422

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.3 MARCH 2017

| PAPER Special Section on Foundations of Computer Science —New Trends in Theoretical Computer Science—

Autoreducibility and Completeness for Partial Multivalued

Functions

Shuji ISOBE'®, Member and Eisuke KOIZUMI™, Nonmember

SUMMARY In this paper, we investigate a relationship between many-
one-like autoreducibility and completeness for classes of functions com-
puted by polynomial-time nondeterministic Turing transducers. We prove
two results. One is that any many-one complete function for these classes
is metric many-one autoreducible. The other is that any strict metric many-
one complete function for these classes is strict metric many-one autore-
ducible.

key words: partial multivalued function, autoreduction, many-one-like re-
duction

1. Introduction

Many computational problems are formulated as functional
problems. This problem asks, for any given input x, to com-
pute a witness of the membership in some specified lan-
guage. Functional problems form a class of partial mul-
tivalued functions. In this paper, we focus on the classes
NPMV and NPMV, of functions computed by polynomial-
time non-deterministic Turing transducers. These classes
contain the witness functions for NP languages, the function
which maps each string x in an NP language L to strings
which witness the membership of x in L, and the inverse
functions of (possibly) one-way functions such as the inte-
ger factoring function and the discrete logarithm function.

It is well known in the complexity theory that there are
many cases in which functions can be reduced to some asso-
ciated languages. For example, the discrete logarithm func-
tion DL(p, g,y) over a prime field F, can be reduced to an
NP language {(p,g,y,k) | DL(p,g,y) < k} by a simple bi-
nary search method. Another example is the graph isomor-
phism problem: for given two isomorphic graphs, an iso-
morphism (permutations of vertices) can be found by using
the decisional oracle which recognizes whether or not any
given two graphs are isomorphic. Therefore, one may nat-
urally expect that the complexity properties of many func-
tions can be characterized by the complexity of those asso-
ciated languages.

On the other hand, there are also cases in which the
complexity of functions may not be characterized by the
“underlying” languages. Let us consider the #P-complete

Manuscript received March 24, 2016.
Manuscript revised July 8, 2016.
Manuscript publicized December 21, 2016.

"The authors are with Department of Computer and Mathemat-
ical Sciences, Graduate School of Information Sciences, Tohoku
University, Sendai-shi, 980-8576 Japan.

a) E-mail: iso@cite.tohoku.ac.jp
b) E-mail: koizumi@cite.tohoku.ac.jp
DOI: 10.1587/transinf.2016FCP0006

function #SAT: for any given boolean formula ¢, #SAT(¢)
is the number of satisfying assignments of ¢. If the function
#SAT reduces to the NP-complete language SAT, then the
polynomial-time hierarchy PH would collapse to the second
level by Toda’s theorem [10]. This observation suggests that
#P functions may not reduce to NP languages, and that com-
puting #P functions may be strictly harder than recognizing
the underlying languages.

The complexity-theoretic property we are interested in
is the autoreducibility. A language A is said to be autore-
ducible if, for any string x, the membership of x in A reduces
to the membership, in A, of several strings other than x.
Studying the autoreducibility of complete languages is quite
important since one can lead to characterizations and separa-
tions of complexity classes (e.g. [1], [5]). One can similarly
define the autoreducibility of functions, which has also been
used in the study on classes of counting functions [2], [8].

GlaBer et al. [5] proved that any complete language
for NP and PSPACE is many-one autoreducible. Then
Faliszewski and Ogihara [2] proved similar results for the
classes #P, SpanP and GapP of single-valued functions.
Our intention is to show that similar results still hold for
the classes NPMV and NPMV, of partial multivalued func-
tions. We first consider the many-one reduction (Defini-
tion 2.3), and show that any many-one complete function is
metric many-one autoreducible (Theorem 1). We next con-
sider a new reduction named the strict metric many-one re-
duction (Definition 2.4). This reduction is motivated by a
simple observation of relationships between SAT and other
languages in NP (see Sect.2). We prove that any strict met-
ric many-one complete function is strict metric many-one
autoreducible (Theorem 2).

Faliszewski and Ogihara [2] pointed out that their re-
sults show that the notions of the length-decreasing self-
reducibility (see Definition 2.7 of [2]) and the autoreducibil-
ity are different both on complete languages for NP and
PSPACE and on complete functions for #P, SpanP and
GapP. Even though our result does not directly lead to sep-
arations of complexity classes, the results of ours and Huh et
al. [6] show that the same point as Faliszewski and Ogihara’s
one applies for the classes NPMV and NPMV,. More con-
cretely, the results imply that there exists a complete func-
tion for NPMV or NPMV, which is autoreducible but not
length-decreasing self-reducible unless P = NP.

This paper is organized as follows: Definitions and no-
tations are given in Sect.2. We state our results, and give
their proofs in Sect. 3.

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

ISOBE and KOIZUMI: AUTOREDUCIBILITY AND COMPLETENESS FOR PARTIAL MULTIVALUED FUNCTIONS

2. Preliminaries

Let ¥ = {0, 1}, and let X* be the set of all strings over X
of finite length. For a subset X C X*, let #X denote the
cardinality of X. One can define the standard lexicographic
order < on X*. For a string x, succ(x) denotes the successor
of x.

We first refer to the notions of functions and Turing
transducers stated in [4] and [6]. Let X and Y be subsets of
¥*. A (partial multivalued) function from X to Y is a map
from X to the power set of Y. Let f be a function from X to
Y. Then the set X is called the domain of f, and is denoted
by dom f. For each string x € dom f, we set

graph f = {(x,y) €X* X X" | x € dom f and y € f(x)}.

A function f is said to be single-valued if f(x) is a singleton
set for each x € dom f. When f is single-valued, we regard
f(x) as a string of X*.

We use nondeterministic Turing transducers which
equip an input tape and an output tape in order to compute
functions. We assume that each Turing transducer has a spe-
cial tape symbol L which is not contained in £. We also
assume that, for any input string x, each Turing transducer
always outputs a string y or the symbol L, and then halts.
For a Turing transducer M, we write M(x) +— y if there ex-
ists a computation path in M such that M outputs the string
y on the input string x. We now define a computation of
functions by Turing transducers.

Definition 2.1: A Turing transducer M computes a func-
tion f if for any pair (x,y) € £* X £*, M(x) — y if and only
ify € f(x).

Let M be a Turing transducer which computes a func-
tion f. It follows from this definition that there exists a com-
putation path in M such that M outputs a string y € X* with
(x,y) € graph f for any x € dom f. This means that M non-
deterministically recognizes the language dom f. Note that
M may output L even if x € dom f, although the special
tape symbol L is not contained in X. On the other hand, M
always outputs L whenever x ¢ dom f.

We briefly refer to some complexity classes of func-
tions [3]. NPMV is the set of all functions which can be com-
puted by a nondeterministic polynomial-time Turing trans-
ducer. NPMV;, is the set of functions f € NPMV such that
graph f € P. FP is the set of single-valued functions which
can be computed by a polynomial-time deterministic Turing
transducer.

We now recall two many-one-like reductions: the met-
ric many-one and the many-one reductions [6]. Intuitively,
one can make only one query to the oracle in these reduc-
tions.

Definition 2.2 ([6]): A function f is metric many-one
(<P ..-) reducible to a function g, denoted by f <P . g, if
there exist two functions ¢, ¢ € FP such that the following
conditions hold for any x € *:

423

(i) if x € dom f, then ¥(x) € domg and ¢(x,z) € f(x)
follows for any z € g(¥(x)), and

(i1) if x ¢ dom f, then (x,z) ¢ dom¢ holds for any z €
g(Y(x)).

Definition 2.3 ([6]): A function f is many-one (<b-) re-
ducible to a function g, denoted by f <P g, if there exist
two functions ¢, ¢ € FP such that the following conditions
hold for any x € X*:

(i) if x € dom f, then Y(x) € domg and ¢(z) € f(x) fol-
lows for any z € g(¥(x)), and
(ii) if x ¢ dom f, then z ¢ dom ¢ holds for any z € g(¥(x)).
A function f is <P -complete for FC if f € FC and
g <P .. f holds for any function g € FC. The completeness
is also defined for the many-one reducibility.
In this paper, we define another many-one-like reduc-
tion, the strict metric many-one reduction.

Definition 2.4: A function f is strict metric many-one
(<P e”) reducible to a function g, denoted by f <P g,
if there exist two functions ¢, ¢ € FP such that the follow-
ing conditions hold for any x € X*:

(i) x € dom f if and only if ¥(x) € dom g, and
(ii) if x € dom f, then ¢(x,z) € f(x) follows for any z €
g(Y(x)).

The notion of the strict metric many-one reduction is
motivated by a simple observation of relationships between
SAT and other languages in NP: We note that any function
in NPMV, can be expressed as a witness function wity of
some language A € NP (Proposition 2.2 of [4]). Let sat
be a witness function of SAT, that is, for each ¢ € SAT,
sat outputs a satisfying assignment of ¢ which witnesses
that ¢ € SAT. For any language A € NP, there exists a
reduction ¢ from A to SAT such that, using the reduction ¢,
one can easily extract a string y witnessing the membership
x € A from a satisfying assignment z of the Boolean formula
¥(x) (the proof of Theorem 13 of [9]). Hence, sat is Ss_me[-
complete for NPMV,.

This fact also shows that A <}, SAT implies wity <P
sat, that is, SAT has a “witness-preserving” property. Many
concrete NP-complete languages also have such a property,
and hence, their witness functions are <” _ -complete for
NPMV,. However, it is still open whether the witness-
preserving property holds for any language L in NP (see
also Remark in Sect. 3 of [6]).

We now consider a relationship between the metric
many-one and the strict metric many-one reductions. As-
sume that f Sf_met g and that x ¢ dom f. Then we have
Y(x) ¢ domg, that is, g(¥/(x)) = 0, and the condition (ii) of
Definition 2.2 trivially holds. So f <P . gimplies f <P g.
Let us consider whether the converse holds. We define two
functions f and g by

dom f = SAT, f(x)={(1,y) |y € sat(x)},
domg = BF,

424

(x) = {(1,y) | y € sat(x)} if x € SAT,
7o if x € BF \ SAT,

where BF be the set of all the Boolean formulas. We also
define two single-valued functions ¢ and ¢ by

domy = %%, y(x) = x,

domg = £ x (£ \ {0]). ¢(x,2) = z.

Then we see that f <P ¢ via y and ¢. On the other hand,
if f <P . g, then SAT < BF follows. This means that
P = NP holds. Hence, it is unlikely that f <P g implies
f <P g for any functions f and g.

Huh et al. [6] defined the notion of strong metric many-
one reduction: A function f is strong metric many-one re-
ducible to a function g if f <P g and the following equation
hold for any x € dom f:

{o(x,2) | z € g((x)} = f(x).

This means that any string y € f(x) can be obtained by
¢(x, z) for some string z € g(¥(x)). The strong metric many-
one reduction bears no immediate relationship to the strict
one.

In this paper, we consider the many-one-like autore-
ducibility and completeness for NPMV and NPMV,. The
informal definition of the autoreducibility is stated in Intro-
duction. One can naturally apply this definition to many-
one-like reductions. Here, we only state the definition of
metric many-one autoreducibility. The strict metric many-
one autoreducibility is similarly defined.

Definition 2.5: A function f is metric many-one (< -)
autoreducible if there exist two functions y,¢ € FP such

that the following conditions hold for any x € X*:

1) y(x) # x,
(i1) if x € dom f, then Y(x) € dom f and ¢(x,2) € f(x)
follows for any z € f(¥(x)), and
(iii) if x ¢ dom f, then (x,z) ¢ dom¢ holds for any z €

JFW(x)).

3. Autoreducibility and Completeness for Functions
3.1 Statement of the Result

Let #C denote one of NPMV and NPMV, in this section.
We first consider the many-one reduction.

Theorem 1: Let f be <b -complete for 7 C with #dom f >

2. Then f is <P -autoreducible.

Corollary 4.6 of [2] implies that any <} -complete func-
tion for #P is <P -autoreducible. So Theorem 1 shows that
a similar result holds even when the class #P is replaced
with the class NPMV or NPMV,.

It is natural to ask whether a result similar to Theo-
rem 1 holds for < -complete functions. We do not have a

complete answer to this question. Alternatively, as a partial

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.3 MARCH 2017

answer, we show a result for <P -complete functions. We
note that the set of <P _ -complete functions are contained

in that of <P _ -complete ones.

Theorem 2: Let f be <P _-complete for FC with
#dom f > 2. Then f is < __-autoreducible, and hence,

P —s-met
fis < -autoreducible.

We prove the theorems in Sects.3.2 and 3.3, respec-
tively.

We use a function version of the left set technique [7]
in order to prove these theorems: In brief, we define another
function f; € NPMV, € NPMV for any complete function
f € FC, and we show that f is autoreducible by using the
fact that f; reduces to f. We devote the rest of this subsec-
tion to constructing f7, from f.

Let f be any function for #C, and let M, be a nonde-
terministic polynomial-time Turing transducer which com-
putes f. Without loss of generality, we can assume that on
an input string x, all the (computation) paths of M are ex-
actly of length p(|x|) for some polynomial p, where |x| de-
notes the length of x. Namely, M halts with some output in
just p(|x|) steps. For an input string x, let M(x; w) denote
the output of M along the path w.

We define a function f;, as follows:

dom f1, = {(x,w) | lw| = p(|x]),
w = Jwo [My(x;wo) # L1}

and

fr(x,w) = {(wo, y) | w < wo, Mp(x;wo) =y}

Then the following lemma immediately holds from the def-
inition of the function f:

Lemma 3.1: The function f; satisfies the following prop-
erties:

(L1) fi € NPMV,,

(L2) x € dom f if and only if (x, 0™ € dom f;,

(L3) if (wo,y) € fr(x,w), theny € f(x), and

(L4) if (x,w) € domf, and Ms(x;w) = 1, then
(x, succ(w)) € dom f;.

Remark : The left set technique was used in order to clar-
ify a relationship between many-one-like completeness and
autoreducibility for the classes NP [5] and #P [2]. We note
that our results does not directly follow from their results
even though our ones look similar to their ones.

The construction of f; stated above is inspired by the
proof of Theorem 4.5 of [2]. However, our proof is not
a simple application of their proof since the function con-
structed in it is a single-valued function from Z* to N, not a
partial multivalued function.

We next consider the following statements (see also
Sect. 3 of [6]):

(i) If a function f is <P
<P _autoreducible.
(ii) If alanguage L is <} -complete for NP, then its witness

-autoreducible, then dom f is

ISOBE and KOIZUMI: AUTOREDUCIBILITY AND COMPLETENESS FOR PARTIAL MULTIVALUED FUNCTIONS

(PO) Input a string x.

(P1) If x = x1, then set xo = x. Otherwise, set xg = x;.
(P2) Compute x’ = 1 (x, 0Py,

(P3) If x" # x, then output x’, and halt.

(P4) Compute x” = vy (x, 171Dy,

(P5) If x”” = x, then

o if My(x; 170Dy + 1| then output xp, and halt.
o otherwise, output L, and halt.

(P6) Find a string w of length p(|lx|) such that ¢¥q(x,w) = x and
¥1(x, succ(w)) # x by the standard binary search.

(P7) If My(x;w) # L, then output xp, and halt. Otherwise, output
Y1 (x, succ(w)), and halt.

Fig.1 Construction of My

(QO) Input a tuple (x, z).

(Q1) If z = 1, then output L, and halt.

(Q2) Compute x" = q (x, 07Dy,

(Q3) If X’ # x, then output ga%(z), and halt.

(Q4) Compute x” =y (x, 1P0D),

(Q5) If x” = x, then output My(x; 17")), and halt.

(Q6) Find a string w of length p(|x[) such that yj(x,w) = x and
Y1 (x, succ(w)) # x by the standard binary search.

Q7) If My(x;w) # L, then output M¢(x; w), and halt. Otherwise, output
w%(z), and halt.

Fig.2 Construction of M,

. . . p
function wity is < .,

-complete for NPMV,.

Theorem 2 follows from Theorem 3.1 of [5] if both the state-
ments hold. Conversely, their theorem follows from our one
if the converses of the statements (i) and (ii) hold. How-
ever, it is not known whether these statements (and their
converses) hold.

3.2 Proof of Theorem 1

Let f be <b -complete for ¥C with #dom f > 2, and let
x1, X € dom f be two distinct strings. Since f; <h, f, there
exist two functions ¢, ¥ € FP such that the following two
conditions hold:

(C1) If (x,w) € dom fi, then ¢ (x,w) € dom f and ¢;(z) =
(¢1(2),¢1(2)) € fi(x,w) follows for any z € f(y1(x, w)),
and

(C2) if (x,w) ¢ dom f;, then z ¢ dom ¢, holds for any z €
S (x, w)).

In order to define two functions ¢ and ¢, we construct
Turing transducers M, and M,. These transducers are de-
picted in Figs. 1 and 2, respectively.

Note that Steps (P6) and (Q6) are concretely executed
as follows:

(B1) Set w; = 0P and w, = 174,
(B2) While succ(w;) # wy, repeat the following procedure:

425

e Let w’ be the middle string between w; and wy.
o If y(x,w’) = x, then set w; = w’. Otherwise, set
wy =uw'.

(B3) Setw = wy.

By the definition, we see that i, ¢ € FP and that y/(x) #
x for any x € £*.

Lemma 3.2: If x € dom f, then y/(x) € dom f follows.
Proof. (I) Assume that M), halts in Step (P3). We have

x € dom f
= (x,0"™) e dom f;. (by (L2))
= yY(x) = ¥ =y (x,0"") e dom f. (by (C1))

(IT) Assume that M, halts in Step (P5). We note that x =
X =x".

If My(x; 1Py £ 1 then x € dom f immediately fol-
lows.

Assume that My(x; 1P0) = 1. Since (x,171") ¢
dom f;, we have z ¢ domgp; for any z € f(x) =
Fi(x, 1P0D)) = £y (x,074D)) by the condition (C2).
We see (x,0"™) ¢ dom fr from the condition (C1), and
x ¢ dom f follows. Consequently, in this case, we have

e if x € dom f, then My(x; 17y £ 1 and Y(x) = xo €
dom f hold, and

e if x ¢ dom f, then M;(x;17") = 1 and y(x) = L
hold.

(IIT) Assume that M, halts in Step (P7). If x € dom f and
My (x;w) # L, then ¥(x) = xg € dom f holds.

Assume that x € dom f and that My(x;w) = L. Then
yi(w) = Y(x,0/) = x € dom f follows. Since
(x,0r) ¢ dom f;, we have z € domg; for any z €
Fi(x,0PD)y = £ (x,w)) by the condition (C1). So,
(x,w) € dom f; follows from the condition (C2). We have
(x,succ(w)) € dom f; by the property (L4), and hence,
W(x) = ¥1(x, succ(w)) € dom f follows.]

Lemma 3.3: If x € dom f, then ¢(x,z) € f(x) follows for
any z € f(Y(x)).

Proof. (I) Assume that M, halts in Step (Q3). Then we
have y(x) = X = yY(x,0P™). If x € dom f, since
(x,0°y e dom f;, we have ¢,(z) € fi(x,0°M) for any
z € f(y(x, orixyy = f(W(x)). This implies that ¢(x,z) =
() € f().
(II) Assume that M, halts in Step (Q5). In this case,
Mg(x;17) % 1 holds if x € dom f by the argument
(II) of the proof of Lemma 3.2. So we have ¢(x,z) =
My(x; 17Dy e £(x).
(IIT) Assume that M, halts in Step (Q7). If x € dom f and
M¢(x;w) # L, then we have ¢(x,z) = Mf(x;w) € f(x).
Assume that x € dom f and that M;(x;w) = L.
By the argument (III) of the proof of Lemma 3.2, we
have (x,succ(w)) € dom f; and ¥(x) = ¥ (x,succ(w)) €
dom f. Then ¢(z) € fr(x,succ(w)) follows for any z €

426

f@Wi(x,succ(w))) = f(Y(x)). This implies that ¢(x,z) =
¢1(2) € f(). o

Lemma 3.4: If x ¢ dom f, then (x,z) ¢ dom ¢ holds for
any z € f(y(x)).

Proof. We first note that (x, w) ¢ dom f7, holds for any string
w of the length p(|x|) if x ¢ dom f.

(I) Assume that My, halts in Step (P3). Since (x,07™) ¢
dom f;, we have z ¢ dom ¢, for any z € f(y(x,0P")) =
f(W(x)). This shows that ¢(x, z) = go%(z) =1.

(IT) Assume that My halts in Step (P5). Since x ¢ dom f,
Y(x) = L follows from the argument (II) of the proof of
Lemma 3.2.

(IIT) Assume that M, halts in Step (P7). Since My(x;w) =
L, ¥(x) = ¥1(x, succ(w)) follows. By the same argument as
(D, we see that z ¢ dom ¢; for any z € f(¢¥(x, succ(w))) =
f(¥(x)), and hence, ¢(x,z) = <p%(z) = 1 follows.]

This completes the proof of Theorem 1.

Remark : On an input tuple (x,z), the Turing transducer
M, first computes the string i/(x), and then outputs an ap-
propriate string. We can show that f is <P -autoreducible if
one can efficiently compute the appropriate string only from
z, without knowing x. In general, it is not known whether
computing x from z € f((x)) is easy. If ¥(x) = v (x, 0P1HD)
or ¥1(x,succ(w)), then gp%(z) € f(x) follows for any z €
f@W(x)). However, when y(x) = xo, ¢7(z) € f(x) does not
necessarily hold for any z € f(xp). Hence, it seems hard to
show that f is <} -autoreducible.

3.3 Proof of Theorem 2

Let f be any <P _-complete function for FC with
#dom f > 2, and let x;, x, € dom f be two distinct strings.
Since f;, Sf_met f follows, there exist two functions ¢, Y, €

FP such that the following two conditions hold:
(C3) (x,w) € dom f; if and only if Y»(x, w) € dom f, and
(C4) if (x,w) € dom f;, then
©2((x, w), 2) = (3((x, w), 2), 93 ((x, w), 2))
€ fulx,w)
follows for any z € f(¢¥2(x, w)).

We construct Turing transducers My and Mg, depicted

in Figs. 3 and 4, which compute J and o, respectively.

In Steps (P6) and (Q6), the transducers execute the pro-
cedure similar to that stated in the previous subsection.

By the definition, we see that ¥, ¢ € FP and that y/(x) #
x for any x € Z*.

Lemma 3.5: x € dom f if and only if ¢(x) € dom f.
Proof. (I) Assume that M@ halts in Step (P3). Then we have

x € dom f

= (x,0"") e dom f;, (by (L1))

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.3 MARCH 2017

(P0) Input a string x.

(P1) If x = x1, then set xo = x». Otherwise, set xo = x;.
(P2) Compute x’ = yra(x, 0Py,

(P3) If x’ # x, then output x’, and halt.

(P4) Compute x” = g (x, 1710y,

(P5) If x” = x, then

o if My(x; 170Dy = 1| then output xp, and halt.
o otherwise, output L, and halt.

(P6) Find a string w of length p(]x|) such that yo(x,w) = x and
Y2(x, succ(w)) # x by the standard binary search.

P7) If My(x;w) # L, then output xo, and halt. Otherwise, output
Y2(x, succ(w)), and halt.

Fig.3 Construction of MJ

(Q0) Input a tuple (x, 2).

(Ql) If z = L, then output L, and halt.

(Q2) Compute x' = yrp(x, 071Dy,

(Q3) If x’ # x, then output @3((x, 071"), z), and halt.

(Q4) Compute x”" = yo(x, 171D),

(Q5) If x”” = x, then output M7(x; 17"D), and halt.

(Q6) Find a string w of length p(]x]) such that yo(x,w) = x and
Y2(x, succ(w)) # x by the standard binary search.

Q7 1tM r(x;w) # L, then output My(x; w), and halt. Otherwise, output
<p%((x, succ(w)), 7), and halt.

Fig.4 Construction of Mgz

= Y0 = ¥ = Yo(x,0") e dom f. (by (C3))
(IT) Assume that M halts in Step (P5). We have

Mp(x; 1700y % 1
& (x,17™) € dom f;.

= x = Yr(x, 1”"™) e dom f. (by (C3))
Hence, if x € dom f, then J(x) = xp € dom f follows. On
the other hand, we have ¥(x) = L when x ¢ dom f.
(ITT) Assume that M halts in Step (P7). If x ¢ dom f, then
My(x;w) = L and (x, succ(w)) ¢ dom f;, hold. So we have
W(x) = Ya(x, succ(w)) ¢ dom f by the condition (C3).

If x € dom f and M(x;w) # L, then we have J(x) =
Xo € dom f. Assume that x € dom f and that M (x;w) = L.
Since Y(x,w) = x € dom f, we have (x,w) € dom f;.
Hence, (x,succ(w)) € dom f; follows from the property
(L4), and we see that Z(x) = ¥ (x, succ(w)) € dom f. O

By arguments similar to the proof of Lemma 3.3, we
have the following lemma:

Lemma 3.6: If x € dom f, then @(x,7) € f(x) follows for
any z € f(y(x)).

This completes the proof of Theorem 2.

Remark : Assume that f is <} -complete and that M;

ISOBE and KOIZUMI: AUTOREDUCIBILITY AND COMPLETENESS FOR PARTIAL MULTIVALUED FUNCTIONS

halts in Step (P5). If one can show that x € dom f im-
plies that My(x; 17%) % 1, then we can prove that f is
<P -autoreducible by the argument similar to the proof of

Theorem 1. Let us assume that M ¢(x; 17y = 1. Since
(x, 171Dy ¢ dom f;, we have ((x, 17"™), z) ¢ dom ¢, for any

z € fWa(x,17M) = f(x) = fa(x,07™)). In order to
prove x ¢ dom f, we try to show either of the following two
statements only from x:

@) (x,07) ¢ dom .,
(i) ((x,07™), 7y ¢ dom ¢, for some z € f(x).

In general, we need to compute M(x;w) for all w, and it
seems hard to efficiently do this.

We finally note that one can avoid this difficulty in the
proof of Theorem 1: Since f; <} f, z ¢ dom¢; holds for

any z € fi(x, 17)) = f((x,0M")) = f(x) by the
condition (C1). We therefore have (x, 0"™) ¢ dom f;.

References

[1] H.Buhrman, L. Fortnow, D. van Melkebeek and L. Torenvliet, “Sep-
arating complexity classes using autoreducibility,” SIAM J. Com-
put., vol.29, pp.1497-1520, 2000.

[2] P. Faliszewski and M. Ogihara, “On the Autoreducibility of Func-
tions,” Theory Comput. Syst., vol.46, pp.222-245, 2010.

[3] S.Fenner, S. Homer, M. Ogihara, and A. Selman, “Oracles that com-
pute values,” SIAM J. Comput., vol.26, no.4, pp.1043-1065, 1997.

[4] K. Fleszar, C. GlaBer, F. Lipp, C. Reitwieiner, and M. Witek, “The
Complexity of Solving Multiobjective Optimization Problems and
its Relation to Multivalued Functions,” Electronic Colloquium on
Computational Complexity, TR11-053, 2011.

[5] C. GlaBer, M. Ogihara, A. Pavan, A.L. Selman, and L. Zhang,
“Autoreducibility, mitoticity, and immunity,” J. Comput. Syst. Sci.,
vol.73, no.5, pp.735-754, 2007.

[6] J.-W. Huh, S. Isobe, E. Koizumi, and H. Shizuya, “On the Length-
Decreasing Self-Reducibility and the Many-One-Like Reducibili-
ties for Partial Multivalued Functions,” IEICE Trans. Inf. and Syst.,
vol.E96-D, no.3, pp.465-471, 2013.

[7] M. Ogiwara and O. Watanabe, “Polynomial-Time Bounded
Truth-Table Reducibility of NP Sets to Sparse Sets,” SIAM J. Com-
put., vol.20, no.3, pp.471-483, 1991.

[8] A.Pagourtzis, and S. Zachos, “The complexity of counting functions
with easy decision version,” Proc. 31st International Symposium on
Mathematical Foundations of Computer Science, LNCS, vol.4162,
pp.741-752, Springer, Berlin, 2006.

[9] A.L. Selman, “A Taxonomy of Complexity Classes of Functions,” J.
Comput. Syst. Sci., vol.48, no.2, pp.357-381, 1994.

[10] S. Toda, “PP is as Hard as the Polynomial-Time Hierarchy,” SIAM
J. Comput., vol.20, no.5, pp.865-877, 1991.

427

Shuji Isobe received the B.Eng. degree from
Tohoku University, Japan, in 1997, and M.S.
and Ph. D. degrees in information science from
Graduate School of Information Sciences, To-
hoku University, Japan, in 1999 and 2002, re-
spectively. He has been with Tohoku University
since 2002, and has been Associate Professor
since 2009. His research interests include infor-
mation security theory, computational complex-
ity theory and discrete mathematics.

Eisuke Koizumi received the B.Sci. de-
gree from Tohoku University, Japan, in 1998,
and M.S. and Ph. D. degrees in science from
Tohoku University, Japan, in 2000 and 2005, re-
spectively. He has been with Tohoku Univer-
sity since 2005, where he is Assistant Profes-
sor. His research interests include information
security theory, computational complexity the-
ory and function theory.

https://doi.org/10.1137/s0097539798334736
http://dx.doi.org/10.1137/s0097539793247439
http://dx.doi.org/10.1016/j.jcss.2006.10.020
http://dx.doi.org/10.1587/transinf.e96.d.465
http://dx.doi.org/10.1137/0220030
http://dx.doi.org/10.1007/11821069_64
http://dx.doi.org/10.1016/s0022-0000(05)80009-1
http://dx.doi.org/10.1137/0220053

