.

2.4 Realizing Boolean Function with MPMCT Gates

Like most of the existing design methods, we consider the
model of reversible circuits for calculating Boolean func-
tions as shown in Fig. 4. More formally, our circuit model is
as follows:

• We have n input variables, x1, · · · , xn, whose states
should not be changed.
• We have one target bit, w, used to calculate a target

Boolean function f (x1, · · · , xn) as w ⊕ f (x1, · · · , xn).

We impose the above restrictions because they are neces-
sary for a reversible circuit to be used in existing quantum
algorithms which utilize the so-called quantum interference.

A minterm of a Boolean function is the combination of
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Table 1 Quantum cost of MPMCT gates with m control bits (0 ≤ m ≤ 15)

Number of Control Bits m Number of Negative Controls
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1
1 1 2
2 5 5 6
3 14 14 16 18
4 20 20 20 22 24
5 32 32 32 34 36 38
6 44 44 44 44 46 48 50
7 56 56 56 56 58 60 62 64
8 68 68 68 68 68 70 72 74 76
9 80 80 80 80 80 82 84 86 88 90
10 92 92 92 92 92 92 94 96 98 100 102
11 104 104 104 104 104 104 106 108 110 112 114 116
12 116 116 116 116 116 116 116 118 120 122 124 126 128
13 128 128 128 128 128 128 128 130 132 134 136 138 140 142
14 140 140 140 140 140 140 140 140 142 144 146 148 150 152 154
15 152 152 152 152 152 152 152 152 154 156 158 160 162 164 166 168

Fig. 5 The quantum circuit for Table 2

values (negative or positive) of all of the input variables such
that the Boolean function evaluates to 1 on this combination.
In the following, an MPMCTn gate means an MPMCT gate
that has n control bits.

To realize an n-input Boolean function with k minterms
by a reversible circuit, it is possible to use k MPMCTn gates
such that;

(1) Each MPMCTn gate corresponds to each minterm of
the function.

(2) The polarity of each control bit for an MPMCT gate cor-
responds to each variable’s polarity in the correspond-
ing minterm.

In other words, if xi or xi appears in a minterm, the corre-
sponding control bit is positive or negative, respectively. In
this construction, the target bit of all the MPMCTn gates
is the same as the qubit, for which we want to realize the
function.

For instance, Table 2 shows a 4-input Boolean function
with 4 minterms, and the circuit in Fig. 5 realizes the func-
tion: x2 ·x4 ·x1 ·x3⊕x2 ·x3 ·x1 ·x4⊕x1 ·x4 ·x2 ·x3⊕x1 ·x3 ·x2 ·x4.
For example, the leftmost gate in Fig. 5 corresponds to
x2 · x4 · x1 · x3; the control bits for x2 and x4 are in the positive
polarities denoted by black circles, and x1 and x3 are in the
negative polarities denoted by white circles.

2.5 Initial Circuit Generation by Minimizing ESOP Ex-
pression

To understand the main contribution of this paper, it is bene-
ficial to understand how we can design a reversible circuit by

Table 2 A truth table for a 4-input Boolean function with 4 minterms

x1 x2 x3 x4 f (x)

0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Fig. 6 Optimization for a group with 22 cells

minimizing ESOP expressions. For that purpose, in the fol-
lowing, we review a design method proposed by Arabzadeh
et. al. [3]. Their method can find a circuit with a low quan-
tum cost by minimizing ESOP expressions using the rules
applied to a Karnaugh map (a Kmap, hereafter).

A Kmap for a Boolean function is a two-dimensional
arrangement of cells where each cell has the correspond-
ing output value (“1” or “0”) of the Boolean function. In
a Kmap, we often omit “0” for simplicity. For example,
the leftmost diagram in Fig. 6 shows a Kmap for the func-
tion: x1x2x3x4 ⊕ x1x2x3x4 ⊕ x1x2x3x4 ⊕ x1x2x3x4. The
cell at the second row from the top and the second col-
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umn from the left corresponds to the function value when
(x1, x2, x3, x4) = (0, 1, 0, 1). Each cell having 1 corresponds
to one minterm in the function. A Kmap is very useful for
simplifying a Boolean expression because we can determine
which minterms should be combined from the positional re-
lationship of corresponding cells in the Kmap. For example,
the rectangular shape of adjacent four cells in the leftmost
diagram in Fig. 6 means that we can get the simple expres-
sion: x2x4 for the function.

In the following, we refer to a blank cell or a cell having
the 0 value as 0-value cell in a Kmap. Also, a cell having
the 1 value is called 1-value cell. For a minterm with n input
variables, it can be expressed as one MPMCTn gate. Also
one 1-value cell corresponds to one minterm in a Boolean
function. Therefore, in a Kmap for an n-input function, one
1-value cell corresponds to one MPMCTn gate.

In the classical logic design, we can optimize a two-
level AND/OR/NOT expression of a function by manipulat-
ing the Kmap for the function with some rules. Arabzadeh
et. al. proposed a similar optimization method for quantum
circuits based on Kmaps [3]; we refer to the method as the
Arabzadeh method in this paper. In the Arabzadeh method,
they apply the so-called CTRs (Common-Target Rules) to
quantum circuits; the rules are stated as follows.

(a) All 1-value cells should at least belong to one group of
cells.

(b) Each group has a size of 2p (p ≥ 0) .
(c) Each group should have a maximum size.
(d) Each 1-value cell should belong to an odd number of

groups.
(e) Each 0-value cell should belong to an even number of

groups.
(f) The number of groups should be minimum (as much as

possible).

A group is a collection of cells that are next to each
other, and denoted by a rectangle on a Kmap. The above
rules indicate that we can also cover 0-value cells when we
consider the optimization of a quantum circuit; this is in
contrast to the case of a two-level AND/OR/NOT expres-
sion where we focus only on 1-value cells.

A group in a Kmap is used to optimize a part of an
expression of a certain Boolean function. For instance,
2p (p ≥ 0) cells correspond to 2p MPMCTn; if they can
be in one group of 2p (p ≥ 0) cells, the 2p MPMCTn can be
optimized to become a single MPMCTn−p gate. Thus, we
can reduce the quantum cost drastically.

Figure 6 shows how this rule is applied to optimize a
circuit. The four leftmost cells in a Kmap in Fig. 6 belong
to a group that can be described as x1x2x3x4 ⊕ x1x2x3x4 ⊕
x1x2x3x4⊕ x1x2x3x4. This corresponds to the circuit that has
four MPMCT4 gates in the middle of the same figure. After
the optimization by using the above rules, we can optimize
the function to be x2x4, and thus we can get the optimized
circuit on the right of the same figure. By looking up the
quantum cost listed in the literature [8], the quantum cost is
reduced from 80 to only 5 in this example.

Fig. 7 Group patterns for Kmap
for Table 2

Fig. 8 The quantum circuit for
Fig. 7

Fig. 9 A bad case for Arabzadeh
method

Fig. 10 The quantum circuit for
Fig. 9

In short, the quantum cost can be reduced by eliminat-
ing more control bits of MPMCT gates in a circuit. When
the size of a group (of adjacent cells) is 2p, we can see
that the ratio of the number of gates after optimization to
the number of gates before optimization becomes 1

2p . Also
the ratio of the number of control bits after optimization to
the number of control bits before optimization becomes n−p

n .
Thus when the size of a group (of adjacent cells) is large, we
can reduce the quantum cost by using the above optimiza-
tion strategy.

For the Boolean function shown in Table 2, if we make
groups using a Kmap as shown in Fig. 7, we are able to re-
alize the resulting quantum circuit as shown in Fig. 8. In the
above example, the quantum cost is reduced from 80 to 20.
Thus, in most cases, we can reduce the quantum cost by us-
ing the Arabzadeh method. In the next section, we propose
another way to reduce the quantum cost; our method can
reduce the cost of the same example to only 9.

3. A Pre-Optimization Technique To Reduce Quantum
Costs

3.1 General Idea and a Motivational Example

When we utilize the Arabzadeh method, the location of a 1-
value cell in the Kmap always stays at the initial point as a
given Boolean function. It seems to be natural to do so, but
the initial locations of 1-value cells may cause bad results in
some cases.

For example, for a Kmap shown in Fig. 9, the method
can only generate the circuit as shown in Fig. 10; we can find
a much better circuit by using our pre-optimization tech-
nique as follows.

Our proposal in this paper involves moving 1-value
cells so that the resulting Kmap can be implemented by a
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Fig. 11 Insertion of a CNOT
gate before G′

Fig. 12 The Kmap after the in-
sertion of the first CNOT gate

Fig. 13 The Kmap before the in-
sertion of the first gate

Fig. 14 The movement of cells
by the insertion of the first CNOT
gate

reversible circuit with a much lower quantum cost. In or-
der to do so, we add MPMCT gates to the initial quantum
circuit. Note that inserting MPMCT gates changes the func-
tionality of the quantum circuit. Therefore we also add the
corresponding MPMCT gates at the end in order to cancel
the effect so that we can have the desired functionality, as
shown below.

Let us explain what we mean by “inserting an MPMCT
gate” using the following example. Let G be a quantum cir-
cuit realizing the Boolean function shown in Table 2. In our
proposed method, we insert an MPMCT gate whose posi-
tive control bit is x3 and the target bit is x4 (i.e., CNOT gate)
before G′ as shown in Fig. 11. Our idea is as follows: if we
implement a circuit G′ whose Kmap is shown in Fig. 12, the
entire circuit (i.e., G′ with the inserted CNOT) realizes the
original function of (G) whose Kmap is shown in Fig. 13.

The reason is as follows: the inserted CNOT (the con-
trol bit is x3 and the target bit is x4) inverts the value of x4

when x3 = 1. This means that the gate changes the input
state (x1, x2, x3, x4) = (0110) to (0111), for example. Also,
the gate moves (1010) to (1011). More precisely, the gate
swaps four pairs of cells in a Kmap, as shown in Fig. 14.
Therefore, we can conclude that by inserting the gate, it is
enough for G′ to realize the function as shown in Fig. 12. In
this case, the desired function will be realized as shown in
Fig. 13.

Similarly, if we insert the second CNOT gate as shown
in Fig. 15, the sub-circuit G′′ in Fig. 15 should realize the
function whose Kmap is as shown in Fig. 16. This is because
the second gate moves the minterm (1001) to (1101), and
(1011) to (1111). Thus G′′ should implement the function
in Fig. 16, which can be done using one Toffoli gate.

Note that the resulting states of qubits after the circuit

Fig. 15 The insertion of the sec-
ond CNOT gate

Fig. 16 The Kmap after the in-
sertion of the two CNOT gates

Fig. 17 The insertion of two
CNOT gates to restore the orig-
inal function

Fig. 18 The final quantum circuit
by our method: Cost 9

in Fig. 15 are not exactly the same as the ones in the desired
circuit shown in Fig. 8, because we changed the functional-
ity of x2 and x4 by inserting the two MPMCT gates. There-
fore, we then insert the matching MPMCT gates after G′′ at
the end of the circuit, as shown in Fig. 17.

In this example, we can get the circuit shown in Fig. 18
whose quantum cost is 9. It should be noted that we get
a circuit with a quantum cost of 20 for this example if we
simply use the Arabzadeh method only.

3.2 How to Insert MPMCT Gates for a Good Pre-
Optimization

The above-mentioned example shows that there is a case
where inserting some MPMCT gates improves the quantum
cost drastically. As we explained, inserting an MPMCT gate
corresponds to the movement of 1-value cells in a Kmap,
i.e., changing the specification of a given function. Thus,
such a change of the specification can be considered as pre-
optimization before generating a quantum circuit.

For simplicity, we consider an n-input function having
k (= 2p) 1-value cells here. If k is small, we can try all the
possible movements of 1-value cells as follows.

• We select one cell from all the k 1-value cells, and
move all the other 1-value cells so that all k 1-value
cells form a group of adjacent cells. As a result, the
function is changed so that it can be realized using only
one MPMCT(n−p) gate.
• The number of the above possible movements is k! ×

nCp by the following reason. First we have k possibil-
ities to select one 1-value cell which we do not move.
For example, let us consider a cell denoted by 1© in
Fig. 19 for the selected 1-value cell. Then, for the se-
lected 1-value cell, we consider nCp groups of k (= 2p)
adjacent cells corresponding to product terms with n−p
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Fig. 19 Various grouping of ad-
jacent cells for a product term with
two literals

Fig. 20 An example of moving
1-value cells

literals of a n-variable function. As Fig. 19 shows, there
are 6 (= 4C2) such groups in this example where n = 4,
p = 2, k = 4. We select one group from the nCp groups,
and then we move other k − 1 cells into the selected
group of cells. We have (k − 1)! of choices to move
which 1-value cell to which cells in the group. For ex-
ample, in Fig. 20, 1© is the selected 1-value cell and
the dotted area is the selected group of cells; we move
k−1 (= 3) cells as the figure shows, and we have (k−1)!
possibilities of such movements. Thus, in total, all the
possible movements is k×nCp×(k−1)!, which is equals
to (k)! × nCp.
Thus, if this number is not large, we can try all possible
movements to find the best movement corresponding
to the best insertion of MPMCT gates with the lowest
quantum cost.

Our experimental results demonstrate that the above
idea is potentially useful by considering a small function
with n = 4 and k = 4 in Sect. 5.1. However, obviously, the
above exhaustive search is not applicable to practical (i.e.,
large) functions; we have various heuristics for large func-
tions.

4. A Heuristic Method Based on Our Idea

It would be a unique idea to make temporary changes to the
functionality of a given Boolean function such that the mod-
ified function has a small ESOP expression, which results in
a quantum circuit with reduced quantum cost. However, in
order to utilize the idea for large practical functions, we have
to come up with an excellent heuristic approach to avoid
the above-mentioned exhaustive search. In this section, we
present a heuristic approach to solve this problem.

First, let us explain how we can reduce the quantum
cost by merging a pair of MPMCT gates. We will use the
following “Merge Rules”.

Merge Rule 1
If two MPMCT gates A and B have the same control bits and
the same target bit but the polarity of only one control bit is
different (i.e., negative and positive), then the two gates can
be merged into one MPMCT gate.

For example, Fig. 21 shows two gates whose polarity
of one control bit, xi, is different. Then, the two MPMCT
gates (Fig. 21) can be merged into one single MPMCT gate,

Fig. 21 Two MPMCT gates Fig. 22 After applying Merge Rule 1

Fig. 23 Two MPMCT gates Fig. 24 After applying Merge Rule 2

as shown in Fig. 22. The control bit of different polarities
can be omitted in the merged gate.
Merge Rule 2
If the control bits of a MPMCT gate, A, plus one additional
bit, xi, are the control bits of another MPMCT gate, B (in
other words, if B has all the control bits of A as its control
bits with one more control bit, xi), then the two gates (A
and B) can be replaced by one single MPMCT gate with the
same control bits as B except for changing the polarity of xi.

For example, Fig. 23 shows two gates where one gate
has fewer control bits by one bit, compared to the other gate.
These two gates can be merged into one gate of the same size
as the larger gate, as shown in Fig. 24.

We should note that if the target bit of one gate is not
the control of the other gate, the two MPMCT gates can be
interchanged. By utilizing this property, we can change the
order of gates so that we can use the above Merge Rules.

Based on the idea presented in Sect. 3, our strategy is to
insert an MPMCT gate in order to make temporary changes
to the given functionality so that we can apply the above
Merge Rules to the changed function. The quantum cost of
an MPMCT gate whose number of inputs is more than two,
is relatively large and may substantially increase the cost
when it is used. This is why we only consider using CNOT
gates for making temporary changes to the functionality. We
would also like to note that adding a CNOT gate changes
the functionality so that some original MPMCT gates should
be changed to the ones with a higher quantum cost. Thus,
we first classify MPMCT gates based on how they should
be changed by adding a CNOT gate to avoid the above-
mentioned unwanted increase of the quantum cost.

Classification of MPMCT Gates.

In the following, we classify gates in a circuit accord-
ing to their characteristics when we consider inserting a
CNOT gate, g, whose control and target bits are xc and xt,
respectively.

Type A: Type A gates have a control bit at xt, and we
should change the polarity of the control bit on xt if we
insert the CNOT gate g. In other words, Type A gates
have a control bit on xt and the same polarity control
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bit on xc as the inserted CNOT gate.
Type B: We do not need to change the polarity of any con-

trol bit of Type B gates even if we insert the CNOT gate
g. There are two kinds of such gates: one has no con-
trol bit at xt, and the other has control bit at xc with the
different polarity as g.

Type C: We consider a gate as a Type C gate if the gate has
no control bit at xc but has a control bit on xt. When
we insert g, the function is changed so that any Type
C gate, gc, should be changed to two MPMCT gates
having one more control bit than gc. Thus, the quantum
cost for Type C gates should be increased drastically if
we change the functionality by inserting g.

The following heuristic procedure tries to insert the
best CNOT gate to reduce the quantum cost. The proce-
dure applied the CNOT gate insertion to only a sub-circuit
that does not contain Type C gates because Type C gates are
not good for inserting a CNOT gate, as discussed above.

Procedure Inserting Best CNOT(G)

Here we want to reduce the quantum cost of a MPMCT-
based circuit G to calculate a Boolean function of n-variable,
consisting of m gates: g1, g2, g2, · · · , gm. If a circuit has more
than one output, we apply our procedure independently to
each output, and combine them in the end.

Inserting Best CNOT(G) tries all the combination of i
and j (1 ≤, i, j ≤ n) as well as the polarities of the control
bit (negative or positive) for the following circuit transfor-
mation, and chooses the best transformed circuit with the
smallest quantum cost.

• For (i, j), insert a CNOT gate whose control and target
bits are xi and x j at the beginning of the circuit G.
• Group the gates in G into Type A, B, and C for the in-

serted CNOT gate. Then, transform G to G′ consisting
of the following parts in this order from the beginning
of the circuit.

CNOT gate: The inserted CNOT gate whose control
and target bits are xi and x j at the beginning.

Sub-circuit A’: A sub-circuit containing all Type A
gates. We need to change the polarity of each
control bit in x j because of the property of Type A
gates. Thus, we call this part Sub-circuit A’ (not
Sub-circuit A).

Sub-circuit B: A sub-circuit containing all the Type
B gates. These gates are not changed even if the
CNOT gate is inserted before this part.

CNOT gate: The inserted CNOT gate whose control
and target bits are xi and x j to restore the change
of the functionality.

Sub-circuit C: A sub-circuit containing all the Type
C gates. These gates are not changed because
they are put outside of the pair of inserted CNOT
gates.

• Because the polarity of the control bit (i.e., x j) of each
gate in Sub-circuit A’ is changed, there is a chance that

Fig. 25 An example of reversible circuit

Fig. 26 Inserting a CNOT gate

we can apply either Merge Rule 1 or Merge Rule 2 to
some pairs of gates in the sub-circuit consisting of Sub-
circuit A’ and Sub-circuit B. We apply the rule repeat-
edly in an greedy manner such that we can reduce the
cost as much as possible until there is no pair, to which
the two merge rules can be applied.

Inserting Best CNOT(G) transform G into G′ consist-
ing of two sub-circuits (and additional two CNOT gates),
i.e., one part of the G′ consists of Sub-circuit A’ and Sub-
circuit B, and the other part is Sub-circuit C. We recursively
apply the procedure to the two sub-circuits until we cannot
get any good circuit transformation. (More precisely, we
call Inserting Best CNOT(Sub-circuit A’ + Sub-circuit B)
and Inserting Best CNOT(Sub-circuit C) recursively.) The
following example helps understand the proposed proce-
dure.

Example 1: Let us consider an example of a reversible cir-
cuit shown in Fig. 25. Let G = {g1, g2, g3, g4, g5, g6, g7,
g8} be a set of MPMCT gates. If we insert an MPMCT
gate whose negative control bit is x5 and target bit is x3

(i.e., CNOT gate) before G, as shown in Fig. 26, the inserted
CNOT gate (the control bit is x5 and target bit is x3) inverts
the value of x3 when x5 = 0.

This means that the CNOT gate inverts the input state
of the control bit of g1, g2, g4, g6 and g8, as shown in Fig. 27.
For instance, g2 works when the primary input values are
(−1100) = x2 x3 x4 x5 in the original function. But after
we make temporary changes to the function by inserting the
CNOT gate, the above input values are changed to (−1000)
= x2 x3 x4 x5. Note that “-” refers to don’t care which can
be treated as either 1 or 0. Thus we change the polarity of
the control bit of each Type A gate, as shown in Fig. 28.

In contrast, for g5 and g7, inserting the CNOT gate does
not change the primary values when these gates are used.
Thus, these gates are Type B gates, and they are not changed
after inserting the CNOT gates, as shown in Fig. 29.

For this example, g3 is a Type C gate (See Fig. 30). So,
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Fig. 27 Type A gates (shaded)

Fig. 28 Modified Type A gates after an MPMCT gate is inserted

Fig. 29 Type B gates (shaded)

Fig. 30 Type C gate (shaded)

Fig. 31 Type C gate is put after the second CNOT gate to restore the
original function

we do not want to change the input values for this gate by
inserting the CNOT gate. Therefore, we put g3 outside the
effect of the functional change by the CNOT gate as shown
in Fig. 31. Note that the second CNOT gate before g3 in
Fig. 31 is to restore the original function.

After changing the polarities of the control bit of
Type A gates by considering the effect of inserted CNOT

Fig. 32 A Pair of gates that satisfy Merge Rule 1

Fig. 33 After merging g5 and g8

Fig. 34 Inserting the second pair of CNOT gates

gate, as mentioned above, we try to find some pairs of gates
of Type A and Type B, to which the merge rules can be ap-
plied. If there is a gate pair that satisfies the conditions of
a merge rule, we take the best pair of gates (in terms of the
cost reduction) and update the circuit according to the merge
rule. For example, gates g8 and g5 satisfy the condition of
Merge Rule 1 as shown in Fig. 32. Thus, we replace the pair
of gates with a single gate g′5, as shown in Fig. 33.

Next, we apply our procedure Inserting Best CNOT
again to the shaded sub-circuit, as shown in Fig. 33, and we
insert another pair of CNOT gates (dashed boxes in the fig-
ure), as shown in Fig. 34 where we change the polarity of
the control bit x2 in gate g2. Then, we try to find any pair
of gates, which satisfy the merge rule conditions, and apply
Merge Rule 1 to the modified gates g2 and g4. As a result,
the pair of gates is replaced with a new single gate g′2, as
shown in Fig. 35.

Our procedure searches all possible gate pairs satisfy-
ing the merge rule conditions, and updates sub-circuits. The
procedure continues until there is no reduction is possible.
This way, we can get a circuit with a lower quantum cost.
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Fig. 35 After merging g2 and g4

Table 3 Preliminary Experimental Results

Quantum Cost EXORCISM4 [10] Proposed Pre-Optimization
0 − 20 292 1096
21 − 40 968 724
41 − 60 560 0
61 − 80 0 0

Average Cost 31.6 20.2

5. Experimental Results

5.1 Preliminary Experimental Results

To evaluate the potential effectiveness of our pre-
optimization technique, we applied the method explained
in Sect. 3 to all the 4-input functions with four minterms,
i.e., we tried to find the best insertion resulting in the lowest
quantum cost for each of 16C4 = 1820 functions.

For comparison, we also tried to find a good quantum
circuit for each function by finding a small ESOP expres-
sion. Note that this method should be essentially similar
to designing reversible circuits by minimizing ESOP ex-
pressions, e.g., using the Arabzadeh method. To get small
ESOP expressions, we used a state-of-the-art ESOP mini-
mizer EXORCISM4 [10].

Table 3 shows the comparison between our method
and the method based on the ESOP minimization by
EXORCISM4 [10]. The table shows the number of func-
tions (among all the 4-input functions with four minterms)
generated by the two methods, divided into four groups in
terms of the quantum costs. As can be seen from this ta-
ble, our proposed method succeeds in designing most of the
given quantum circuits with lower quantum costs. We con-
firmed that our proposed method achieves lower quantum
cost for about 97.6% (1,776 Boolean functions) of all the
functions compared to the EXORCISM4 program. In aver-
age, our method can reduce the cost by 36%, compared to
the EXORCISM4 program.

5.2 Heuristic Experimental Results

In order to demonstrate the usefulness of our idea for large
practical functions, we have proposed a heuristic method ex-
plained in Sect. 4.

We applied our algorithm to various benchmark cir-
cuits and compared our results with the quantum circuit ob-
tained by using the ESOP minimizer, EXORCISM4 [10].
The result is shown in Table 4 where the second column

Table 4 Heuristic Experimental Results
Function EXORCISM4 [10] Proposed Heuristic CPU time (s) % Cost Reduction
z4ml 666 513 0.01 22.97
9symml 3,429 1,563 0.08 54.42
alu2 13,807 10,504 0.04 23.92
alu4 557,684 383,312 0.92 31.27
b1 32 15 0.00 53.13
vda 297,959 287,785 0.19 3.41
ttt2 57,207 56,447 0.02 1.33
apex6 3,248,463 3,068,226 4.30 5.55
cm82a 151 122 0.00 19.21
x2 822 757 0.00 7.91
4mod7 26 179 113 0.00 36.87
4 49 7 216 203 0.00 6.02
hwb4 12 266 182 0.00 31.58
rd32 19 30 21 0.00 30.00
rd53 68 318 198 0.00 37.74
rd73 69 1391 998 0.05 28.25
rd84 70 3558 2263 0.17 36.40
sym6 63 651 347 0.00 46.70
sym9 71 7439 4727 0.05 36.47
urf5 76 64,914 34,914 0.30 46.22
urf6 77 57338621 23905443 104.39 58.31
seq 201 159,851,461 97,757,257 0.88 38.84
cordic 55,152,422 20,286,205 2.86 63.22
too large 402,341,259,373 352,671,037,810 56.11 12.35

refers to the quantum cost by the ESOP minimizer, and the
third column refers to the quantum cost obtained by our pro-
posed method, respectively. The fourth column reports the
CPU time of our method. The outcome of the comparison
clearly shows that the proposed method can significantly re-
duce the quantum cost in all cases.

6. Conclusion and Future Work

This paper proposes a new way to reduce the quantum cost
by manipulating the ESOP expressions. The approach in-
volves inserting MPMCT gates to make temporary changes
to the functionality of Boolean functions followed by the ap-
plication of conditional merge rules. In order to evaluate the
proposed method, we had applied it to various benchmark
circuits. The experimental results in Sect. 5 clearly show
that the proposed method can significantly reduce the cost
in almost all cases. Thus, the experiments demonstrated that
our method not only produces a smaller ESOP expression
but also leads to a lower quantum cost for quantum circuits.

We have only focused on demonstrating the useful-
ness of making temporary changes to the original function-
ality by inserting MPMCT gates. Currently, we use only
MPMCT gates to design a quantum circuit. Thus, one pos-
sible direction of future work is to investigate how useful
the proposed idea would be when applied to other quantum
gates (i.e., controlled-V and controlled V†, where V and V†
are referred to as the square root of NOT gates; applying V
twice and applying V† twice are both equivalent to a NOT
operation).
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