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A Formal Model to Enforce Trustworthiness Requirements in
Service Composition
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SUMMARY With the in-depth development of service computing, it
has become clear that when constructing service applications in an open
dynamic network environment, greater attention must be paid to trustwor-
thiness under the premise of functions’ realization. Trustworthy computing
requires theories for business process modeling in terms of both behavior
and trustworthiness. In this paper, a calculus for ensuring the satisfaction of
trustworthiness requirements in service-oriented systems is proposed. We
investigate a calculus called QPi, for representing both the behavior and
the trustworthiness property of concurrent systems. QPi is the combination
of pi-calculus and a constraint semiring, which has a feature when prob-
lems with multi-dimensional properties must be tackled. The concept of
the quantified bisimulation of processes provides us a measure of the de-
gree of equivalence of processes based on the bisimulation distance. The
QPi related properties of bisimulation and bisimilarity are also discussed.
A specific modeling example is given to illustrate the effectiveness of the
algebraic method.
key words: trustworthy software, process algebra, pi-calculus, Q-algebra,
semi-ring

1. Introduction

Service-oriented Computing (SOC), which is currently
mainly led by Web Services, is the contemporary main-
stream model and an important development direction of
network computing. Service Computing refers to a devel-
opment paradigm and relevant theories, methods, technolo-
gies, and supporting environment, for creating applications
based on services and their compositions. In recent years,
with the in-depth development of related research and appli-
cations, it has become clear that when creating service ap-
plications in an open dynamic network environment, greater
attention must be paid to their trustworthiness under the
premise of system functions’ realization. The Trusted Com-
puting Group (TCG) defined trusted computing as a com-
puter system which will consistently behave in expected
ways, and whose behavior can be enforced by computer
hardware and software [1]. From the corresponding defini-
tions [1], [2] and related research [3], it is evident that trusted
computing is a measure of the non-functional properties of a
system, such as real-time performance, reliability, availabil-
ity, security, and so on. We believe that the concept of trust-
worthiness of a service computing system has two aspects:
one is that the functions of the system are fully realized, and
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the other is that the non-functional properties of the system
meet users’ needs.

Computer science theory and formal methods are con-
sidered to constitute an important approach to ensure soft-
ware trustworthiness [4]. Pi-calculus [5], which focuses on
inter-process mobile communications, is a theory for mod-
eling concurrent systems and can be considered as a con-
tinuation of Milner’s work on the process calculus CCS. It
allows channel names to be communicated along the chan-
nels themselves, and in this way it is able to describe concur-
rent computations whose network configuration may change
during the computation. It also provides a strong formal the-
ory for modeling service computing systems and analyzing
their dynamic characteristics.

Based on a development of Milner’s pi-calculus that
explicitly investigates how the compositional features of
process algebra may translate to the trustworthiness domain,
we present a calculus for modeling processes’ behavior and
trustworthiness properties. We extend the pi-calculus by in-
troducing an algebra called Q-algebra [6], which adds a new
multiplicative operator to the constraint semiring. Q-algebra
allows the description of multi-dimensional trustworthiness
properties in a uniform way. We combine Q-algebra and pi-
calculus and associate each pi-calculus action with a trust-
worthiness tuple. Using this method, we model the behavior
and trustworthiness properties of service computing systems
in a unified manner. The operational semantics of QPi are
also combined with trustworthy properties, and the behavior
and trustworthiness of the modeled system can be deduced
from the structure of processes and the inter-operations be-
tween these processes. We introduce the concept of quan-
tified bi-simulation of processes, which provides us with a
measure of the degree of equivalence of processes’ behavior
and trustworthiness properties. The theory of quantified bi-
simulation can not only be used to analyze the equivalence
of process behaviors qualitatively, but also to analyze the
degree of similarity between process behavior and trustwor-
thiness quantitatively. The feasibility and effectiveness of
the proposed calculus is demonstrated through a modeling
and analysis example.

This paper is organized as follows: in the next section
we begin with a brief introduction on Q-algebra. Then, we
present the QPi language in Sect. 3. The operational seman-
tics of QPi are discussed in Sect. 4, while in Sect. 5 we define
a quantified version of bisimulation in QPi and demonstrate
some of its properties. Section 6 introduces a temporal logic
that allows one to associate trustworthiness constraints with
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fragments of behaviors. In Sect. 7, we present the QPi model
of the ABP (Alternating Bit Protocol) communication pro-
tocol, where the effectiveness of the calculus is illustrated
through the analysis of the QELTS of the system. In Sect. 8
we discuss related work. Finally, we conclude with Sect. 9.

2. Q-Algebra

In order to construct a calculus for modeling service com-
puting system behaviors and trustworthiness properties, we
need a method to describe the trustworthiness features of the
services and their activities. The trustworthiness of service
entities is a measure of its non-functional properties along
multiple dimensions, such as reliability, security, scalability,
performance (in terms of, for example, response time), and
so on. Different aspects of trustworthiness properties may
belong to different domain types; for instance, the real-time
performance of a service can be described as a real num-
ber belonging to R+. The security property may be a set of
permissions that describe whether or not it is permitted to
perform an action. The Q-Algebra proposed in [6] allows
the description of multi-dimensional trustworthiness prop-
erties in a uniform manner. Q-algebra is an extension of the
constraint semiring, which adds a new multiplicative opera-
tor to the constraint semiring. First, we introduce the basic
concepts of the constraint semiring [7].
Definition 2.1 (c-semiring). A c-semiring is a tuple S =
<A,+,×, 0, 1> such that

• A is a set and 0, 1 ∈ A;
• +, called the additive operation, is a commutative, asso-

ciative and idempotent operation such that 0 is its unit
element and 1 is its absorbing element;
• ×, called the multiplicative operation, is an associative,

commutative operation such that 1 is its unit element
and 0 is its absorbing element;
• × distributes over +.

We call + the additive operator and × the multiplicative
operator, while A is called the domain set of the c-semiring
S. The additive operation is used to compare the elements
in the set A, whereas the multiplicative operation is used to
describe the composition of two elements. 0 is the minimum
or ‘worst’ element of the set A, while 1 is the maximum or
‘best’ element of the set A. The additive operation can be
considered as a “selection” operation. It suggests that a + b
means to select the better element between a and b. A par-
tial order ≤ can be defined based on the + operation on set
A, such that a1 ≤ a2 holds if and only if a1 + a2 = a2 holds.
That is to say, two trustworthiness tuples can be compared
based on the relation ≤, if and only if one of them can be
obtained by applying the + operation on them. The partial
order ≤ is used to classify the elements in set A according
to their “qualities”. Actually, the additive operation, when
applied on two elements, always yields the lower up bound-
ary of these elements as a result. A detailed discussion of
c-semiring properties can be found in [7].

When modeling a service computing system using pro-

cess algebra, there will be two patterns of composition
between processes, the sequential and the concurrent. Q-
algebra adds a new multiplicative operator to the constraint
semiring and defines the different composition operations of
trustworthiness values with respect to sequential and con-
current execution. In this section, we present some of the
basic concepts Q-algebra.
Definition 2.2 A Q-algebra is an algebraic structure R =
<C,+,×,�, 0, 1> such that R× = <C,+,×, 0, 1> and R� =
<C,+,�, 0, 1> are both c-semirings. C is a set of trustwor-
thiness values which is called the domain of R.

The + operator bears the same meaning as in the def-
inition of c-semiring, and is used to compare or select the
trustworthiness values. The × operator is used to com-
pute the trustworthiness of a service which is composed of
two services executed in sequence, while the � operator
is used to compute the trustworthiness of a service which
consists of two concurrently executed services. Different
Q-algebras are introduced for the description of different
trustworthiness dimensions. For example, the Q-algebra
Crt = <R+ ∪ {+∞},min,+,max,+∞, 0> can be used to de-
scribe the real-time property of service. Specifically, the
real-time property of a service performing an activity can
be defined as a non-negative real number in R+, where +∞
is the worst possible value and 0 is the best value for the do-
main. The min operator indicates that when two execution
times are compared, the shorter one is better. The + operator
means that when two activities are executed sequentially, the
execution time of the composed service is the sum of the du-
ration of each activity. The max operation means that when
two activities are executed concurrently, the execution time
of the composed service is equal to the duration of the longer
activity. The Q-algebra <2N ,∪,∩,∩, φ,N> can be used to
describe the security property of services, such as whether a
service has a set of permissions to perform an operation.

Several Q-algebras can be composed through the prod-
uct operation:
Definition 2.3 The product of n given Q-algebras Ri =

<Ci,+i,×i,�i, 0i, 1i>, (i = 1, . . . , n), is an algebraic struc-
ture Comp(R1, . . . ,Rn) = <C,+,×,�, 0, 1> defined by:

• C = C1 ×C2 × . . .Cn

• (a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 +1 b1, a2 +2 b2,
. . . , an +n bn)
• (a1, a2, . . . , an) × (b1, b2, . . . , bn) = (a1 ×1 b1, a2 ×2 b2,
. . . , an ×n bn)
• (a1, a2, . . . , an) � (b1, b2, . . . , bn) = (a1 �1 b1, a2 �2 b2,
. . . , an �n bn)
• 0 = (01, 02, . . . , 0n)
• 1 = (11, 12, . . . , 1n)

Theorem 2.1 Given n Q-algebras Ri = <Ci,+i,×i,�i, 0i,
1i>, (i = 1, . . . , n), the structure Comp(R1, . . . ,Rn) is a Q-
algebra.

The proof of Theorem 2.1 is omitted and can be found
in [8]

In light of the above mentioned Q-algebra features, we
can describe the trustworthiness of services and their activi-
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ties. We introduce different Q-algebras for the descriptions
of different aspects of service trustworthiness. The trust-
worthiness property of a specific dimension is described as
an element in the domain set. The × operation describes
the trustworthiness of sequential compositions of services
for a specific dimension, whereas the � operation does so
for concurrent compositions. Several single dimensional
Q-algebras can be combined into a multi-dimensional Q-
algebra to obtain a unified description of the trustworthiness
of a service.

In order to describe the meaning of an element in a
specific position of a trustworthiness tuple, to each element
of the tuple we attach a label. This definition allows us to
write values such as (responsetime:0.5, availability:0.99) for
the description of the real-time and availability properties
rather than (0.5, 0.99). The Q-algebras with this form are
called labeled Q-algebras.
Definition 2.4 Suppose for all 1 ≤ i ≤ n and with Ri =

<Ci,+i,×i,�i, 0i, 1i> being a Q-algebra, a distinct label li
is associated with each Ri, where i � j if li � l j. Then,
R = <C,+,×,�, 0, 1> is a labeled Q-algebra if

• C = ({l1} ×C1) × . . . × ({ln} ×Cn)
• 0 = (l1:01, . . . , ln:0n)
• 1 = (l1:11, . . . , ln:1n)
• (l1:c1, . . . , ln:cn) + (l1:c1’, . . . , ln:cn’) =

(l1:c1 +1 c1’, . . . , ln:cn +n cn’)
• (l1:c1, . . . , ln:cn) × (l1:c1’, . . . , ln:cn’) =

(l1:c1 ×1 c1’, . . . , ln:cn ×n cn’)
• (l1:c1, . . . , ln:cn) � (l1:c1’, . . . , ln:cn’) =

(l1:c1 �1 c1’, . . . , ln:cn �n cn’)

3. Quantified Pi Calculus

When defining the quantified pi-calculus, we endeavor to
combine the features of Q-algebra and those of pi-calculus.
The aim is to extend pi-calculus using Q-algebra to obtain
a calculus that allow us to model both the (functional) be-
havior and (non-functional) trustworthiness properties of a
composed system. Each action in pi-calculus is associated
with a trustworthiness tuple, which describes the trustwor-
thiness property of the action, such like real-time perfor-
mance, cost, probability, etc. In QPi, we use the term activ-
ity instead of the usual process algebra concept of an action
(like in CCS). The syntax of QPi is defined as follows.

In this paper, we adopt the following conventions:
N is an infinite set of names, ranged over by u, v, w,

x, y, z, etc. K is a set of process identifiers, ranged over by
A, B, C. . . . P, Q, R. . . , representing a process or an expres-
sion of a process. A = {x̄y, x(y), τ | x, y ∈ N} is the set of
all actions. x̄y and x(y) denote input and output actions re-
spectively, while τ is a special name which denotes internal
actions. Q = <C ,+,×,�, 0, 1> is the Q-algebra for describ-
ing the trustworthiness domain. C is a set of trustworthiness
values which is called the domain of Q . An activity set in
QPi calculus is defined as Act := A × C , ranged over by α,
β, γ. Thus, each activity α is defined as a pair <a, c> where

a := x̄<y> | x(y) | τ is the action and c ∈ C is the activity
trustworthiness value that belongs to the trustworthiness do-
main C .

The set of processes is defined as follows:

P ::= 0 | α.P | P1 + P2 | P1 | P2 | (x)P | [x = y]P

| A(y1, . . . , yn)

We consider the following language constructs and
their intended interpretations in some detail:

• The empty agent 0, which cannot perform any actions;
• Prefix α.P. Prefixes are the basic mechanism through

which the behaviors of services are constructed. α.P
refers to a communication (or silent) action with a cor-
responding trustworthiness value. The service subse-
quently behaves as service P. Each α ∈ Act is an activ-
ity which has the form as (a, c).
Here a ::= x̄y | x(y) | τ is an action, while c is a value
that describes the trustworthiness of the action.

(x̄y, c) is called a negative prefix. A name x may
be thought of as an output port of an process which
contains it; (x̄y, c).P outputs the name y at port x and
then behaves like P.

(x(y), c) is called a positive prefix. (x(y), c).P in-
puts an arbitrary name z at port y and then behaves like
P{z/y}. The trustworthiness of action x(y) is c. The
name y is bound by the positive prefix (x(y), c).

(τ, c) is called a silent prefix. (τ, c).P performs the
silent action τ and then behaves like P. τ is an internal
action which is unobservable outside the process.

P{z/y} denotes the substitution of z for all free oc-
currences of y in P;
• A summation P1 + P2. This represents a process which

may behave either as P1 or as P2. It allows all the cur-
rent activities of P1 and all the current activities of P2;
• P1 | P2 denotes the concurrent behavior of P1 and P2,

where P1 and P2 synchronize on complementary activ-
ities. For each new activity obtained as a combination
of its component process’ activities, the corresponding
trustworthiness value is computed from the values of its
constituents using the � operator of the corresponding
Q-algebra;

• A restriction (x)P. This agent behaves as P but the
name x is local, meaning it cannot be immediately used
as a communication port between P and its environ-
ment. However, it can be used for communication be-
tween components within P;
• A match [x = y]P. This agent behaves like P if the

names x and y are identical; otherwise it does nothing;
• A defined agent A(y1, . . . , yn). For any agent iden-

tifier A (with arity n) used thus, there must be a
unique defining equation A(x1, x2, . . . , xn) ::= P,
where the names x1, x2, . . . , xn are pairwise dis-
tinct and are the only names which may occur
free in P. Then A(y1, y2, . . . , yn) behaves like
P{ y1/x1, . . . , yn/xn }. Defining equations in this man-
ner allows us to perform recursion, since P may contain
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Fig. 1 QPi-calculus flow chart of a business process

any agent identifier, even A itself.

For each agent in one of the forms (x(y), c).P and (y)P,
the occurrence of y with in parentheses is a binding occur-
rence, and in each case the scope of the occurrence is P. An
occurrence of y in an agent is said to be free if it does not
lie within the scope of a binding occurrence of y. The set
of free names occurring in P is denoted as f n(P). The set
of bound names occurring in P is denoted by bn(P). The
set f n(P) ∪ bn(P) of all names occurring in P is denoted as
n(P). We then have the following properties:

f n(0) = ∅; f n(P |Q) = f n(P) ∪ f n(Q); f n(P + Q) =
f n(P) ∪ f n(Q); f n((τ, c).P) = f n(P);

f n((x̄y, c).P) = {x, y} ∪ f n(P); For output, where x, y
are free names

f n((x(y), c).P) = {x} ∪ ( f n(P) − {y}); For input, where
x is free name while y is bound name.

f n((x).P) = f n(P) − {x}; For restriction, where x is not
a free name.

This intuitive explanation can be elaborated in terms
of the structural operational semantics discussed in Sect. 4,
which define a labelled transition system for QPi processes.
Before that, we present a simple example, illustrating how
the language may be used to describe a system in terms of
both behavior and trustworthiness.

As shown in Fig. 1, the CRM service fetches purchase
orders from a CRM application system and sends them to
an ERP service. When it receives a purchase order, the ERP
service makes a judgment according the content of the order.
If the purchase order is approved it will be forwarded to the
SMTP service, which will send a confirmation e-mail to the
customer. Otherwise, the rejected order will be displayed on
an employee’s terminal via a display component. Historical
statistical information available to the system indicates that
there is a 90% probability that orders sent to the ERP service
will be approved. The services and system are thus defined
as:
CRM: let Nc = {x,PO},
CRM(Nc) = (x̄<PO>, (prob:1, time:1)).CRM(Nc)
ERP: let Ne = {x, y, z,PO,Acc,Rej},
ERP(Ne) = (x(Msg), (prob:1, time:1)).[Msg=PO]((ȳ<Acc>,
(prob:0.9, time:1)).ERP(Ne) + (z̄<Rej>, (prob:0.1, time:1)).
ERP(Ne))
SMTP: let Ns = {y,Acc}, SMTP(Ns) = (y(Msg), (prob:1,

time:1)).[Msg = Acc](τ, (prob:1, time:1)).SMTP(Ns)
Display: let Nd = {z,Rej},
Display(Nd) = (z(Msg), (prob:1, time:1)).[Msg = Rej]
(τ, (prob:1, time:1)).Display(Nd)

Let NP = { x, y, z,PO,Acc,Rej }, in which case the
whole business process is defined as: Process(NP) =
CRM(Nc) | ERP(Ne) | SMTP(Ns) | Display(Nd)

Each action in QPi is associated with a value which
describes its trustworthiness property. The given example
describes the trustworthiness property of a business process
from the aspects of activity occurrence probability and ex-
ecution time. The CRM service outputs message PO via
channel x with a probability of 100% and requires one
time unit for this. The ERP service approves orders and
sends confirmation e-mails with a probability 90%, while
the probability of an order refusal occurrence is 10%.

4. Operational Semantics

The semantics of QPi are defined through a quality extended
labelled transition system (QELTS). A QELTS is like a gen-
eral labelled transition system, but the transitions are la-
belled using a tuple containing the action a and its corre-
sponding trustworthiness value c, which describes the be-
havior of the services and takes trustworthiness into account.
The transition form in QPi is P

(α,c)−−−−−−→ Q. Here P and Q are
process expressions and (a, c) ∈ Act is an element in an ac-

tivity set. P
(α,c)−−−−−−→ Q means that P does activity (a, c) and

then evolves to Q. a := x̄y | x(y) |τ describes the action of the
activity and c describes the trustworthiness of the action.
Definition 4.1 A Quality Extended Labelled Transition Sys-
tem is defined as a tuple QLTS = <S, s0,L,→>, where

• S is a set of states,
• s0 ∈ S is the initial state,
• L ⊆ Act is a set of labels denoting activities,
• → ⊆ (S × Act × S) is a set of labelled transitions. Each

transition is a quadruple consisting of a source state s,
an action a, a trustworthiness value c, and a target state

s’ and it is denoted as s
(a,c)−−−−−→ s′. Intuitively, a tran-

sition means that the transitioning system, when in a
current state s, can change its state to s’ by performing
action a with trustworthiness value c.

Definition 4.2 The semantics for a QPi service P are given
by a QELTS(EQPi, P,Act,→) where EQPi is a set of QPi ex-
pressions and the transition relation→ ⊆ (EQPi×Act×EQPi)
is the least relation satisfying the rules in Table 1.

The operational semantics listed in Table 1 give the
evolution rules of the QPi calculus process. Each activity
completion brings about a transition in the system, and each
activity has its own trustworthiness property and this prop-
erty is represented explicitly in the transition.

The evolution of a system modeled in QPi is
represented by a path through the corresponding
QELTS(S, s0,L,→). A path ω is a non-empty sequence

of the form s1
(a1,c1)−−−−−−−→ s2

(a2,c2)−−−−−−−→ s3 . . . where si ∈ S,
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Table 1 Operational semantics of QPi calculus

(ai, ci) ∈ L for all i ≥ 1. ω(i) denotes the i-th state of a path
ω. Path(s) denotes the set of all paths beginning at state s.

The length l(ω) of a finite path ω = s1
(a1,c1)−−−−−−−→ s2

(a2,c2)−−−−−−−→
s3 . . . sn

(an,cn)−−−−−−−→ sn+1 is defined as the number of tran-
sitions n, while its trustworthiness is defined as q(ω) =
c1 � c2 � · · · � cn. Correspondingly, the length of an infinite

path ω = s1
(a1,c1)−−−−−−−→ s2

(a2,c2)−−−−−−−→ s3 . . . is l(ω) = ∞. Fur-

thermore, for an arbitrary path ω = s1
(a1,c1)−−−−−−−→ s2

(a2,c2)−−−−−−−→
s3 . . ., if l(ω) > n, then we define headn(ω) to be the finite

path ω = s1
(a1,c1)−−−−−−−→ s2

(a2,c2)−−−−−−−→ s3 . . . sn
(an,cn)−−−−−−−→ sn+1

which consists of the first n transitions of ω, and tailn(ω) as
the remainder of ω, i.e., the sub-path of ω starting at sn+1.

5. Quantified Bisimulation

Bisimulation theory is used to study if two concurrent pro-
cesses have the same behavior and forms an important part
of pi-calculus theory. When introducing the trustworthi-
ness property into pi-calculus, we are not only interested
in assessing whether or not two concurrent systems have
the same behavior, but we are concerned with the degree to
which the two systems can simulate each other, and to which
degree the two systems differ in their trustworthiness prop-
erty. For these reasons, we introduce the concept of quan-
tified bisimulation, which allows us to assess the degree of
equivalence between services, and which is very suitable for
determining whether a service can replace another without
any reduction in trustworthiness. We first consider strong
bisimulation, which is often defined as follows:
Definition 5.1 A binary relation� ⊆ S× S is a bisimulation

for QELTS(S, s0,L,→) if P�Q implies:

1. if P
(a,c)−−−−−→ P’, and a is a free action, then for some Q’,

Q
(a,c)−−−−−→ Q’ and P’�Q’

2. if P
(x(y),c)−−−−−−−→ P’, and y � n(P,Q), then for some Q’,

Q
(x(y),c)−−−−−−−→ Q’ and for all w, P’{w/y}�Q’{w/y}

3. if P
(x(y),c)−−−−−→ P’ and y � n(P,Q), then for some Q’,

Q
(x(y),c)−−−−−→ Q’ and P’�Q’
Definition 5.1 is an extension of the pi-calculus strong

bisimulation definition found in [5]. We see that this defini-
tion matches two transitions only when the actions are same
and the corresponding trustworthiness values are identical.
In fact, this is not a robust relation for considering trust-
worthiness aspects. For example, services that differ by a
very small amount in terms of execution time would be con-
sidered just as different as services that exhibit completely
different behavior. To find a more suitable approach to dif-
ferentiate services according to both behavior and trustwor-
thiness aspects, we borrow from mathematics the concept
of metrics and define a quality metric space of activities as
follows:
Definition 5.2 A quality metric space on activities is a pair
<Act, ρ>, in which Act ⊆ A × C is a set of activities and ρ
is a mapping from Act × Act to [0,∞] such that

• ρ((a, c), (b, c′)) = ∞ if a � b,
• ρ((a, c), (a, c’)) = 0 iff c = c’,
• ρ((a, c), (a, c’)) = ρ((a, c’), (a, c))
• For any a, b, d ∈ A, and c, c’, c’’ ∈ C ,
ρ((a, c), (b, c’)) ≤ ρ((a, c), (d, c’’)) + ρ((d, c’’), (b, c’))

Quality metric provides a quantitative measure of the



FU et al.: A FORMAL MODEL TO ENFORCE TRUSTWORTHINESS REQUIREMENTS IN SERVICE COMPOSITION
2061

difference between two services, which not only allows the
assessment of behavioral equivalence, but also the similar-
ity of trustworthiness. If the quality metric between two
activities is positive infinity, this means that the two activi-
ties have different actions and are not similar. If ρ is a pos-
itive integer, then the two activities have the same action,
but their trustworthiness differs. The smaller ρ is, the closer
the trustworthiness features of the two services are. A value
of ρ equal to 0 means that two activities are fully consis-
tent in both behavior and trustworthiness features. The fol-
lowing definition introduces the concept of distance between
services.
Definition 5.3 For a given QELTS(S, s0,L,→), R ⊆ S × S
and a quality metric ρ on L, we have dR(t, s, t’, α) =
glb{ρ(α, β) | β ∈ L, where α, β satisfy one of the following
three conditions}
1. α is a free action, t

α−−−→ t’, ∃s’ ∈ S s.t. s
β−−−→ s’ and

t’Rs’

2. α in a x(y) form, t
(x(y),c)−−−−−−−→ t’ and y � n(t, s),

∃s’ ∈ S s.t. s
(x(y),c’)−−−−−−−−→ s’, β is (x(y), c’) and for all w,

t’{w/y}Rs’{w/y}
3. α in a x̄(y) form, t

(x(y),c)−−−−−→ t’ and y � n(t, s), ∃s’ ∈ S s.t.

s
(x(y),c’)−−−−−→ s’, β is (x̄(y), c′) and t’Rs’
Further, for any t, s, t’ ∈ S and α ∈ L, dR(t, s) =

lub{dR(t, s, t’, α) | t, s, t’ ∈ S, α ∈ L, and t
α−−−→ t’}

Finally, dR = lub{max{dR(s1, s2), dR
−1(s1, s2)} | s1Rs2}

is called the bisimulation distance of R.
In Definition5.3, glb refers to greatest lower bound,

lub refers to smallest upper bound. Intuitively, for given

t, s, t’ ∈ S, tRs, t
α−−−→ t’, dR(t, s, t’, α) is the greatest lower

bound for the distances between α and β, where t
α−−−→ t’,

s
β−−−→ s’ and t’Rs’. dR(t, s) describes the degree of equiv-

alence between process s and t. It is determined through

the successive investigation of each t
α−−−→ t’ transition of

process t, and by selecting the maximum of dR(t, s, t’, α) as
dR(t, s).

Furthermore, for a given <s1, s2> ∈ R, dR(s1, s2) and
dR
−1(s1, s2) describe the degree of equivalence between s1

and s2. We choose max{dR(s1, s2), dR
−1(s1, s2)} as the value

of the degree to which s1 and s2 simulate each other. For all
s1Rs2, lub{max{dR(s1, s2), dR

−1(s1, s2)} | s1Rs2} is the maxi-
mum equivalence distance for tuples in R. Therefore, dR

describes the degree to which R is a bisimulation.
dR = ∞ means that at least one pair of processes in R

cannot simulate each other’s behavior. If dR is a constant,
then all pairs of processes are able to simulate each other’s
behavior, but the trustworthiness values of the behaviors are
different. The smaller dR is, the more similar the trustworthi-
ness of the processes are. dR =0 means all pairs of processes
in R can fully simulate each other’s behavior, and the corre-
sponding trustworthiness values of the behaviors are exactly
the same.
Proposition 5.1 The bisimulation distance satisfies the fol-
lowing properties:

1. If R is a bisimulation then we have dR = 0.
2. dR = dR

−1

3. dR1◦R2 ≤ dR1 + dR2

4. d∪iRi ≤ lubidRi

Proof: Properties 1 and 2 are immediately evident from
the definition of bisimulation distance. For property 3, if
dR1 = ∞ or dR2 = ∞, the conclusion is clearly satisfied. We
assume that dR1 < ∞ and dR2 < ∞. For any s1, s3 ∈ S, if
s1R1 ◦R2s3, then there exists s2 ∈ S with s1R1s2 and s2R2s3.
For any s1’ ∈ S and α ∈ Act, if s1

α−−−→ s1’ then from

dR1 < ∞ we have s2’ ∈ S and γ ∈ Act such that s2
β−−−→ s2’,

s1’R1s2’, and ρ(α, β) ≤ dR1. Similarly, from dR2 < ∞, we

have s3’ ∈ S and γ ∈ Act such that s3
γ−−−→ s3’, s2’R2s3’, and

ρ(β, γ) ≤ dR2. Therefore, s1’R1 ◦ R2s3’, ρ(α, γ) ≤ ρ(α, β) +
ρ(β, γ) ≤ dR1 + dR2, dR1◦R2 ≤ dR1 + dR2. Property 4 can be
proved in a similar manner.

The first property indicates that the bisimulation dis-
tance of a bisimulation is 0. Property 2 says that the bisim-
ulation distance of a relation and that of its inverse are the
same, while property 3 means that the bisimulation distance
of the composition of two relations is not greater than the
sum of the corresponding distances of the two relations.
Property 4 means that if the degree to which Ri is a bisimu-
lation is equal or greater than some value for all i, then the
degree to which ∪iRi is a bisimulation is equal or greater
than this value.

Since each relation between states is assigned a bisim-
ulation distance, all relations can be classified according to
their distances.
Definition 5.4 For a given QELTS(S, s0,L,→), R ⊆ S × S,
and λ ∈ [0,∞], if dR ≤ λ, then R is called a λ-bisimulation.

λ is a real number in [0,∞]. The relation R is a λ-
bisimulation means dR ≤ λ. This denotes that the trustwor-
thiness distances of the tuples of relation R are not more than
λ.

From a quantitative perspective, λ describes the sim-
ilarity of the state tuples in relation R. Obviously, every
relation R is a ∞-bisimulation. If R is a λ-bisimulation
and λ ≤ μ, then it is also a μ-bisimulation. If R is a λi-
bisimulation for i ∈ I, then R is a glbi∈Iλi-bisimulation.

The following properties can be easily derived from
Proposition 5.1 [8].
Proposition 5.2 For λ-bisimulation, we have

1. If R is a bisimulation, then R is a 0-bisimulation.
2. R is a λ-bisimulation iff R−1 is a λ-bisimulation.
3. If Ri is a λi-bisimulation for i = 1, 2, then R1 ◦ R2 is

a (λ1 + λ2)-bisimulation.
4. If Ri is a λi-bisimulation, then ∪iRi is a maxi{λi}-

bisimulation.
Proof: If R is a bisimulation then we have dR = 0, so R
is a 0-bisimulation. If R is a λ-bisimulation then we have
dR ≤ λ. Since dR = dR

−1, we have dR
−1 ≤ λ, so R−1 is a λ-

bisimulation. Also, dR1◦R2 ≤ dR1 + dR2 and dR1 + dR2 = (λ1 +

λ2), so we have dR1◦R2 ≤ λ1 + λ2, and R1 ◦ R2 is a (λ1 + λ2)-
bisimulation. From Proposition 5.1 we have d∪iRi ≤ lubidRi ,
which gives us ∪iRi is a maxi{λi}− bisimulation.



2062
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.9 SEPTEMBER 2017

Based on the concept of the λ-bisimulation, we are able
to define the concept of λ-bisimilarity, which is the largest
λ-bisimulation.
Definition 5.5 For any λ ∈ [0,∞], λ-bisimilarity is defined
as ∼λ= ⋃R is λ-bisimulation R

In other words, two states s1, s2 ∈ S are said to be λ-
bisimilar whenever there exists a λ-bisimulation containing
the pair (s1, s2).
Proposition 5.3 λ-bisimilarity satisfies:
1. � ⊆ �0

2. If λ1 ≤ λ2, then �λ1 ⊆ �λ2

3. For any λ ∈ [0,∞], �λ is a λ-bisimulation, and it is
reflexive and symmetric

4. �λ1 ◦ �λ2 ⊆ �λ1+λ2

Proof: Proposition 5.3 can be derived from proposition 5.2
and definitions 5.4 and 5.5 [8].
� refers to strong bisimulation, so d� = 0, which means

that � is a 0-bisimulation, and consequently � ⊆ �0. The
meaning of property 2 is that if λ1 ≤ λ2 then the largest
λ1-bisimulation relation set will be included in the largest
λ2-bisimulation set. Property 3’s meaning is that even for
the largest λ-bisimulation relation, distances between pro-
cesses of its tuples are less than or equal to λ, and the re-
lation set is reflexive and symmetric. Property 4 means
that for the relation �λ1 ◦ �λ2 composed by the largest λ1-
bisimulation and λ2-bisimulation, its simulation distance
will always less than or equal to λ1+λ2.
Proposition 5.4 Let P1 ∼λ P2. Then

1. α1.P1 ∼max{λ,ρ(α1,α2)} α2.P2

2. (x)P1 ∼λ (x)P2, x � f n(P1, P2) | i ∈ I
3. Let P1i ∼λi P2i for i ∈ I,

then
(∑

i∈I P1i

)
∼ max{λi | i ∈ I}

(∑
i∈I P2i

)

The proof is omitted due to its simplicity.
The meaning of property 1 is that if the bisimulation

distance between P1 and P2 is not greater than λ, then the
bisimulation distance between processes α1.P1 and α2.P2 is
not greater than either λ or ρ(α1, α2). Property 2 means
name restrictions applied on two process will not affect
their bisimilarity. Property 3 means that if the bisimula-
tion distance between P1i is P2i not greater than λi then
the bisimulation distance between

(∑
i∈I P1i

)
and
(∑

i∈I P2i
)

is not greater than max{λi | i ∈ I}.
For a detailed discussion of the above theorems and

properties, the reader is referred to [8].
The concept of bisimulation distance is suitable for

comparing services in terms of both behavior and trust-
worthiness. In practical applications, for a certain aspect
of trustworthiness, a specific bisimulation distance function
can be introduced to scale similar levels of trustworthiness
properties. For example, for the Q-algebra for execution
time <R+ ∪ {∞},min,+,max,∞, 0>, the quality metric can
be defined as:

• ρ((a, t), (b, t’)) = ∞ if a � b
• ρ((a, t), (b, t’)) = |t − t’|

Fig. 2 Example of bisimulation

Note that the distance defined by such a metric is ∞
for two activities with different actions. For activities with
same action, the distance is exactly the difference between
their execution times. In general, we can have a simple char-
acterization of λ–bisimulation in QPi, which means that in a
λ–bisimulation, an activity must be simulated by another ac-
tivity with identical action, but its trustworthiness value may
be matched by another approximate value. Two processes
of QPi satisfying λ–bisimulation have the same actions and
their trustworthiness values are approximate to the extent of
a distance smaller than or equal to λ.

The LTS shown in Fig. 2 describes a system’s behav-
ior, and the corresponding trustworthiness values are la-
beled with values for each action. Considering (p1, s1)
in relation R1 = {(p0, s0), (p1, s1), (p2, s2), (p3, s3)}, be-
cause p1, s1 have different actions and cannot simulate
each other’s behavior, we have dR1 = ∞. For relation
R2 = {(p0, q0), (p1, q1), (p2, q2), (p3, q3)}, let the bisimula-
tion distance function be ρ = |x1 − x2|. In this case, the
compared states of tuples in R2 can simulate each other’s
actions, but their trustworthiness values are different. Using
the bisimulation distance function, we obtain dR2 = 1. For
relation R3 = {(p0, r0), (p1, r1), (p2, r2), (p3, r3)}, dR3 = 6.
dR2 < dR3 means that the activities of the states in R2 are
more similar than the activities of the states in R3. In Fig. 2,
from the perspective of behavior, (a), (b) and (c) are same,
while from the perspective of trustworthiness, the distance
between (b) and (a) is smaller than that between (c) and (a).
Therefore (b) is a more similar LTS to (a) than (c). This
observation is certainly consistent with our intuition.

6. QCTL: A Logic for Specifying Trustworthiness

There is a great advantage in being able to verify the cor-
rectness of a service composition application. For this pur-
pose, we introduce a specification language for describing
the properties to be verified. The presented formalism is
called the Quantified Computation Tree Logic (QCTL). The
syntax of QCTL is defined as follows:
Definition 6.1 As for QPi, assume a set of activities Act
ranged over by α. Let c be the trustworthiness parameter,
range over the domain C. Let 
� ∈ {≤, <,≥, >,=}. The syn-
tax of QCTL formulas is defined inductively as follows:
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ϕ ::= true | ϕ ∧ ϕ | ¬ϕ | [Eψ]c
�n | [Aψ]c
�n

ψ ::= <π> | Xϕ | ϕ ∪c
�n ϕ | ϕ ∪ ϕ
Where n ∈ C is some concrete cost value, π is an ex-

pression built by the grammar:

π ::= a | π; π | π∗ | π + π
QCTL formulae are interpreted over a specific QELTS.

Each atomic proposition σ must be obtained from the set
used to label the states of this QELTS. QCTL formulae are
classified as state formulae ϕ and path formulae ψ, which
are evaluated over states and paths respectively. A property
of a QPi model to be verified will always be represented by a
state formula. Path formulae can only appear as parameters
of the formulae [Eψ]c
�n and [Aψ]c
�n. Intuitively, a state s
satisfies [Eψ]c
�n if there exists a path from s satisfying ψ and
the trustworthiness of the path is in the domain specified by

� n. Similarly, a state s satisfies [Aψ]c
�n if all the paths
from s satisfy ψ and the trustworthiness of each such path is
in the domain specified by 
� n.

The path formulae are standard in temporal logic ex-
cept <π>. Intuitively, Xϕ holds if ϕ is satisfied in every next
state. The formula ϕ1Uϕ2 holds over a path if ϕ1 holds con-
tinuously until ϕ2 holds. ϕ1 ∪c
�n ϕ2 is true if ϕ2 is satisfied
within a finite path whose trustworthiness is in the domain
specified by 
� n and ϕ1 is true until that point. The expres-
sion <π> represents a sequence of actions. The meanings
of π; π (i.e. sequential composition), π∗ (finitely many rep-
etitions), and π + π (choice) are similar as in the case of
pi-calculus. a represents a single action in Act. In the fol-
lowing, we define the semantics of QCTL over the QELTS.

For a given QELTS = <S, s0,L,→>, state s ∈ S and
QCTL formula ϕ, we use the satisfaction relation s � ϕ to
indicate that a formula ϕ is holds in state s. Similarly, for
a path ω satisfying a path formula ψ, we write ω � ψ. The
satisfaction relation is defined as the least relation such that
for a path ω = s1

(a1,c1)−−−−−−−→ s2
(a2,c2)−−−−−−−→ s3 . . ., the following

hold:

ω � <π>⇔ <π> = a1; a2; · · ·
ω � Xϕ⇔ s2 � ϕ

ω � ϕ1 ∪c
�n ϕ2 ⇔ ∃sk.((sk � ϕ2) ∧ (∀ j < k.s j � ϕ1) ∧
(c1 × c2 × · · · × ck−1 
� n))

ω � ϕ1 ∪ ϕ2 ⇔ ∃sk.((sk � ϕ2) ∧ (∀ j < k.s j � ϕ1))

and for state s ∈ S:

s � true for all s ∈ S

s � ϕ1 ∧ ϕ2 ⇔ s � ϕ1 ∧ s � ϕ2

s � ¬ϕ⇔ s � ϕ

s � [Eψ]c
�n ⇔ ∃ω ∈ Path(s), k ∈ N .tailk(ω) � ψ ∧
cost(headk(ω)) 
� n

s � [Aψ]c
�n ⇔ ∀ω ∈ Path(s).(∃k ∈ N .tailk(ω) � ψ ∧
cost(headk(ω)) 
� n)

A number of additional useful operators can be de-
rived from the basic syntax of QCTL. For example, we have

the following obvious logic equivalences: false ≡ ¬true,
ϕ1
∨
ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), and ϕ1 ⇒ ϕ2 ≡ ¬(¬ϕ1

∨
ϕ2). In

a similar manner to temporal logic, we can also define the
modalities eventually ♦ and always �. In addition, we also
allow the bounded variant of the eventually operator ♦c 
� n.
Intuitively, ♦c 
� nϕ means that ϕ is satisfied with a cost in
a domain specified by 
� n. These modal operators can be
expressed as follows:

♦ ≡ true ∪ ϕ
♦c
�nϕ ≡ true ∪c
�n ϕ

�ϕ ≡ ¬♦¬ϕ

7. An Example Model in QPi

Taking the Alternating Bit Protocol (ABP) as example, we
use our model to specify the ABP and demonstrate the
descriptive ability of QPi. ABP is a simple communica-
tion protocol that provides error-free communications over
a medium that may cause message loss. The description
consists of four services: a sender and a receiver which are
connected via two media. The structure of the communica-
tion system is shown in Fig. 3.

In this protocol, a retransmission mechanism is used to
overcome the unreliability of the medium. For the sender,
when the delay between issuing a message to the medium
via the in channel and receiving an acknowledgement via
the acks channel is too long, a retransmission is initiated. In
our model, we assume that 10% of the messages are lost and
time delays occur in the media.

Modeling this system requires taking the reliability
and time properties into account. We introduce a labeled
Q-algebra Qt = <R+ ∪ {+∞},min,+,max,+∞, 0> to de-
scribe the trustworthiness of the time dimension and Qr =

<[0, 1],max, ·, ·, 0, 1> for the reliability dimension. The
composition of Qt and Qr, denoted as Comp(Qt,Qr), is
used to describe the trustworthiness domain. The real-time
and reliability dimensions are labeled by prob and time,
respectively.

We now specify the system as follows:
Sender:

S = (send(Msg), (t:1, p:1)).S1

S1 = (in(Msg0), (t:0.5, p:1)).((acks(Ack0),

(t:0.5, p:1)).S2 + (τ, (t:10, p:1)).S1)

S2 = (send(Msg), (t:1, p:1)).S3

S3 = (in(Msg1), (t:0.5, p:1)).((acks(Ack1), (t:0.5, p:1)).S

+ (τ, (t:10, p:1)).S3)

Media:

Fig. 3 Structure of ABP
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M = (in(Msg), (t:0.5, p:1)).M1

M1 = (τ, (t:0.5, p:0.1)).M + (τ, (t:0.5, p:0.9)).M3

M3 = (out(Msg), (t:1, p:1)).M

AM = (ackr(AckMsg), (t:0.5, p:1))).AM1

AM1 = (τ, (t:0.5, p:0.1)).AM + (τ, (t:0.5, p:0.9)).AM3

AM3 = (acks(AckMsg), (t:1, p:1)).AM

Receiver:

R = (out(Msg), (t:1, p:1)).([Msg = Msg0](rec(Msg),

(t:1, p:1)).(ackr(Ack0), (t:1, p:1)).R1 +

[Msg = Msg1](ackr(Ack1), (t:1, p:1)).R)

R1 = (out(Msg), (t:1, p:1)).([Msg = Msg1](rec(Msg),

(t:1, p:1)).(ackr(Ack1), (t:1, p:1)).R +

[Msg = Msg0](ackr(Ack0), (t:1, p:1)).R1)

The composition of these services is as follows:
ABP(send, rec) = (in, out, ackr, acks)(S | M | AM | R)

From the above example, we see that by attaching to
each action a trustworthiness tuple, QPi describes the be-
havior and trustworthiness of a system in a unified manner.
Moreover, we can deduce the evolution of the system based
on the optional semantics of QPi to verify whether the sys-
tem satisfies some expected properties. For the sender ser-
vice, the QELTS in Fig. 4 describes its behavior and states’
transitions. Each transition describes an action of the ser-
vice and the corresponding trustworthiness of the action.
In this manner, we can analyze the behavior, states’ transi-
tions and trustworthiness of the whole communication sys-

Fig. 4 State transition of sender

Fig. 5 State transitions of ABP

tem. Figure 5 illustrates a part of the ABP system’s state
transitions.

Using QELTS, we can conduct an analysis of the be-
havior and trustworthiness of the system. The properties to
be verified are described in QCTL.
Propterty 1. (<send> ⇒ (true ∪t≤5,p≥0.9 <rec>)) ∪t≤∞,p≥1

false
The property requests that during the system’s evolu-

tion, if action <send> occurs then <rec> will occur within
5 time units with probability not less than 0.9. This corre-
sponds to establishing “whether at least 90% of the packages
can be sent from the sender to the receiver in 5 time units.”
This property can be verified by analyzing the QELTS es-
tablished by QPi. In Fig. 5, there exists a path ω1 =

ABP(send, rec)
Send(Msg),(t:1,p:1)−−−−−−−−−−−−−−−−→ S1|M|AM|R (τ,(t:0.5,p:1))−−−−−−−−−−−→

S4 | M1 | AM | R (τ,(t:0.5,p:0.9))−−−−−−−−−−−−−→ S4 | M3 | AM | R (τ,(t:1,p:1))−−−−−−−−−−→
S4 | M | AM | R3

(rec(Msg0),(t:1,p:1))−−−−−−−−−−−−−−−−−→ S4 | M | AM | R4.
The composition of trustworthiness values on the path is
(t:1, p:1)×(t:0.5, p:1)×(t:0.5, p:0.9)×(t:1, p:1)×(t:1, p:1) =
(t:4, p:0.9). This shows that there exists an evolution path
that begins with activity (Send(Msg), (t:1, p:1)) and eventu-
ally causes activity (rec(Msg0), (t:1, p:1)) to occur, while the
trustworthiness of this path is (t:4, p:0.9). This value sat-
isfied the constraint of t ≤ 5, p ≥ 0.9, so property 1 is
satisfied. This states that the possibility that a message is
received within 4 time units after it has been sent is not less
than 90 percent. This parameter can be regarded as one of
the performance indicators of the system.
Propterty 2. (<send>⇒X(true∪t≤10,p≥0.8<send>))∪t≤∞,p≥1

false
Property 2 states that at the sending end, the probabil-

ity of sending two consecutive packages in 10 time units
should be greater than or equal to 0.8. In Fig. 5, there ex-

ists a path ω2 = ABP(send, rec)
Send(Msg),(t:1,p:1)−−−−−−−−−−−−−−−−→ S1 |

M | AM | R (τ,(t:0.5,p:1))−−−−−−−−−−−→ S4 | M1 | AM | R (τ,(t:0.5,p:0.9))−−−−−−−−−−−−−→
S4 |M3 |AM |R (τ,(t:1,p:1))−−−−−−−−−−→ S4 |M |AM |R3

(rec(Msg0),(t:1,p:1))−−−−−−−−−−−−−−−−→
S4 | M | AM | R4

τ,(t:1,p:1)−−−−−−−−−→ S4 | M | AM1 | R1
(τ,(t:0.5,p:0.9))−−−−−−−−−−−−−→

S4 |M |AM3 |R1
τ,(t:1,p:1)−−−−−−−−−→ S2 |M |AM |R1

Send(Msg),(t:1,p:1)−−−−−−−−−−−−−−−−→
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S3 | M | AM | R1. The composition of trustworthiness values
on the path is (t:7.5, p:0.81), which satisfies the constraint
of (t: ≤ 10, p: ≥ 0.8), so property 2 is satisfied.
Property 3: (<send>⇒ (true∪t≤∞,p≥1<rec>))∪t≤∞,p≥1false

Property 3 means that during the system’s evolution,
an input action <send> will eventually cause the output ac-
tion rec to occur. This implies that an input package can
always be sent to the receiver. By the analysis of prop-
erty 1, we have that there exists a path that makes the pos-
sibility of a message received within 4 time units equal
to 0.9. Besides, in the QELTS there exists a path ω =

ABP(send, rec)
Send(Msg),(t:1,p:1)−−−−−−−−−−−−−−−−→ S1|M|AM|R (τ,(t:0.5,p:1))−−−−−−−−−−−→

S4|M1|AM|R (τ,(t:0.5,p:0.1))−−−−−−−−−−−−−→ S4|M|AM|R (τ,(t:10,p:1))−−−−−−−−−−−→ S1|M|
AM |R (τ,(t:0.5,p:0.9))−−−−−−−−−−−−−→ S4 |M3 |AM |R (τ,(t:1,p:1))−−−−−−−−−−→ S4 |M |AM |
R3

(rec(Msg0),(t:1,p:1))−−−−−−−−−−−−−−−−→ S4 |M |AM |R4, the trustworthiness of
which is (t:14.5, p:0.09). Further investigation shows there
exist evolution paths with trustworthiness (t:25, p:0.009),
(t:35.5, p:0.0009), (t:46, p:0.00009) . . . in the QELTS,
which begin with activity (Send(Msg), (t:1, p:1)) and even-
tually cause activity (rec(Msg0), (t:1, p:1)) to occur. Without
considering the time dimension constraints, the probability
that Send(Msg) occurs and eventually makes rec(Msg) occur
is the sum of the probabilities of all these paths. Therefore,
we have Pn =

a1(1−qn)
1−q =

0.9(1−0.1n)
1−0.1 and lim

n→∞ Pn = 1. This

suggests that an input action always causes an output action,
and that data can always be sent from the transmitting end
to the receiving end. The above analysis indicates that the
timeout wait/resend mechanism ensures that data will not be
lost during transmission.

Let us now consider which one of services Sender2
and Sender3 given below is more suitable to replace service
Sender1?
Sender2:

P = (send(Msg), (t:1.1, p:1)).P1

P1 = (in(Msg0), (t:0.7, p:1)).((acks(Ack0), (t:0.7, p:1)).

P2 + (τ, (t:10, p:1)).P1)

P2 = (send(Msg), (t:1.1, p:1)).P3

P3 = (in(Msg1), (t:0.7, p:1)).((acks(Ack1),

(t:0.7, p:1)).P + (τ, (t:10, p:1)).P3)

Sender3:

Q = (send(Msg), (t:1.5, p:1)).Q1

Q1 = (in(Msg0), (t:0.8, p:1)).((acks(Ack0), (t:0.8, p:1)).

Q2 + (τ, (t:10, p:1)).Q1)

Q2 = (send(Msg), (t:1.5, p:1)).Q3

Q3 = (in(Msg1), (t:0.8, p:1)).((acks(Ack1), (t:0.8, p:1)).

Q + (τ, (t:10, p:1)).Q3)

This can be analyzed by calculating and comparing
the bisimulation distances of service sets. We investigate
the similarity distance of R1 = {(S, P), (S1, P1), (S2, P2),
(S3, P3)} and R2 = {(S,Q), (S1,Q1), (S2,Q2), (S3,Q3)} re-
spectively. We define the quality metric function as:

• ρ((a, t, p), (b, t’, p’)) = ∞, if a � b
• ρ((a, t, p), (b, t’, p’)) = |t − t’| + |p − p’|

According to the definition of bisimulation distance,
we have dR1 = max{dR1(S, P) = 0.1, dR1(S1, P1) = 0.2,
dR1(S2, P2) = 0.1, dR1(S3, P3) = 0.2} = 0.2. and dR2 =

max{dR2(S,Q) = 0.5, dR2(S1,Q1) = 0.3, dR2(S2,Q2) =
0.5, dR2(S3,Q3) = 0.3} = 0.5.

It is evident that Sender2 more similar to Sender1 than
Sender3 is. Therefore, if there are only the two services
to be considered for the replacement of Sender1, Sender2
should be chosen. Through observation, we can found that
the executable actions for these three services are the same,
but there are differences in their trustworthiness proper-
ties. In the real-time dimension, the real-time property of
Sender2 is better than Sender3, thus making it more suit-
able as a replacement for Sender1. The calculated result is
as same as our intuition.

From the perspective of λ-bisimulation, R1 is a 0.2
bisimulation, and R2 is a 0.5 bisimulation. The upper bound
of the bisimulation distance of the process tuples in R1 is
less than the process tuples in R2, so the service tuples in R1

are more similar than R2.

8. Related Work

Formal method is considered to be effective method for
complex system modeling, analysis and verification. Re-
lated research in this field has decades of history and has
achieved rich theoretical results. Among them, the pro-
cess algebra represented by CCS and CSP is the most im-
portant theoretical method for modeling and analyzing con-
current systems. Researchers proposed various extensions
of process algebra to enhance its descriptive abilities, such
as timed process algebras [9], probabilistic process alge-
bra [10], and non-deterministic process algebra [11], [12].
Similar works also include [13], who proposed a CCS-based
process algebra which can be used for concurrent resource
usage modeling and analysis.

By introducing the constraint semi-ring [14] described
the multi-dimensional QoS property in a uniform manner,
and proposed a process algebra for describing distributed
application. By combining Synchronised Hyper edge Re-
placement (SHR) with constraint-semirings [15] presented
a formal framework for specifying service systems that han-
dle abstract high-level QoS aspects. SHR is a (hyper) graph
rewriting mechanism for modelling the mobility and recon-
figuration of systems. [6] introduced a new operator into the
constraint semi-ring to describe QoS composition in differ-
ent manner, called Q-algebra. Then, Q-algebra was com-
bined with automata to propose an automata-based formal
method for modeling systems with properties in multiple
non-functional dimensions. [16] extended CCS by intro-
ducing Q-algebra and proposed a process algebra to enforce
QoS requirements in service computing.

[17] proposed the concept of the bisimulation index
for common labelled transition systems by using metrics on
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actions in process algebra and applying the concept to timed
CCS and real time ACP. The definition we present in this
paper is similar to the concept of the bisimulation index pre-
sented in [17], but the metric in this paper is more general
and can be applied to both actions and different trustwor-
thiness aspects. [18] proposed action-labelled quantitative
transition systems as a general framework for combining
qualitative and quantitative analysis, which further extends
bisimulation to quantitative systems. The deeper connection
between [17], [18] and our work needs to be investigated in
further works.

In this paper, we introduce the concept of trustworthi-
ness. We believe that the concept of trustworthiness of a ser-
vice computing system has two aspects: one is the functions
of the system are fully realized, and the other is that the non-
functional properties of the system meet users’ needs. The
notion of trustworthiness is a measure of the non-functional
properties of a system. Some dimensions of trustworthiness
may be probabilistic properties, such like reliability, avail-
ability, and so on, but some are not, such as the real-time
property, cost, security, and so on. The introduction of Q-
algebra allows the description of multi-dimensional trust-
worthiness properties in a uniform way.

In comparison to the existing works, the difference of
our approach is that we introduce Q-algebra to describe
multi-dimensional trustworthiness properties in a uniform
manner. Based on this feature, we extend the pi-calculus for
modeling and reasoning the structure, behavior, and trust-
worthiness of a concurrent system in a unified abstract level.
In a QPi modelled service computing system, actions cor-
respond to the system functions’ implementation and the
trustworthiness values added with correspond to the non-
functional properties of the system.

Secondly, QPi is a combination of pi calculus and Q
algebra, and allows the creation and removal of communi-
cation links between processes. By allowing links to be cre-
ated and deleted, QPi is more suitable for modeling service
computing systems with a dynamic structure.

9. Conclusion

Trustworthy computing requires modeling service systems
in terms of both behavioral aspects and trustworthiness. We
extend the pi-calculus by combining it with Q algebra for
modeling the structure, behavior, and trustworthiness of a
concurrent system in a unified abstract level. QPi attaches a
trustworthiness tuple to process actions, and the former that
allows the modeling of the system’s behavior while also de-
scribing its trustworthiness. We also propose the operational
semantics of QPi. The concept of bisimulation distance pro-
vides a proper candidate for comparing systems quantita-
tively from both the behavioural and the trustworthiness per-
spective. Additionally, QCTL is also introduced as a logic
for reasoning about both behaviour and trustworthiness of
service oriented systems specified in QPi. A specific exam-
ple is described and analyzed to illustrate the effectiveness
of the algebraic method.

As to future work, we are particularly interested in
investigating the expressivity and complexity of QCTL.
It is also worth studying the related properties of quanti-
fied bisimulation and an efficient algorithm for determining
whether a service and its traces satisfy a trustworthiness con-
straint. We would also like to exploit existing model check-
ers to conduct a formal verification of the trustworthiness
properties of services presented in our model.
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