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Flexible and Fast Similarity Search for Enriched Trajectories∗

Hideaki OHASHI†a), Toshiyuki SHIMIZU†, Nonmembers, and Masatoshi YOSHIKAWA†, Member

SUMMARY In this study, we focus on a method to search for similar
trajectories. In the majority of previous works on searching for similar tra-
jectories, only raw trajectory data were used. However, to obtain deeper in-
sights, additional time-dependent trajectory features should be utilized de-
pending on the search intent. For instance, to identify similar combination
plays in soccer games, such additional features include the movements of
the team players. In this paper, we develop a framework to flexibly search
for similar trajectories associated with time-dependent features, which we
call enriched trajectories. In this framework, weights, which represent the
relative importance of each feature, can be flexibly given by users. More-
over, to facilitate fast searching, we first propose a lower bounding measure
of the DTW distance between enriched trajectories, and then we propose
algorithms based on this lower bounding measure. We evaluate the effec-
tiveness of the lower bounding measure and compare the performances of
the algorithms under various conditions using soccer data and synthetic
data. Our experimental results suggest that the proposed lower bounding
measure is superior to the existing measure, and one of the proposed algo-
rithms, which is based on the threshold algorithm, is suitable for practical
use.
key words: trajectories, similarity search, dynamic time warping

1. Introduction

In recent years, advances in location-acquisition techniques
have resulted in the generation of many types of trajec-
tory data, such as hurricane tracking data [1], vessel mo-
tion data [2] and sports tracking data [3], [4]. Each of these
datasets can be analyzed for recommendations, predictions,
and event detection. Numerous studies have introduced var-
ious analysis methods for many types of trajectories, such as
clustering [1] and outlier detection [5]. In this study, we fo-
cus on a search for similar trajectories, which can be applied
to many of the above types of analyses.

The majority of methods for similar trajectory search
use only raw trajectory data [6], [7]; however, to obtain
deeper insights, additional time-dependent features should
be utilized depending on the search intent. For example, if
you wish to identify similar hurricanes, such additional fea-
tures include the correlations between their speeds and their
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atmospheric pressures. In addition, if one wishes to find ves-
sels that are moving under similar circumstances, such ad-
ditional features include the weather and ocean current data.
In this paper, we propose a framework to flexibly search for
similar trajectories associated with time-dependent features,
which we call enriched trajectories. In this framework, a
user can flexibly set the weights, which represent the relative
importance of each feature. Although there are several stud-
ies that address time-dependent features [8]–[11], our work
has novelty in the flexible search by inputting weights ac-
cording to the search intent.

In this study, we utilize dynamic time warping
(DTW) [12] as a measure of the distance between enriched
trajectories. DTW is a distance measure for time-series data
that is simple and accurate [13]. However, the computa-
tional cost of DTW is high; therefore, many techniques have
been proposed to accelerate DTW-based similarity searches.
In particular, many techniques with lower bounding mea-
sures have been proposed [7], [14], [15].

In this paper, to achieve fast searching, we propose a
lower bounding measure that is specifically designed for our
proposed framework. The computational cost of this lower
bounding measure is very low. In addition, we propose four
algorithms based on the lower bounding measure for fast
similarity searching. We name the four algorithms naive
lower bounding (NLB), sorted lower bounding (SLB), par-
tially selected lower bounding (PSLB), and threshold algo-
rithm lower bounding (TALB). The NLB algorithm uses the
lower bounding measure to prune out candidates and serves
as the basis for the other three algorithms. SLB is an al-
gorithm in which candidates are sorted by the lower bound
distance. PSLB is an algorithm in which candidates are par-
tially selected by the lower bound distance. Finally, TALB
is an algorithm that is based on the threshold algorithm [16].

We compare the performances of the proposed lower
bounding measure and the existing measure for multivariate
time series [17] and confirm that our proposed measure is
superior to the existing measure. In addition, we compare
the performances of the four algorithms under various con-
ditions using soccer data and synthetic data. Our results re-
veal that PSLB is slightly superior in most cases. However,
the TALB algorithm is considerably superior when both the
number of trajectories is large and the average length of the
trajectories is short or when the search allocates a larger
weight to one feature of the trajectories.

The contributions of this paper can be summarized as
follows:

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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• We propose a framework for flexible similarity
searches for enriched trajectories considering the
search intent.

• We propose a lower bounding measure that utilizes the
characteristics of the proposed framework.

• We propose four algorithms using the proposed lower
bounding measure and compare their performances.

The remainder of this paper is structured as follows:
Sect. 2 reviews the related work. The problem statement is
discussed in Sect. 3. In Sect. 4, we propose a novel lower
bounding measure and four algorithms for fast similarity
searches of enriched trajectories. We present our experi-
mental results in Sect. 5. In Sect. 6, we conclude our work
with a discussion of future work.

2. Related Work

In this section, we introduce similarity measures for time-
series data, including trajectory data. Additionally, we in-
troduce the previous studies that address the time-dependent
features of an object’s trajectory. We consider that the time-
dependent features can be classified into two types. The first
type includes the features that are derived from the primi-
tive features of the trajectory, such as the object’s speed and
direction. The second type encompasses the features that
are obtained by combining primitive features with other data
sources, such as the positional relationships between the ob-
ject and another object. We call the former intrinsic features
and the latter extrinsic features. There is a long history of
studies addressing intrinsic features [8], [9]; however, the
number of studies that consider extrinsic features has re-
cently been increasing because of the increasing amount of
attention being focused on cross-domain data fusion [18].
In this paper, both types of features are treated identically.
In contrast to previous studies, our research addresses both
types of features and their relative importance.

2.1 Distance Measures

Dynamic time warping (DTW) [12] is the most widely used
distance measure for time series. DTW is an algorithm that
allows some points to be repeated to minimize the sum of
the distance between points, which suits the characteristics
of trajectories as follows:

• Two trajectories need not be observed synchronously
for the similarity between them to be measured.

• Similar trajectory patterns often appear in different re-
gions.

DTW is simple and accurate [13]; however, the compu-
tational cost of DTW is high. Accordingly, many at-
tempts have been made to reduce the computational cost
of DTW [7], [14], [15], [19], [20]. Rath et al. proposed
the lower bound LB MV for the DTW distance of multi-
variate time series [17]. This is an extension of the lower
bound LB Keogh [14] for the DTW distance of univariate

time series. Some methods other than those using lower
bounds have been proposed for accelerating the similarity
search of time series data using DTW, such as early aban-
don [19] and data abstraction [20], which can be extended
to the top-k problem of the enriched trajectories. However,
all of these methods can be combined with techniques us-
ing lower bounds. In addition, to the best of our knowledge,
only the research of [17] proposed a lower bound that can
be extended to the enriched trajectories. Thus, it is consid-
ered reasonable that we compare the performances of the
proposed lower bound and LB MV . We confirm that our
proposed lower bound is superior to LB MV in Sect. 5.2.1.

Lee et al. [1] defined the distance function between tra-
jectory segments as a linear combination of three compo-
nents with weights. In this study, we similarly define the
distance function as a linear combination with weights, and
we utilize the weights as the relative importance of each fea-
ture.

2.2 Intrinsic Features

Pelekis et al. [8] introduced a similarity search framework
for application to a trajectory database that consists of a
set of distance operators based on both primitive (space and
time) and derived (speed and direction) parameters of trajec-
tories. Buchin et al. [9] defined many criteria under which a
trajectory can be homogeneous, including location, heading,
speed, velocity, curvature, sinuosity, and curviness, and they
presented a framework for segmenting a trajectory based on
these criteria.

Note that some people might think that intrinsic fea-
tures, such as speeds and directions, are redundant because
DTW can measure the distance between sequences in which
they vary. However, intrinsic features are important for
cases such as those in which we want to retrieve enriched
trajectories that are spatially far away from each other but
have similar speed patterns.

2.3 Extrinsic Features

Zheng et al. [10] studied the problem of efficient similar-
ity searches for trajectories associated with activity informa-
tion that is generated from location-based web applications.
Zheng et al. [11] generated air quality inferences based on
the trajectories of vehicles, POIs, and meteorological data.

3. Problem Statement

In this section, we present the problem statement and the
necessary definitions. Moreover, we show an example
of similar enriched trajectories that suggests our proposed
framework is useful. In our proposed framework, a user
selects a query from a dataset of enriched trajectories and
inputs weights; then, the top-k results that are most similar
to the query are returned. The weights represent the relative
importance of features in an enriched trajectory. The defini-
tions of enriched trajectories and the distance between them



OHASHI et al.: FLEXIBLE AND FAST SIMILARITY SEARCH FOR ENRICHED TRAJECTORIES
2083

are provided below.

3.1 Enriched Trajectory

In this study, a trajectory is defined as follows:

pi = 〈pi(1), pi(2), . . . , pi(n)〉
where i is the identification index, n is the length of pi, and
pi( j) ( j = 1, 2, . . . , n) denote spatial points. We assume that
all temporal intervals between adjacent points are equal in
this study.

We refer to a tuple of spatial points and time-dependent
feature values as an enriched point. The j-th enriched point
of pi is defined as follows:

epi( j) = (pi( j), f vi1( j), . . . , f vim( j))

where f vil( j) (l = 1, 2, . . . ,m) denote time-dependent fea-
ture values and m is the number of time-dependent feature
values. Thus, we represent an enriched trajectory as follows:

epi = 〈epi(1), epi(2), . . . , epi(n)〉

3.2 Distance between Enriched Trajectories

In this study, we utilize DTW to calculate the distance be-
tween enriched trajectories. First, we introduce the distance
between two enriched points:

EDist(epi( j), epg(h)) (1)

= wp · Dp(pi( j), pg(h))

+

m∑
l=1

w f vl · Df vl ( f vil( j), f vgl (h))

where wp, w f v1 , . . . , w f vm are the weights given by the
user, in which all weights are non-negative real num-
bers; Dp denotes the distance function for spatial points;
and Df v1 , . . . ,Df vm denote the distance function for time-
dependent feature values.

Note that it is difficult to manually input all the weights
accurately and obtain the desired insights without any sup-
port. Some approaches with learning techniques [21] or
statistical techniques [22] could support users in selecting
proper weights; however, solving this problem is beyond the
scope of this paper.

Next, we present the DTW algorithm. Let pi = 〈pi(1),
pi(2), . . . , pi(s)〉, and pg = 〈pg(1), pg(2) . . . , pg(t)〉 be two
trajectories. DTW is defined as follows:

DTW(pi, pg) = f (s, t)

f ( j, h) = D( j, h) + min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ( j − 1, h)
f ( j, h − 1)
f ( j − 1, h − 1)

f (0, 0) = 0, f ( j, 0) = f (0, h) = ∞
( j = 1, 2, . . . , s; h = 1, 2, . . . , t)

where D( j, h) denotes the distance between pi( j) and pg(h).

Fig. 1 An example of similar enriched trajectories, which is composed
of a hurricane trajectory and its wind speed. (a) Query. (b) Most similar
enriched trajectory when wp = 3 and w f v1 = 1. (c) Most similar enriched
trajectory when wp = 1 and w f v1 = 3.

DTW is an algorithm that allows some points to be re-
peated to achieve the best alignment. When we compute
DTW(epi, epg), D( j, h) is equal to EDist(epi( j), epg(h))
(Eq. (1)).

3.3 An Example of Similar Enriched Trajectories

We present an example of similar enriched trajectories in
Fig. 1. We utilized 451 Atlantic hurricane tracking data,
which are recorded every 6 hours, in Unisys Weather†. In
this example, we consider the hurricane trajectories to be
associated with the wind speed. When we input hurricane
IRENE (Fig. 1 (a)) that occurred in 2011 and set the weight
of the trajectories (wp) to 3 and the weight of the wind speed
(w f v1 ) to 1, BONNIE (Fig. 1 (b)) was obtained as the most
similar enriched trajectory. Additionally, KATE (Fig. 1 (c))
is obtained as the most similar enriched trajectory when we
set the weight of trajectories (wp) to 1 and the weight of wind
speed (w f v1 ) to 3. This figure shows that the trajectory of
IRENE is similar to that of BONNIE and that the sequence
of wind speed of IRENE is similar to that of KATE. There-
fore, this example suggests that we can obtain the desired
result by inputting weights according to the search intent.

4. Algorithms

In our proposed framework, a user can obtain their desired
results by modifying the specified weights. However, be-
cause of the high computational cost of DTW, searching the
desired results requires too much time. Thus, we propose
a lower bounding measure that is specifically designed for
our proposed framework. The cost of computing this lower
bounding measure is very low. Moreover, we propose four
algorithms based on this lower bounding measure.

4.1 Proposed Lower Bounding Measure

We propose a lower bounding measure based on the follow-
ing theorem.

†http://weather.unisys.com/hurricane/
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Theorem 1: Let wp, w f v1 , w f v2 , . . . , w f vm be the weights
used to compute the distance between enriched trajectories.
Then,

DTW(epi, epg)

≥ wp · DTW(pi, pg) +
m∑

l=1

w f vl · DTW( f vil, f vgl )

Theorem 1 states that a lower bound on the DTW dis-
tance between two enriched trajectories can be obtained as
a linear combination of the DTW distance between the two
corresponding trajectories and the DTW distances between
the corresponding time-dependent feature sequences.

Before proving Theorem 1, we verify its validity
through an example. For simplicity, we consider a pair of
enriched trajectories, i.e., trajectories associated with time-
dependent feature sequences, whose weights (wp, w f v1 ) =
(0.5, 0.5). Figure 2 depicts (a) the distance matrix between
p1 and p2, (b) that between f v11 and f v21 and (c) that be-
tween ep1 and ep2. In addition, each red path in Fig. 2
indicates an optimal warping path that represents a DTW
alignment between the two sequences. In this example, the
DTW distance between the trajectories is 15, that between
the time-dependent feature sequences is 22 and that between
the enriched trajectories is 20. Thus, it can be observed that
20 ≥ 0.5 · 15 + 0.5 · 22 satisfies Theorem 1.

Proof 1: For E1, E2 ∈ {ep, p, f v1, . . . , f vm}, let WPE1 be
the warping path in E1’s distance matrix, and let WDistE2

(WPE1) be the sum of the costs of E2’s grid cells on WPE1.
DTW chooses a path that minimizes the sum of the costs
of E1’s grid cells; therefore, the following inequalities are
satisfied:

WDistp(WPep) ≥ WDistp(WPp)

WDist f v1 (WPep) ≥ WDist f v1 (WPf v1 )
...

WDist f vm (WPep) ≥ WDist f vm (WPf vm )

Fig. 2 Warping paths.

Thus, from the above inequalities and Eq. (1),

DTW(epi, epg)

= WDistep(WPep)

= wp ·WDistp(WPep) +
m∑

l=1

w f vl ·WDist f vl (WPep)

≥ wp ·WDistp(WPp) +
m∑

l=1

w f vl ·WDist f vl (WPf vl )

= wp · DTW(pi, pg) +
m∑

l=1

w f vl · DTW( f vil, f vgl )

Thus, we complete the proof. �

4.2 Fast Top-k Search Algorithms Based on the Proposed
Lower Bound

We propose the following four algorithms that utilize the
right-hand side of the inequality in Theorem 1 as the lower
bound on the DTW distance between two enriched trajecto-
ries:

1. Naive lower bounding (NLB)
2. Sorted lower bounding (SLB)
3. Partially selected lower bounding (PSLB)
4. Threshold algorithm lower bounding (TALB)

4.2.1 Naive Lower Bounding

This simple algorithm serves as the basis for the following
three algorithms. The idea of this algorithm is to use the
lower bounding measure to prune out candidate enriched
trajectories whose lower bounds are greater than the k-th
DTW distance. First, we preserve the DTW distances be-
tween all pairs of trajectories and between all pairs of time-
dependent feature sequences in a data structure (preDTW),
as shown in Algorithm 1. This procedure, called the PRE-
PROCESS PHASE, is completed before the user inputs the
desired weight and selects a query. Second, we search
for the k most similar enriched trajectories using the lower
bounds (SEARCH PHASE), as shown in Algorithm 2. We
store the identification indices i (i = 1, . . . , k) of the k candi-
dates and the DTW distances between the query epq and epi

Algorithm 1 Making Data Structure for the Search (PRE-
PROCESS PHASE)
INPUT: {ep1, . . . , epN } � epi = (pi, f vi1, . . . , f vim)
OUTPUT: data structure preDTW
1: for i← 1 to N do
2: for j← 1 to N do
3: preDTW[i][ j].p← DTW(pi, p j)
4: for l← 1 to m do
5: preDTW[i][ j]. f vl ← DTW( f vil, f v j

l )
6: end for
7: end for
8: end for

return preDTW
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Algorithm 2 Naive Search (SEARCH PHASE)
INPUT: {ep1, . . . , epN } � epi = (pi, f vi1, . . . , f vim)
INPUT: query index q ∈ {1 . . .N}
INPUT: W = {wp, w f v1 , . . . , w f vm }
INPUT: k � the number of outputs
INPUT: data structure preDTW
OUTPUT: the indices of the top-k outputs most similar to epq

1: for i← 1 to k do � except i← q
2: PQ.push([i,DTW(epq, epi)])
3: end for
4: for i← k + 1 to N do � except i← q
5: lb← lower bound(preDTW[q][i],W)
6: if lb < PQ.top.dtw then
7: true dist ← DTW(epq, epi)
8: if true dist < PQ.top.dtw then
9: PQ.pop()

10: PQ.push([i,DTW(epq, epi)])
11: end if
12: end if
13: end for
14: return PQ.index

in a priority queue (PQ) ranked by the DTW distance (the
pop function returns the largest element). Then, we scan
the remaining candidates epi (i = k + 1, . . . , n). During
this scan, we calculate the lower bounds between epq and
epi using preDTW and the weights W. If a lower bound is
less than the k-th DTW distance in the priority queue, then
we calculate the DTW distance between epq and epi; oth-
erwise, we prune out this calculation. Furthermore, if the
DTW distance between epq and epi is greater than the k-th
DTW distance in the priority queue, then we pop the top of
the priority queue and push in a set consisting of i and the
DTW distance between epq and epi. Let N be the number of
candidates, and let δ1 be the number of times that the DTW
algorithm is executed after the initial k candidates are stored.
Then, the number of lower bounds calculated is N − k, and
the number of DTW executions is k + δ1. We discuss the
detailed computational costs of the proposed algorithm in
Sect. 4.2.5.

4.2.2 Sorted Lower Bounding

We expect that the DTW distance between a candidate and
the query should be small if its lower bound is small. In ad-
dition, we expect that the earlier we can find a small DTW
distance, the more candidates that we will prune out. This
algorithm computes the lower bounds between the query
and all candidates and then sorts all of these lower bounds
using quicksort immediately after the weights are input.
Then, the similarity search begins from the candidates with
the smallest lower bounds. Let δ2 be the number of times
that the DTW algorithm is executed after the initial k can-
didates are stored. Then, the number of lower bounds cal-
culated is N, and the number of DTW executions is k + δ2,
where δ2 ≤ δ1 in most cases.

4.2.3 Partially Selected Lower Bounding

The algorithm introduced above cannot perform efficiently
when there are many candidates, namely, when N is large.
This is because too much time is required to sort all the
lower bounds. This algorithm utilizes quickselect [23],
which is a partition-based selection algorithm that achieves
linear performance, rather than quicksort. Quickselect can
select the top-k candidates whose lower bounds are small
more rapidly than can quicksort. However, quickselect can-
not sort the remaining candidates; therefore, the pruning ca-
pability of this algorithm is lower than that of the previous
algorithm. Let δ3 be the number of times that the DTW al-
gorithm is executed after the initial k candidates are stored.
Then, the number of lower bounds calculated is N, and the
number of DTW executions is k + δ3, where δ2 ≤ δ3 ≤ δ1 in
most cases.

4.2.4 Threshold Algorithm Lower Bounding

We propose an algorithm that utilizes the characteristics of
our proposed framework. Fagin’s threshold algorithm [16]
is a top-k combination algorithm that achieves fast search-
ing with the lists sorted by each feature. In this algorithm,
we prepare the sorted lists of the DTW distances between
trajectories and between time-dependent feature sequences
in the PREPROCESS PHASE. This algorithm is described
as follows:

1. Execute sorted access in parallel on each of the sorted
lists until k enriched trajectories have been observed.
When any enriched trajectory epi is observed in a list
for the first time, compute the DTW distance between
epq and epi and remember epi and its DTW distance.

2. Access the next candidates of the sorted lists. Define a
threshold value as the linear combination of each DTW
distance of the candidates with the input weights. If at
least k enriched trajectories have been observed whose
DTW distances are less than or equal to the threshold
value, then halt. The outputs are the k enriched trajec-
tories that have been observed with the lowest DTW
distances.

3. When epi is observed during the sorted access process
in a list for the first time, randomly access the other lists
to find every DTW distance between pq and pi and be-
tween f vql and f vil. Then, compute the lower bound,
that is, compute the linear combination of these dis-
tances with the input weights. If the lower bound is less
than any DTW distance between the enriched trajecto-
ries observed thus far, then compute the DTW distance
between epq and epi and remember epi and its DTW
distance. Then, return to step 2 to continue sorted ac-
cess.

Here, we present an example. Let epq be a query, let
ep1 . . . ep5 be the candidates, and let f v1 and f v2 be time-
dependent features. We assume that the problem of in-
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Fig. 3 The TALB algorithm (based on a threshold algorithm).

terest is to search for the top 2 similar enriched trajecto-
ries. The upper left of Fig. 3 shows the DTW distances be-
tween pq and pi, between f vq1 and f vi1, and between f vq2 and
f vi2. In addition, the upper right of Fig. 3 shows the lower
bounds and the DTW distances between epq and epi; in this
case, the top 2 similar enriched trajectories are ep1 and ep4.
Moreover, the bottom of Fig. 3 presents lists of the DTW
distances between trajectories and between time-dependent
feature sequences. During the process of accessing the first
items from every list, called the first round, the algorithm
computes the DTW distances of ep1 (0.5) and ep4 (0.7). In
the second round, the algorithm first computes the threshold
(1·0.3+1·0.2+1·0.1 = 0.6), which is less than the DTW dis-
tance of ep4 (0.7); therefore, the algorithm continues. Next,
the lower bound on ep2, which has been observed for the
first time, is computed, and this lower bound (1.9) is greater
than the DTW distance of ep4; therefore, the DTW distance
of ep2 is not computed. In the third round, the threshold
(1 · 0.4+ 1 · 0.3+ 1 · 0.2 = 0.9) is greater than any DTW dis-
tance computed thus far; therefore, the algorithm is halted.

This algorithm is effective when there are too many en-
riched trajectories for quickselect to be applicable. For this
algorithm, it is necessary to prepare sorted lists of the DTW
distances between trajectories and between time-dependent
feature sequences; however, this procedure can be com-
pleted during the PREPROCESS PHASE. Let NT A(≤ N) be
the number of lower bounds calculated, and let δ4 be the
number of times that the DTW algorithm is executed after
the initial k candidates are stored. Then, the number of lower
bounds calculated is NT A, and the number of DTW execu-
tions is k + δ4, where δ2 ≤ δ3 ≤ δ4 ≤ δ1 in most cases.
In addition, if we consider access scheduling [24], then this
algorithm can operate more efficiently. Determining the op-
timal scheduling for this algorithm will be a task for future
research.

4.2.5 Computational Costs of the Proposed Algorithms

Let m be the number of time-dependent feature values,

Table 1 The average computation time (NT A ≤ N and δ2 ≤ δ3 ≤ δ4 ≤ δ1
in most cases).

lb lb DTW
calculation preparation calculation

NLB m(N − k) (k + δ1)n2

SLB mN O(N log N) (k + δ2)n2

PSLB mN O(N) (k + δ3)n2

TALB mNT A (k + δ4)n2

let n be the average length of the enriched trajectories,
and let N be the number of enriched trajectories. Then,
the average computational times are as shown in Table 1.
The average time required for calculating the lower bounds
(lb calculation) is the number of lower bounds calculated
multiplied by m because each lower bound is computed as a
linear combination of the DTW distance between the trajec-
tories and the DTW distances between the time-dependent
feature sequences. The average time required for calcu-
lating the DTW distances (DTW calculation) is the av-
erage number of calculated DTW distances multiplied by
n2 because computing the DTW distance has a complex-
ity of n2. The average lb preparation performance of the
SLB algorithm is the average performance for the sorting
of the lower bounds using quicksort. Similarly, the average
lb preparation performance of the PSLB algorithm is the
average performance for the partial selection of the lower
bounds using quickselect.

We discuss δ1, δ2, δ3, and δ4. SLB, PSLB, and TALB
follow the assumption that the DTW distance between a
candidate and the query should be small if its lower bound
is small. Thus, the magnitude relations of deltas are not
theoretically guaranteed. However, when we perform ex-
periments on synthetic data (details of the generation pro-
cess are described in Sect. 5.1.1) in the case where m = 5,
N = 1,000, n = 16 and k = 10, we obtain δ1 = 245,
δ2 = 140, δ3 = 142, δ4 = 169, which satisfies the inequality
δ2 ≤ δ3 ≤ δ4 ≤ δ1.

Furthermore, we describe the space complexity. The
following discussion is common to all the proposed algo-
rithms. When loading all data structures calculated by the
PREPROCESS PHASE into memory, the space complex-
ity required to preserve them is O(mN2). Moreover, when
loading only the corresponding data structure of one search
query into memory, the space complexity required to pre-
serve it is O(mN). In our experiments, we consider loading
only the corresponding data structure of the search queries
utilized for the similar search into memory. In addition, the
space complexity required for the DTW calculation is O(n2).

5. Experiments

5.1 Experimental Setting

In this section, we evaluate the effectiveness of the proposed
lower bound using a synthetic dataset. In addition, we com-
pare the performance of the DTW calculation without the
lower bound (BASE) and that of the four proposed algo-
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rithms (NLB, SLB, PSLB, and TALB) using two types of
datasets: a real soccer dataset and a synthetic dataset. Sports
must be analyzed from various perspectives; therefore, a
sports dataset is a suitable means for testing our proposed
flexible similarity search framework. Increasingly detailed
soccer data are being collected using current technology,
and analyzing these data is important for coaches, clubs and
players [3]. First, we provide brief overview of two datasets;
then, we present the time-dependent features of each dataset
in detail and the measures of the distance between spatial
points and between time-dependent feature values.

5.1.1 Datasets

In this experiment, we consider soccer player tracking data
from Data Stadium Inc.†. This dataset consists of tracking
data from 6 games observed 25 times per second. In the
soccer player tracking data, each spatial point can be rep-
resented by a pair of xi( j) and yi( j) rather than by pi( j).
In this experiment, we extract the FW (a forward in soc-
cer) trajectories in the penalty area and the concurrent MF
(a midfielder in soccer) trajectories from the dataset. We
consider the FW trajectories to be associated with two in-
trinsic features, namely, the FW’s speed and direction, and
two extrinsic features, namely, the distance between the FW
and the MF and the direction from the FW to the MF. The
definitions of speed and direction are discussed in greater
detail later. In summary, we consider enriched trajectories
whose elements are as follows: ID, timestamp, xi( j), yi( j),
FW speed, FW direction, distance between FW and MF, and
direction from FW to MF. We utilize 9736 trajectories with
an average length of 477.

In addition, we consider synthetic data whose elements
are as follows: ID, timestamp, xi( j), yi( j), speed, direction
and the two extrinsic features. To prepare these data, xi( j),
yi( j) and the two extrinsic features were generated using the
following random walk model in accordance with [15]:

v(i) = v(i − 1) + di f (i)

where v(1) and di f (i) are uniformly distributed in the range
(0, 20).

5.1.2 Speed and Direction

We denote a speed by f vi1( j) and a direction by f vi2( j). The
speed f vi1( j) can be defined as the distance between adjacent
points if the points are sampled at equal time intervals:

f vi1( j)

=

√
(xi( j + 1) − xi( j))2 + (yi( j + 1) − yi( j))2

Next, we define f vi2( j) as follows:

†https://www.datastadium.co.jp/

f vi2( j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ (xi( j + 1) > xi( j))
θ + π (xi( j + 1) < xi( j), yi( j + 1) ≥ yi( j))
θ − π (xi( j + 1) < xi( j), yi( j + 1) < yi( j))
π
2 (xi( j + 1) = xi( j), yi( j + 1) > yi( j))
− π2 (xi( j + 1) = xi( j), yi( j + 1) < yi( j))

where

θ = arctan

(
yi( j + 1) − yi( j)
xi( j + 1) − xi( j)

) (
−π

2
< arctan(x) <

π

2

)

In this formulation, a direction of pure east has an angle of
0, and a direction of pure north has an angle of + π2 .

Note that we cannot define the speed and direction ob-
served at the end of a trajectory ( f vi1(n), f vi2(n)); therefore,
we do not consider the ends of the enriched trajectories. In
addition, in the case of an unmoving object, we set the speed
and direction to 0.

5.1.3 Distance between Spatial Points

Here, we define the distance between two spatial points. The
Euclidean distance between spatial points has a larger range
than the distance between time-dependent feature values (as
defined below); therefore, we divide the Euclidean distance
by
√

2.

Dp(pi( j), pg(h)) =

√
(xg(h) − xi( j))2 + (yg(h) − yi( j))2

2

Stricter adjustment of the distance scales will be a task for
future work.

5.1.4 Distance between Time-Dependent Feature Values

The distance between four time-dependent feature values
is the absolute value of the difference between the time-
dependent feature values.

Df vl ( f vil( j), f vgl (h)) = | f vil( j) − f vgl (h)|

5.1.5 Normalization

In this experiment, we consider various types of time-
dependent feature values whose ranges are distinct. For in-
stance, the range of speeds is theoretically [0,∞), whereas
the range of directions is [−π, π]. To obtain meaningful re-
sults, we normalize xi( j), yi( j), and each time-dependent
feature value such that they follow a distribution with an
average of 0 and a variance of 1.

5.2 Experimental Results

We implemented the proposed algorithms in C++ and com-
piled them using g++ 5.2.1. The experiments were run un-
der Ubuntu 14.04.3 on a computer with an Intel Core i7
CPU at 4.00 GHz and 32 GB of RAM. In addition, we
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utilized PostgreSQL 9.4.7 to store the data structure com-
puted in the PREPROCESS PHASE. We loaded all trajec-
tory data and the data structure of the search queries utilized
in the SEARCH PHASE into the main memory prior to the
SEARCH PHASE, and then we measured the time taken
by the SEARCH PHASE. The executable code is available
at [25].

5.2.1 Comparison of the Lower Bounding Measures

We compare the performances of the proposed lower bound
and LB MV [17], which is the extended LB Keogh [14]
for multivariate time series. We evaluate their perfor-
mances using four time-dependent feature sequences on
a random-walk dataset. To compare between our pro-
posed lower bound and LB MV, we use the Sakoe-Chiba
band [26], which is a global path constraint for DTW, and
the squared difference as a measure of the distance between
time-dependent feature values. In addition, we utilize the
tightness of the lower bound, which is defined as the ratio of
the lower bound over the true distance, as a measurement of
efficiency.

Tightness =
LowerBound

TrueDTWDistance

The tightness of the lower bound is a very meaningful mea-
sure [13]. The results that are obtained when we set all
weights to 1 and the number of trajectories to 10,000 are
shown in Fig. 4 (a). Moreover, the results that are obtained
when we set the length of trajectories to 64 are presented
in Fig. 4 (b). These results suggest that our proposed lower
bound is considerably superior to LB MV. In addition, note
that our proposed lower bound is simply computed based
on the linear combination of each distance with weights, al-
though it needs preparation. Therefore, the cost of calcu-
lating our proposed lower bound is considerably lower than
that of calculating LB MV, whose computational cost is mn.

5.2.2 Tests on Soccer Data

We measured the time required for a top-10 similarity search
for soccer enriched trajectories as described in Sect. 5.1.1.
We utilized the 21 enriched trajectories corresponding to
shooting FWs as queries. In addition, we set all the weights
that are uniformly distributed in the range (0,1), compute

Fig. 4 Tightness of Lower Bound (weights = {1,1,1,1,1}).

100 times, and take the average of all the calculation times.
The time for BASE was 118.103 seconds, that for the
NLB algorithm was 3.955 seconds, that for the SLB algo-
rithm was 2.075 seconds, that for the PSLB algorithm was
2.078 seconds and that for the TALB algorithm was 2.566.
This experimental result indicates that the four algorithms
with our proposed lower bound achieve considerably faster
searches on real data. The computational times for each al-
gorithm are discussed in greater detail below with regard to
the output efficiencies observed in the subsequent studies on
synthetic data.

5.2.3 Tests on Random-Walk Data

We measured the average computing times required for sim-
ilarity searches on random-walk data under various condi-
tions using 5 enriched trajectories as queries.

The experimental results obtained when we set all
weights that are uniformly distributed in the range (0, 1),
compute 100 times, and take the average of all the calcu-
lation times are presented in Tables 2, 3 and 4. In this
experiment, the PSLB algorithm is slightly superior to the

Table 2 Average calculation times of the top 1 results (with weights that
are uniformly distributed in the range (0, 1)).

N n Methods
BASE(S) NLB(s) SLB(s) PSLB(s) TALB(s)

1,000 16 0.048 0.005 0.005 0.004 0.004
32 0.162 0.029 0.022 0.021 0.022
64 0.752 0.192 0.155 0.154 0.156

128 2.844 0.896 0.763 0.762 0.772
256 10.236 3.284 2.729 2.730 2.764

10,000 16 0.412 0.027 0.042 0.023 0.015
32 1.870 0.179 0.146 0.127 0.127
64 7.093 1.013 0.792 0.774 0.783

128 25.447 4.548 3.953 3.936 3.965
100,000 16 3.912 0.200 0.416 0.202 0.111

32 18.047 1.014 1.021 0.812 0.821
64 71.871 7.793 6.939 6.723 6.749

1,000,000 16 42.504 2.179 4.612 2.245 1.101
32 190.281 6.689 7.830 5.474 5.045

10,000,000 16 425.642 23.707 78.868 32.058 7.418

Table 3 Average calculation times of the top 5 results (with weights that
are uniformly distributed in the range (0, 1)).

N n Methods
BASE(S) NLB(s) SLB(s) PSLB(s) TALB(s)

1,000 16 0.048 0.010 0.008 0.007 0.007
32 0.162 0.048 0.035 0.034 0.036
64 0.756 0.281 0.219 0.218 0.226

128 2.842 1.192 0.991 0.992 1.016
256 10.233 4.551 3.765 3.781 3.840

10,000 16 0.412 0.042 0.049 0.030 0.027
32 1.874 0.302 0.245 0.227 0.234
64 7.096 1.507 1.210 1.192 1.219

128 25.445 6.485 5.395 5.381 5.452
100,000 16 3.897 0.239 0.436 0.222 0.174

32 18.065 1.647 1.480 1.270 1.337
64 71.890 11.025 9.416 9.200 9.297

1,000,000 16 42.486 2.383 4.708 2.343 1.549
32 190.608 10.265 10.456 8.103 8.086

10,000,000 16 426.410 24.206 73.087 30.183 11.055
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Table 4 Average calculation times of the top 10 results (with weights
that are uniformly distributed in the range (0, 1)).

N n Methods
BASE(S) NLB(s) SLB(s) PSLB(s) TALB(s)

1,000 16 0.050 0.014 0.011 0.009 0.011
32 0.167 0.061 0.044 0.043 0.047
64 0.747 0.324 0.254 0.252 0.264

128 2.882 1.352 1.110 1.113 1.152
256 10.138 5.098 4.226 4.246 4.339

10,000 16 0.410 0.052 0.055 0.036 0.035
32 1.856 0.360 0.290 0.272 0.284
64 7.029 1.745 1.382 1.364 1.401

128 25.181 7.365 6.128 6.121 6.205
100,000 16 3.879 0.269 0.463 0.242 0.207

32 17.927 1.978 1.715 1.504 1.613
64 71.283 12.435 10.457 10.238 10.401

1,000,000 16 42.375 2.529 5.582 2.978 1.991
32 188.863 11.982 12.243 9.712 9.699

10,000,000 16 423.243 24.580 103.543 41.028 13.424

Table 5 Average calculation times of the top 1, 5, and 10 results (with
weights = {0, 0, 0, 0, 1}).

Top 1 Top 5 Top 10
N n Methods Methods Methods

PSLB(s) TALB(s) PSLB(s) TALB(s) PSLB(s) TALB(s)
1,000 16 0.0015 0.0002 0.0019 0.0007 0.0021 0.0013

32 0.0017 0.0004 0.0027 0.0019 0.0035 0.0039
64 0.0024 0.0018 0.0058 0.0099 0.0101 0.018

128 0.0038 0.0073 0.0171 0.0358 0.029 0.0698
256 0.0146 0.0223 0.0492 0.1161 0.101 0.2161

10,000 16 0.0182 0.0001 0.0185 0.0007 0.0189 0.0011
32 0.0185 0.0005 0.0196 0.0023 0.0218 0.0048
64 0.019 0.0015 0.0236 0.0085 0.0283 0.0169

128 0.0225 0.0059 0.0331 0.0278 0.0474 0.0533
100,000 16 0.1894 0.0001 0.1903 0.0006 0.1906 0.0013

32 0.1923 0.0005 0.1933 0.0024 0.197 0.0045
64 0.2747 0.002 0.2758 0.009 0.2856 0.0168

1,000,000 16 2.171 0.0002 2.1949 0.0007 2.183 0.0013
32 2.2063 0.0006 2.2195 0.0027 2.3085 0.0052

10,000,000 16 25.6581 0.0002 26.3536 0.0008 25.7757 0.0015

other algorithms in most cases. However, when the number
of enriched trajectories is large and the average length of
the enriched trajectories is short, then the TALB algorithm
outperforms the PSLB algorithm. When the number of en-
riched trajectories is 10,000,000 and the average length of
the enriched trajectories is 16, then the TALB algorithm is
considerably superior to the PSLB algorithm. This is be-
cause the PSLB algorithm needs preparation time for the
partial selection, which requires an average complexity of
N, whereas the TALB algorithm does not require any prepa-
ration, as shown in Table 1.

The TALB algorithm is far superior to the PSLB algo-
rithm when one time-dependent feature is assigned a larger
weight than the others. This is because the enriched trajec-
tories for which the DTW distances of the time-dependent
features are small are more likely to be output in this case.
Thus, the TALB algorithm, which accesses the lists sorted
by each distance, performs well. The results obtained in the
case where we set one weight to 1 and the remaining weights
to 0, in which TALB works best, are shown in Table 5. Al-
though the PSLB algorithm performs slightly better under
certain conditions, we consider that these experimental re-

Table 6 Standard deviation of the calculation times of the top 10 results
(with weights that are uniformly distributed in the range (0, 1)).

N n Methods
BASE NLB SLB PSLB TALB

1,000 16 0.004 0.005 0.004 0.004 0.005
32 0.013 0.021 0.020 0.020 0.020
64 0.074 0.142 0.145 0.145 0.143
128 0.234 0.507 0.533 0.535 0.522
256 1.272 2.021 2.178 2.188 2.144

10,000 16 0.033 0.017 0.011 0.011 0.015
32 0.134 0.175 0.150 0.150 0.154
64 0.790 1.007 0.942 0.942 0.945
128 2.954 3.964 3.859 3.853 3.863

100,000 16 0.374 0.070 0.060 0.050 0.092
32 0.856 1.228 0.991 0.989 1.057
64 10.717 9.653 8.934 8.927 9.029

1,000,000 16 5.673 0.525 0.731 0.537 1.094
32 8.367 10.568 8.784 8.703 9.518

10,000,000 16 72.275 1.486 22.818 9.445 8.196

Table 7 Relative standard deviation of the calculation times of the top
10 results (with weights that are uniformly distributed in the range (0, 1)).

N n Methods
BASE NLB SLB PSLB TALB

1,000 16 0.072 0.353 0.394 0.465 0.437
32 0.078 0.349 0.446 0.462 0.423
64 0.099 0.438 0.573 0.575 0.543

128 0.081 0.375 0.480 0.481 0.453
256 0.125 0.396 0.515 0.515 0.494

10,000 16 0.082 0.338 0.210 0.318 0.440
32 0.072 0.488 0.518 0.552 0.543
64 0.112 0.577 0.682 0.690 0.674

128 0.117 0.538 0.630 0.630 0.623
100,000 16 0.096 0.260 0.130 0.208 0.444

32 0.048 0.621 0.578 0.658 0.655
64 0.150 0.776 0.854 0.872 0.868

1,000,000 16 0.134 0.208 0.131 0.180 0.550
32 0.044 0.882 0.717 0.896 0.981

10,000,000 16 0.171 0.060 0.220 0.230 0.611

sults suggest that the TALB algorithm performs well under
any condition.

In addition, we show the standard deviation and the
relative standard deviation, which is the ratio of the stan-
dard deviation to the average, of the 100 calculation times
of the top 10 results when we set all weights that are uni-
formly distributed in the range (0, 1) in Table 6 and in Ta-
ble 7. Moreover, boxplots of the 100 calculation times of the
top 10 results using one query when we set all weights that
are uniformly distributed in the range (0, 1), N to 10,000
and n to 128 are shown in Fig. 5, and boxplots when we
set N to 1,000,000 and n to 16 are shown in Fig. 6. Ta-
ble 7 shows that the dispersion of the calculation times of
TALB is larger than that of other algorithms when the av-
erage length of trajectories is short and the number of tra-
jectories is large. However, Figs. 5 and 6 suggest that the
best computation time of TALB can be superior to that of
other alogrithms and the worst computation time of TALB
is not inferior to that of other algorithms. This result is be-
cause when one time-dependent feature is assigned a larger
weight than others, the calculation time of TALB is close to
0 in any case as described above. Thus, the TALB algorithm
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Fig. 5 Boxplots of the calculation times of the top 10 results when we set
all weights to the values that are uniformly distributed in the range (0, 1),
N to 10,000 and n to 128.

Fig. 6 Boxplots of the calculation times of the top 10 results when we set
all weights to the values that are uniformly distributed in the range (0, 1),
N to 1,000,000 and n to 16.

is suitable for practical use.

6. Conclusions and Future Work

We proposed a framework for flexible similarity searches
for enriched trajectories. Moreover, we proposed a lower
bounding measure and four algorithms based on the mea-
sure. We evaluated their performances under various condi-
tions in our experiments.

There are three main prospective directions for future
research, as follows:

1. estimating the search intent
2. accelerating the PREPROCESS PHASE
3. searching for sub-enriched trajectories

First, the need to input all the weights imposes a high
cost on users; to alleviate this cost, we wish to impart the
framework with the ability to estimate the search intent.

Second, we need to accelerate the PREPROCESS
PHASE. Let m be the number of time-dependent features,
let n be the average length of the enriched trajectories, and
let N be the number of enriched trajectories. Then, the cost
of computing the DTW distances for all features between
all pairs of enriched trajectories is mn2N2. This result indi-
cates that the calculation costs substantially increase as the
average length and number of enriched trajectories increase.
Therefore, it will be important to improve the efficiency of
the PREPROCESS PHASE for practical use.

Finally, our proposed framework can identify similar
overall enriched trajectories but might miss sub-enriched
trajectories. In some cases, it is impossible to obtain the de-
sired insight unless sub-enriched trajectories are considered.

Therefore, it will be desirable to enhance the capability of
our framework to address sub-enriched trajectories.
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