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PAPER

Zero-Shot Embedding for Unseen Entities in Knowledge Graph

Yu ZHAO†∗, Student Member, Sheng GAO†a), Patrick GALLINARI††, and Jun GUO†, Nonmembers

SUMMARY Knowledge graph (KG) embedding aims at learning the
latent semantic representations for entities and relations. However, most
existing approaches can only be applied to KG completion, so cannot iden-
tify relations including unseen entities (or Out-of-KG entities). In this pa-
per, motivated by the zero-shot learning, we propose a novel model, namely
JointE, jointly learning KG and entity descriptions embedding, to extend
KG by adding new relations with Out-of-KG entities. The JointE model is
evaluated on entity prediction for zero-shot embedding. Empirical compar-
isons on benchmark datasets show that the proposed JointE model outper-
forms state-of-the-art approaches. The source code of JointE is available at
https://github.com/yzur/JointE.
key words: zero-shot learning, knowledge graph, embedding learning, re-
lation prediction

1. Introduction

The knowledge graph (KG) is a special kind of struc-
tured databases for knowledge management, such as Word-
Net [1], Freebase [2]. They consist of a huge amount
of knowledge triples in the form of (subject entity,
predicate relation, object entity), or the abbre-
viation (s, p, o). Figure 1 provides an example for a knowl-
edge fact (Ithaca College, /location/location/containedby,
New York). A well studied problem is how to accomplish
KG completion. Most existing approaches [3]–[9] are only
able to estimate the relation between existing entities in the
KG by learning the embeddings for all observed entities and
predicate relations, that is, the embeddings for s, p, o. How-
ever, they are unable to estimate the relation including Out-
of-KG entities which are unseen in KG, since they only learn
the representations of In-KG entities which already have
existed in KG. Knowledge graph extension (KGE) by pre-
dicting additional triple in the zero-shot scenario, in which
at least one of entities is Out-of-KG entity, is a very chal-
lenging problem, due to lack of Out-of-KG entities’ embed-
dings.

It can be summarized to the scenario of the zero-shot
learning [10]. Zero-shot learning refers to the generic prob-
lem how to predict unseen labels. (It’s an extreme case of
transfer learning.) For example, in the image classification
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Fig. 1 Example of knowledge fact and the entity descriptions from Free-
base.

task, although the class “cat” does not exist in the training
data set, can we still tell if an image in the testing data is a
cat or not? It sounds impossible at the first glance, but it is
possible by utilizing description information for prediction.
For example, given the description that a cat has four legs
and pointy ears, the learner might be able to make a correct
prediction on a test image if it is a cat, without having seen
a cat before [11].

In the spirit of zero-shot learning, the key motivation
in this paper to solve the KGE problem is to utilize the de-
scriptions for entities, that are available for most KGs. For
example, in Fig. 1, subject entity (Ithaca College) and object
entity (New York) have their descriptions in the box respec-
tively. The descriptions usually explain entities, including
rich semantic information about the entities. In this paper,
we propose a novel model, namely JointE, jointly learning
KG and entity descriptions embeddings, to extend KG by
adding new relations with Out-of-KG entities. The main
contributions in this paper are highlighted as follows:

• A novel model (JointE) is proposed to jointly learn the
latent semantic representations for all entities and rela-
tions from KG and entity descriptions, which is able to
estimate the relations involving unseen entities.

• Empirical comparison validates the effectiveness of the
proposed model.

2. Related Works

KG embedding. Several energy-based models [3]–[9] have
been proposed recently to encode the entities and relations
of the triples into latent embedding space, i.e. KG embed-
ding, for KG completion. These models are showed in Ta-
ble 1. In order to clarify the difference between our proposed
method and the existing methods, we also present the model
of our proposed method JointE for KG embedding in Ta-
ble 1. In addition, Zhang et al. [12], [13] propose models for
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Table 1 Models for KG embedding.

Models Scoring function G(s, p, o) Paremeters
SE [4] ||Wp1s −Wp2o||1 Wp1,Wp2 ∈ Rκ×κ, s, o ∈ Rκ

SME [3] (W1s ⊗Wp,1p + b1)� · (W2o ⊗Wp,2p + b2)
s, p, o ∈ Rκ, b1,b2 ∈ Rκ
W1,Wp,1,W2,Wp,2 ∈ Rκ×κ

NTN [5] u�p f(s�W[1:l]
p o + Vp

[s
o
]
+ bp) Vp ∈ Rl×2κ and up ∈ Rl,bp ∈ Rl,

f = tanh
TransE [6] ||s + p − o||d s, p, o ∈ Rκ

TransH [7] ||(s − w�p swp) + p − (o − w�p owp)||d s, o, wp,p ∈ Rκ

TransR [8] ||sp + p − op ||d Mp ∈ Rk×l, s, o ∈ Rk, p ∈ Rl

sp = sMp, op = oMp

Our proposed sd · ps + po · od + sd · od sd , od ,ps and po ∈ Rκ

KG and text jointly embedding.
Word embedding. In Natural Language Processing (NLP),
many language models [14]–[22] have been proposed for
learning semantic knowledge from a huge amount of free
text corpus, as encoding each word (phrase or sentence) to
a semantic vector representation, namely word embedding.
Word embedding can be used for various NLP tasks [16]
such as POS tagging, chunking, named entity recognition,
semantic and syntactic similarity [20], [21].
Zero-shot learning. [23] proposed a model DKRL, com-
bining the existing model TransE (originally used for KG
completion) [3] and CNN (or BOW), for KGE in zero-shot
scenario. In computer vision, [24], [25] train a recognition
model for zero-shot object recognition by specifying the cat-
egory’s attributes. [26] proposes a label-embedding model
for attribute-based zero-shot classification. In recommen-
dation systems, it is very challenging to recommend items
to new users with no buying/rating history. Such zero-shot
learning problem is called as cold start problem. Some ex-
isting approaches [27]–[29] are proposed to solve it.

3. Approach

We first present problem formulation of KGE in the zero-
shot scenario. Next, we propose a new approach to build
zero-shot embeddings of entities according to their descrip-
tions. Finally, we propose a novel model, namely JointE,
jointly learning embedddings from KG and entity descrip-
tions.

3.1 KGE in the Zero-Shot Scenario

In this paper, we aim at KGE in the zero-shot scenario by
predicting object entity given subject entity and predicate
relation pair as (subject, predicate, ?) or predicting
subject entity given predicate relation and object entity pair
as (?, predicate, object). In the zero-shot scenario,
at least one entity in predicted triple is Out-of-KG entity.
We propose a model (JointE) to jointly learning embeddings
from knowledge facts and entity descriptions. By learning
JointE model, we obtain the embeddings of In-KG entities,
predicate relations and words, and then we build the repre-
sentations for Out-of-KG entities according to their descrip-
tions. If all the entities’ representations have already learnt,
we get a list of predicted Top-N objects for the test triple

(subject s, predicate p,?) as follows:

Top(s, p, N) :=
N

arg max
o∈Ê

G(s, p, o) ,

where N is the number of predicted entities, Ê is used to
denote sets all entities (including In-KG entities and Out-
of-KG entities). R is used to denote the set of predicate
relations. We use s, o and p to denote subject entity, ob-
ject entity, and predicate relation respectively. G(s, p, o) :
Ê × R × Ê → R is the scoring function. Similarly,
we obtain Top(N, p, o) for test triple (?, predicate p,
object o). We show the detailed methods of the model
in the rest of this section.

3.2 Zero-Shot Embedding from Entity Descriptions

We propose a new approach to build the entities’ embed-
dings according to their descriptions. As in Fig. 1, we pro-
vide two examples of entity descriptions. They have been
removed stop words, marked as [·] in the following:

1) Ithaca College: [is] [a] private college located [on]
[the] South Hill [of] Ithaca,. . . ;

2) New York: [is] [a] state [in] [the] Northeastern
[and] Mid-Atlantic regions [of] [the] United States. . .
“Ithaca College” and “New York” are entities followed by
their descriptions respectively. We formulate entity descrip-
tions as de := {w1, w2, . . . , wn}. de denotes the description
of entity e. {w1, w2, . . . , wn} is the set of words in entity de-
scription. w1,w2, . . . ,wn are used to denote the embeddings
of words w1, w2, . . . , wn respectively, w1, w2, . . . , wn ∈ W,
W is used to denote the set of words. w1,w2, . . . ,wn ∈ W,
W stands for the set of words’ embeddings. n is the size
of words set. In order to model entity description de, we
use weighted bag of words (WBOW) model, and we use
TFIDF to calculate their weights.

First, we calculate the term frequency ratio of word wi

in entity description de as follows:

TF(wi, de) =
term frequency(wi, de)∑
w∈de

term frequency(w, de)
,

where term frequency(w, de) counts #times that word w oc-
curs in entity descriptions de. Second, the inverse document
(description) frequency of word wi in the set of entity de-
scriptionsD is calculated as follows:
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IDF(wi,D) = log
|D|

|{de ∈ D : wi ∈ de}|
,

D is used to denote the set of descriptions. |D| is the total
number of entity descriptions in the corpus D, |{de ∈ D :
wi ∈ de}| is the number of entity descriptions where the word
wi appears (i.e., TF(wi, de) � 0). Then, the TFIDF of word
wi in entity description de inD is calculated as follows:

TFIDF(wi, de,D) = TF(wi, de) × IDF(wi,D) .

We calculate the weight of word wi in entity description de

as follows:

πi =
TFIDF(wi, de,D)∑
w∈de

TFIDF(w, de,D)
,

with
∑

i∈1,...,n πi = 1. Finally, we use WBOW model to cal-
culate the zero-shot embedding of entity e according to its
description de as follows:

ed =
∑

i∈1,...,n
πi × wi , (1)

with wi ∈ Rκ, πi ∈ (0, 1).
For large scale KG and entity descriptions embedding,

it requires that the approach for zero-shot embedding from
description is less time-consuming and effective. The com-
putational complexity of our method is n × κ.

3.3 Jointly Embedding from KG and Entity Descriptions

We encode all the triples in KG to learn the embedding of
In-KG entities, predicate relations and words. We consider
that the model scoring function of the triple (subject s,
predicate p, object o) depends on three factors: 1)
the correlation between the subject entity and the predicate
relation; 2) the correlation between the object entity and the
predicate relation; 3) the correlation between the subject en-
tity and the object entity. And all the three factors contribute
to the final scoring function. A higher scoring value indi-
cates a strong correlation. Thus, we have the model scoring
function G(s, p, o) of the triple (s, p, o) in KG as follows:

G(s, p, o) = fsp(s, p) + fpo(p, o) + fso(s, o) , (2)

where fsp(·), fpo(·), and fso(·) denote the correlation between
two arguments. For example, as the subject entity and the
predicate relation, the correlation of them means their co-
presence in knowledge base. We believe that the embed-
dings of them should be sort of similar if they often co-
present in knowledge base. Of course, in general it is impos-
sible that they are the same since each one (subject, or rela-
tion) would have correlations with other objects or other re-
lations. Thus, we use inner product to measure their correla-
tion, calculating fsp(·), fpo(·) and fso(·). Note that it is not ab-
solutely necessary to use inner product function to represent
their interaction. The correlation takes high value means
that they probably co-present in KG. Given three correla-
tions take high value, the scoring function should be high

Fig. 2 The JointE model.

value, so it would indicate that the triple should be true.
In addition, KG can be considered as a directed graph,

i.e., the triple (s, p, o) is different from its reverse triple
(o, p, s) in general. Thus, the scoring functions should be
different. For distinguishing the different order information
between them, we encode predicate relation as two embed-
dings (ps, po). The embeddings ps and po interact with the
embedding of subject entity s and object entity o respec-
tively.

For subject entity s and object entity o, based on (1),
we build their zero-shot embeddings according to their en-
tity descriptions respectively as follows:

sd =
∑

i∈1,...,n
πsi × wsi , od =

∑

i∈1,...,m
πoi × woi , (3)

where n, m are the size of subject and object description’s
words set respectively. πsi, πs2, . . . , πsn and πo1, πo2, . . . ,
πom ∈ (0, 1) are the weights of words for subject entity and
object entity respectively, wsi, ws2, . . . , wsn and wo1, wo2,
. . . , wom ∈ Rκ are the embeddings of words in descriptions
of subject entity and object entity respectively. Combining
(3) and (2), the scoring function of JointE model, as shown
in Fig. 2, is provided as follows:

G(s, p, o) := sd · ps + po · od + sd · od

= (
∑

i∈1,...,n
πsi × wsi) · ps + po · (

∑

i∈1,...,m
πoi × woi)

+ (
∑

i∈1,...,n
πsi × wsi) · (

∑

i∈1,...,m
πoi × woi)

(4)

where sd, od, ps, and po ∈ Rκ. κ is the dimension of the
embeddings. The model returns a higher score if the triple
(s, p, o) is true in KG and a lower one otherwise.

4. Optimization

In this section, we propose a learning algorithm for train-
ing our model JointE in (4), in which the parameter set
Θ = {E,Ps,Po,W}. E stands for the collection of all In-
KG entities’ embeddings. Ps and Po denote the collections
of predicate relations’ embeddings. W stands for the set of



ZHAO et al.: ZERO-SHOT EMBEDDING FOR UNSEEN ENTITIES IN KNOWLEDGE GRAPH
1443

words’ embeddings. After W is learnt in training phrase,
and then those are used to build Out-of-KG entities’ embed-
dings.
Objective function. We use contrastive max-margin
(CMM) optimization criterion [3] to train our model (4).
The main idea is that the model scoring function value of
true knowledge triple in training set T should be larger than
the corrupt one, the subject entity or object entity of which
is replaced by a random one. Note that we do not replace
both subject entity and object entity with random one at the
same time. A triple will not be considered as a corrupt sam-
ple if it is already in training set T . To learn embeddings
Θ = {E,Ps,Po,W}, we minimize the hinge loss function
L(Θ) as follows:

L(Θ) =
∑

(s,p,o)∈T

∑

(s′,p,o′)∈T ′
max{0, γ −G(s, p, o)

+G(s′, p, o′)} ,

where γ > 0 is a margin hyperparameter, G(·) is the scoring
function of JointE model, and

T ′ := {(s′, p, o)|(s, p, o) ∈ T ∩ s′ ∈ E ∩ s′ � s}
∪{(s, p, o′)|(s, p, o) ∈ T ∩ o′ ∈ E ∩ o′ � o} .

It is not absolutely necessary to use hinge loss function (e.g.
sigmoid loss, etc). However, it is very common and normal
to use hinge loss for learning embedding (like TransE, NTN,
etc) such as our JointE model did.
Optimization. We use the stochastic gradient descent
(SGD) algorithm for optimization. We initialize all the em-
beddings for In-KG entities, predicate relations and words
{E,Ps,Po,W} with Gaussian distribution. Note that the
set of words embedding W can be initialized by pre-
trained word embedding result (e.g. Word2Vec learned on
Wikipedia). In this paper, we do not use the pre-trained
word embedding for initialization. We are going to learn
the word embedding by JointE model from scratch with KG
and entity descriptions. We perform the following proce-
dure iteratively for a given number of iterations. First, we
sample a small set (minibatch) of triples from the training
set T , and then for each positive triple in it, we construct a
negative sample by replace the subject entity for object en-
tity with random one. The parameters are then updated by
taking a gradient descent step gradually. Algorithm 1 shows
the detailed optimization algorithm. Note [x]+ denotes the
positive part of x (i.e. [x]+ := max{0, x}). E is used to denote
sets of In-KG entities.

5. Experiments

The JointE model is evaluated on entity prediction for zero-
shot embedding.

5.1 Datasets

Freebase is a large collaborative KG of general facts, cur-
rently including around 1.2 billion triples and more than 80

Algorithm 1 Learning JointE
Input: Training Set T = {(s, p, o)}, margin hyperparameter γ, words’

weight value set Π.
Output: The embeddings of all In-KG entities, predicates and words: Θ =
{E,Ps,Po,W}.

1: Initialize
2: sd , od ← N(0, 1)/10 for each s, o ∈ E, sd , od ∈ Rκ
3: ps,po ← N(0, 1)/10 for each p ∈ R, ps,po ∈ Rκ
4: w← N(0, 1)/10 for each w ∈ W,w ∈ Rκ
5: Loop
6: Tbatch ← sample(T ,m)//minibatch size m
7: Hbatch ∈ φ //initialize training set as null
8: for (s, p, o) ∈ Tbatch do
9: (s′, p, o′)← sample T //corrupted

10: Hbatch ← Hbatch ∪ ((s, p, o), (s′, p, o′))
11: end for
12: Update embeddings w.r.t.
13: ∇L(Θ) =

∑
Hbatch

∇[γ −G(s, p, o) +G(s′, p, o′)]+, ∂∂sd
(G(s, p, o)) ∝

ps + od, ∂
∂od

(G(s, p, o)) ∝ po + sd, ∂
∂ps

(G(s, p, o)) ∝
sd, ∂

∂po
(G(s, p, o)) ∝ od ,

∂sd
∂ws

∝ πs · ps + πs · πo · wo ,
∂od
∂wo

∝
po · πo + πs · πo · ws, πs, πo ∈ Π

14: sd ← sd/‖sd‖, od ← od/‖od‖ for each entity embedding sd , od ∈ E
15: ps ← ps/‖ps‖, po ← po/‖po‖ for each predicate embedding ps ∈

Ps,po ∈ Po

16: End Loop

million entities. [3] extracted a subset from Freebase to
build a dataset FB15K for knowledge base completion. [23]
built a new dataset FB20K by taking FB15K as the seed and
sharing the same predicate relations. All entities in Freebase
which have predicate relations with entities in FB15K are
selected as candidates. Then new entities from those can-
didates with rich descriptions are selected randomly. The
average number of words in description is 69 after prepro-
cessing, and the longest description contains 343 words. We
use FB20K to simulate a zero-shot scenario that all enti-
ties in FB15K are considered as In-KG entities which can
be learned through training, while 5,109 new-added entities
are considered as Out-of-KG entities which are built from
their descriptions. The training set in FB20K has 472,860
triples and 1,341 relations. FB20K has 3 types of test data:
1) (d − e), the subject entity is a new entity (Out-of-KG)
but the object entity is not new (In-KG); 2) (e − d), the ob-
ject entity is a new entity but the subject entity is not new;
3) (d − d), both the subject entity and object entity are new
entities.

WordNet is a large English lexical database, in which
the entity corresponds to a concept (word sense) and the
predicate relation defines the relation between two enti-
ties, such as the triple ( flint NN 3, part of, wolver-
ine state NN 1). The entities of WordNet are denoted by the
concatenation of a word, its POS tag and a digital number.
The number refers to its sense. E.g. “ flint NN 3” encodes
the third meaning of the noun “flint”. [3] extracted a subset
from WordNet, denoted by WN. We use WN as our data for
experiments. We use Lucene (lucene.apache.org) to remove
the stop words from entity descriptions in WN. To confirm
that every entity has description for learning embedding, we
remove the entities which have shorter than 3 words. Then,
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Table 2 Statistics of the datasets used for evaluating JointE model by
KGE in zero-shot scenario.

DATASETS FB20K WN35K

#In-KG Entities 14,904 28,307
#Out-of-KG Entities 5,019 6,891
#Predicates 1,341 18
#Words 68,547 28,601
#Train 472,860 71,088

#Test
d − e 18,753 16,798
e − d 11,586 16,759
d − d 151 4,000

we split the entities into two parts randomly: In-KG entities
and Out-of-KG entities. We take all the triples in which the
subject entity and object entity are In-KG entities from WN
as training dataset. We extract all triples in which subject
entity or object entity is a new entity (Out-of-KG) or both
are new entities from WN as testing data. Thus, the testing
dataset has 3 types: (d − e), (e − d) and (d − d). The dataset
is denoted by WN35K. The statistics of FB20K and WN35K
are listed in Table 2.

5.2 Evaluation Metric

In the experiment, we use the ranking criteria [6] for evalu-
ation. First, for each test triple, we remove the subject en-
tity and replace it by each of the entities in turn. The model
scoring function value (i.e. G(s′, p, o)) of the negative triples
would be computed and then sorted by descending order in
this paper. We can obtain the exact rank of the correct entity
in the candidates. Similarly, we repeat the whole procedure
while removing the object entity instead of the subject entity
of the test triple. Finally, we use the proportion of correct
entities ranked in the top 10 (Hits@10(%)) as the evaluation
metric for comparison.

5.3 Baseline

We consider DKRL [23] as the compared model. The
DKRL model is based on TransE. There are four types of the
model: DKRL(CBOW), DKRL(CNN), DKRL(P-CBOW)
and DKRL(P-CNN). In DKRL(CBOW) and DKRL(CNN),
all entities use description-based representation. In
DKRL(P-CBOW) and DKRL(P-CNN), entities in training
set use structure-based representations. The author provides
the experimental results on FB20K in original paper, so we
directly use them as our baseline. In addition, we also run
the DKRL code on another dataset WN35K for compari-
son. For comparison, we also use continuous bag-of-words
(CBOW) (i.e., ed = 1/n

∑
i∈1,...,n wi) to encode entity descrip-

tions, denoted as JointE(CBOW).

5.4 Parameter Setting

Like in original paper, we train the model DKRL with di-
mension κ in {50, 80, 100}, learning rate λ among {0.0005,
0.001,0.002}, and margin γ among {0.5, 1.0, 2.0}. The final
configuration of DKRL(CBOW) is set as {λ = 0.001, γ =

Table 3 Evaluation results (Hits@10(%)) on entity prediction in zero-
shot scenario on FB20K.

MODELS d − e e − d d − d Total

DKRL(P-CBOW) 26.5 20.9 67.2 24.6
DKRL(CBOW) 27.1 21.7 66.6 25.3
DKRL(P-CNN) 26.8 20.8 69.5 24.8
DKRL(CNN) 31.2 26.1 72.5 29.5
JointE(CBOW) 40.8 39.6 70 40.5
JointE(WBOW) 44.4 39.9 85.6 42.9

Table 4 Evaluation results (Hits@10(%)) on entity prediction in zero-
shot scenario on WN35K.

MODELS d − e e − d d − d Total

DKRL(P-CBOW) 21.2 20.6 35.4 23.6
DKRL(CBOW) 22.5 21.7 34.5 25.2
DKRL(P-CNN) 23.5 21.2 37.6 23.1
DKRL(CNN) 24.9 24.3 39.2 28.6
JointE(CBOW) 33.5 34.0 46.5 34.3
JointE(WBOW) 34.6 34.4 47.4 35.9

1, κ = 50} on WN35K by cross-validation on training data.
For DKRL(CNN) encoder, we use 4-max-pooling and try
different window size � among {1, 2, 3} for different convo-
lution layer. The dimension of word embedding nw and fea-
ture map n f are set among {50,80,100} and {50, 100, 150}
respectively. The optimal configuration of DKRL(CNN) is
{λ = 0.001, γ = 1, κ = 50, � = 2, nw = 50, n f = 50}
on WN35K. For determining appropriate hyperparameters
for our model JointE, we select the learning rate λe(for en-
tities’ embedding), λp(for predicate relations’ embedding)
and λw (for words’ embedding) among {0.001, 0.01, 0.1},
the margin γ among {1.0, 2.0, 5.0} and the embedding di-
mension κ in a range of {50, 100, 200} by cross-validation on
test set. Finally, the configuration of both JointE(WBOW)
and JointE(CBOW) are set up as {κ = 50, λe = 0.01, λp =

0.01, λw = 0.01, γ = 2} on FB15K, and {κ = 50, λe = λp =

λw = 0.01, γ = 2} on WN35K. The #iteration of training is
1000.

5.5 Results of Entity Prediction

We evaluate the JointE model by predicting the subject en-
tity and object entity of the triples in the testing data, while
at least one entity in each testing triple is Out-of-KG en-
tity. Table 3 and Table 4 show the evaluation results of our
model against with the compared model DKRL on FB20K
and WN35K respectively. From the results we observe that:

• The proposed model JointE(WBOW, CBOW) outper-
form the compared model DKRL(P-CBOW, CBOW, P-
CNN, CNN) on FB20K and WN35K. More specifically,
the JointE(WBOW) model improves 13.2%, 13.8%
and 13.1% than DKRL(CNN) on d − e, e− d and d − d
in FB20K, and also improves 9.7%, 10.1% and 8.2%
in WN35K respectively. It improves 13.4% and 7.3%
in total on FB20K and WN35K respectively. As same
as TransE model [6], the DKRL model assumes trans-
lation relation between entities in embedding space.
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Table 5 Examples of predicting object entity for KGE in zero-shot scenario. Bold indicates the true
object entity.

INPUT:
SUBJECT ENTITIES AND PREDICATE RELATION

PREDICTION:
OBJECT ENTITIES

d − e
Vincent Franklin
/film/actor/film./film/performance/film

The Illusionist, Bright Star,
The Bourne Identity, Saw IV

e − d
The University of Alabama
/education/educational institution/students graduates
./education/education/student

Rashi Bunny, Ray Reach,
Peter Riegert, Arthur Laurents

d − d
African ground squirrel
/biology/organism classification/lower classifications

Mountain ground squirrel,
The Yorkshire Terrier, Bulldog

Table 6 Examples of predicting subject entity for KGE in zero-shot scenario. Bold indicates the true
subject entity.

PREDICTION:
SUBJECT ENTITIES

INPUT:
PREDICATE RELATION AND OBJECT ENTITY

d − e
Marty Adams, Courteney Bass Cox,
Carlos Auyero, Jeffrey Michael Tambor

/people/person/gender
A male organism

e − d
Italy, Malawi, Mozambique,
Saratoga County

/location/location/partially contains
Shire River

d − d
Enlight Software, Activision Blizzard,
Nintendo Co., Ltd, Capcom

/cvg/cvg publisher/games published
Glory of the Roman Empire

However, a drawback of TransE is that it can only
model translating interactions of entities and relations
in the triples, ignoring the intricate interactions among
the items in the triple. For example, the first triple in
Table 5, the translation model (TransE) of it is |Vincent
Franklin + film - The Illusionist |, while the intricate
interaction one (our model) is (Vincent Franklin, The
Illusionist) + (Vincent Franklin, film) + (film, The Il-
lusionist). And the translating interaction is a weak in-
teraction between entities. Our proposed model JointE
uses pairwise interaction to model triple. The pairwise
interaction is a stronger interaction than translation in-
teraction. We believe that the better performance of
JointE than DKRL is due to the appropriate design of
the model.

• JointE(WBOW) outperforms JointE(CBOW) on both
FB20K and WN35K. More specifically, JointE(WBOW)
improves 3.6%, 0.3% and 2.4% on d−e, e−d and in to-
tal in FB20K, and improve 1.1%, 0.4%, 0.9% and 1.6%
on d−e, e−d, d−d and in total in WN35K respectively.
It indicates the robustness of WBOW representations.

• Both JointE and DKRL perform better on d − d than
on d − e and e − d, which indicates that the corre-
lation between the Out-of-KG entities’ embeddings is
stronger than the correlation between the embeddings
of the Out-of-KG entities and the In-KG entities. Note
that the In-KG entities’ embeddings are learnt directly
from KG in training phase, while the Out-of-KG en-
tities’ embeddings (which are indirectly obtained) are
built according to their descriptions after the training
phase. We believe that it would result in a semantic
gap between the Out-of-KG entities’ embedding space
and In-KG entities’ embedding space, because the data
which is used for learning In-KG entities embeddings
and Out-of-KG entities embeddings are not the same,
which can be demonstrated by this observation.

Case Study. Table 5 and Table 6 show the examples of pre-
dicting the subject entity and object entity respectively for
KGE in the zero-shot scenario by JointE model, given the
rest of the triple in testing data of FB20K. Given the input,
the predicting results top-N (N = 4) are listed in order. The
exact true answer is marked bold. We can see from the tables
that most bold true subject or object are top ranked, which
demonstrates the predicting capabilities of JointE model.
However, given the predicate relation “partially contains”
and object entity “Shire River”, we can find the bold correct
subject entity “Malawi” is not top-ranked, but all the pre-
dicted subject entity answer listed are countries’ names. It
indicates that even if the true fact is not always top-ranked,
the predicted results can still reflect common-sense.

6. Conclusion

In this paper, we aim at extending knowledge graph in the
zero-shot scenario, while most of the traditional approaches
cannot deal with this issue, since they only learn the repre-
sentation of In-KG entities and have no representation for
unseen entities (or Out-of-KG entities). We propose a novel
model (JointE) to jointly learn KG and entity descriptions
embeddings to extend KG by adding relations with Out-of-
KG entities. The JointE model builds representations for
Out-of-KG entities using their descriptions. We evaluate the
proposed model on two real datasets by entity prediction in
the zero-shot scenario, and the experimental results show
the effectiveness of the proposed model.
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