
444
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

PAPER Special Section on Foundations of Computer Science —New Trends in Theoretical Computer Science—

Enumeration, Counting, and Random Generation of Ladder
Lotteries∗

Katsuhisa YAMANAKA†a) and Shin-ichi NAKANO††b), Members

SUMMARY A ladder lottery, known as “Amidakuji” in Japan, is one
of the most popular lotteries. In this paper, we consider the problems of
enumeration, counting, and random generation of the ladder lotteries. For
given two positive integers n and b, we give algorithms of enumeration,
counting, and random generation of ladder lotteries with n lines and b bars.
The running time of the enumeration algorithm is O(n + b) time for each.
The running time of the counting algorithm is O(nb3) time. The random
generation algorithm takes O(nb3) time for preprocess, and then it gener-
ates a ladder lottery in O(n + b) for each uniformly at random.
key words: enumeration, counting, random generation, ladder lottery

1. Introduction

A ladder lottery, known as “Amidakuji” in Japan, is one
of the most popular lotteries for kids. It is often used to
assign roles to members in a group. Imagine that a group
of four members A, B, C, and D wish to determine their
group leader using a ladder lottery. First, four vertical lines
are drawn, then each member chooses a vertical line. See
Fig. 1 (a). Next, a check mark (which represents an assign-
ment of the leader) and some horizontal lines are drawn, as
shown in Fig. 1 (b). The derived one is called a ladder lot-
tery, and it represents an assignment. In this example the
leader is assigned to D since the top-to-bottom route from D
ends at the check mark. (We will explain the route soon.) In
Fig. 1 (b), the route is drawn as a dotted line.

Formally, a ladder lottery is a network with n ≥ 2
vertical lines (lines for short) and b horizontal lines (bars
for short) each of which connects two consecutive verti-
cal lines. We count the lines from left to right and call
the i-th line from the left i-th line. See Fig. 2 for an ex-
ample. The top ends of the lines correspond to a permuta-
tion π = (p1, p2, . . . , pn) of [n] = {1, 2, . . . , n}, and the bot-
tom ends of the lines correspond to the identity permutation
ι = (1, 2, . . . , n) and they satisfy the following rule. Each pi

in π starts the top end of the i-th line, then goes down along
the line; whenever pi meets an end of a bar, pi goes hori-
zontally along the bar to the other end, and then goes down

Manuscript received April 6, 2016.
Manuscript revised July 29, 2016.
Manuscript publicized December 21, 2016.
†The author is with the Faculty of Science and Engineering,

Iwate University, Morioka-shi, 020–8551 Japan.
††The author is with the School of Science and Technology,

Gunma University, Kiryu-shi, 376–8515 Japan.
∗A preliminary version of this paper was presented at the 9th

International Frontiers of Algorithmics Workshop.
a) E-mail: yamanaka@cis.iwate-u.ac.jp
b) E-mail: nakano@cs.gunma-u.ac.jp

DOI: 10.1587/transinf.2016FCP0015

again. Finally, pi must reach the bottom end of the pi-th
line. Each bar corresponds to a modification of the current
permutation by swapping the two neighboring elements.

A ladder lottery appears in a variety of areas. First,
a ladder lottery of the reverse permutation (n, n − 1, . . . , 1)
corresponds to a pseudoline arrangement in discrete geom-
etry [9]. By replacing bars as intersections of pseudolines,
ladder lotteries can be regarded as pseudoline arrangements,
and it is observed that there is a one-to-one correspondence
between pseudoline arrangements and “optimal” ladder lot-
teries of a reverse permutation [9]. A ladder lottery of a
permutation is optimal if it has the minimum number of
bars among ladder lotteries of the permutation. Second, it
is strongly related to primitive sorting networks, which are
deeply investigated by Knuth [4]. Third, in algebraic com-
binatorics, a reduced decomposition (by adjacent transposi-
tions) of a permutation corresponds to a ladder lottery of the
permutation with the minimum number of bars [5].

In this paper we consider the problems of enumeration,
counting, and random generation of ladder lotteries with n
lines and b bars. As mentioned above, ladder lotteries have
relations with many other discrete objects, and hence they
are interesting objects to be investigated. For optimal ladder
lotteries, there are some results on counting and enumera-
tion. Yamanaka et al. [9] proposed an algorithm that enu-
merates all optimal ladder lotteries of a given permutation
in O(1) time for each. Besides, they counted the number of
ladder lotteries of a reverse permutation for n = 11 using
the enumeration algorithm. Samuel [7] improved the result
and reported the number for n = 12. Kawahara et al. [3] im-
proved the results again. They counted the number of such
ladder lotteries for n = 13 using πDD, which is a variation
of decision diagrams. The current best record is the number
for n = 15 by Tanaka [7]. See [7] for further details. How-
ever, it seems to be difficult to efficiently count the numbers
for large n. This motivates us to deal with ladder lotteries
with n lines and b bars. For these ladder lotteries, a simple
and natural binary code is known [1] (the code will be intro-
duced in the next section). Using the code, we propose an
efficient counting algorithm of ladder lotteries with n lines
and b bars. The running time of the algorithm is O(nb3)
time. As a by-product, we obtain a random-generation algo-
rithm which generates a ladder lottery in O(n + b) time for
each uniformly at random. Besides, we proposed a simple
enumeration algorithm which generates a ladder lottery in
O(n + b) time for each.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

YAMANAKA and NAKANO: ENUMERATION, COUNTING, AND RANDOM GENERATION OF LADDER LOTTERIES
445

Fig. 1 An example of a ladder lottery.

Fig. 2 A ladder lottery of (6,4,3,5,2,1).

2. Preliminaries

We assume that a ladder lottery is given as a graph struc-
ture in which the vertices are the set of the top and bottom
endpoints of lines and endpoints of bars, and edges are line
segments between vertices. Suppose that, for an endpoint v
and its adjacent one u, we can recognize the direction (top,
bottom, left, and right) of u from v.

2.1 Code of Ladder Lotteries

In this subsection, we review a code of ladder lotteries in
[1]. Using this code, we will design three algorithms in the
following sections.

Let L be a ladder lottery with n lines and b bars. We
first divide each bar of L into two horizontal line-segments,
called half-bars. The left half of a bar is called an l-bar (left
half-bar) and the right half of a bar is called an r-bar (right
half-bar). We regard each original bar as a pair of an l-bar
and an r-bar. Thus L has 2b half-bars. The division results
in n connected components, each of which consists of one
line and some half-bars attached to the line.

We can encode how half-bars are attached to the i-th
line, as follows. Let 〈b1, b2, . . .〉 be the sequence of half-
bars attached to the i-th line appearing from top to bottom.
We replace bi with 0 if bi is an r-bar, and with 1 if bi is
an l-bar. Then appending a 0 to indicate the end-of-line.
This results in the code of the i-th line, which is denoted by
C(i). Concatenating those codes C(1),C(2), . . . ,C(n) results
in the code C(L) for L. For example, for the ladder lottery
in Fig. 2 C(1) = 10, C(2) = 110110, C(3) = 01001100,
C(4) = 1100100, C(5) = 010010, C(6) = 000, and

C(L) = 10110110010011001100100010010000.

Since the code contains two bits for each bar and one
bit for each end-of-line, its length is n + 2b bits.

2.2 Reconstruction from the Code

Now we explain how to reconstruct the original ladder lot-
tery from the code.

In the code, a 0 represents either an r-bar or an end-
of-line. Hence, we need to recognize the end-of-lines to
partite C(L) into C(1),C(2), . . . ,C(n). After then, it is easy
to reconstruct original bars by connecting the correspond-
ing l-bars and r-bars, since the k-th l-bar of the i-th line and
the k-th r-bar of the (i + 1)-th line correspond to an original
bar. Figure 3 shows an example of the reconstruction of the
ladder lottery in Fig. 2 from its code.

We now explain how to recognize the end-of-lines.
Since the first line has only l-bars, the first consecutive 1s
correspond to the l-bars of the first line, so the first 0 is the
end-of-line of the first line. Now we assume that the end-of-
line for the (i-1)-th line is recognized and we are now going
to recognize the end-of-line for the i-th line. We know the
number, say k, of l-bars attached to the (i-1)-th line, and it
equals to the number of r-bars attached to the i-th line. Then
the end-of-line for the i-th line is the (k + 1)-th 0 after the
end-of-line for the (i-1)-th line.

Theorem 1 ([1]): Let L be a ladder lottery with n lines and
b bars. One can encode L into a bitstring of length n + 2b.
Both encoding and decoding can be done in O(n + b) time.

2.3 Pre-Ladder and Its Code

Let L be a ladder lottery with n lines and b bars, and let C(L)
be the code of L. We define a substructure of L, as follows.
Let P(C(L)) be the bitstring derived from C(L) by removing
the second last bit, and P(L) be the substructure of L derived
by “decoding” P(C(L)). Intuitively, P(L) is the substructure
of L only missing either a half-bar or an end-of-line, cor-
responding to the second last bit. Similarly P(P(C(L))) is
the bitstring derived from P(C(L)) by removing the second
last bit, and P(P(L)) be the corresponding substructure of L.
Similarly, we define P(P(P(C(L)))), P(P(P(P(C(L))))),
We assume that a pre-ladder has at least two lines. See Fig. 4
for an example. In the figure, end-of-lines are depicted as
black circles except for the end-of-line of the rightmost line,
which is depicted as a white circle. We say each of those
substructures (including L itself) a pre-ladder of L, and the
sequence L, P(L), P(P(L)), . . . the removing sequence of L.
Note that each ladder lottery has the unique removing se-
quence. From the assumption, the last pre-ladder of the se-
quence has exactly two lines and the rightmost (second) line
has no half bars. A pre-ladder possibly has unmatched l-bars
only at the two rightmost lines.

3. Enumeration

Let Sn,b be the set of ladder lotteries with n lines and b bars.
In this section, we consider the problem of enumerating all
ladder lotteries in Sn,b. We have presented an algorithm that

446
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

Fig. 3 An example of the reconstruction from the code.

Fig. 4 Pre-ladders derived from L.

enumerates all “optimal” ladder lotteries of a given permuta-
tion [9]. However, this algorithm cannot applied to the prob-
lem, since Sn,b includes (non-optimal) ladder lotteries. In
this section, we propose a simple enumeration algorithm for
Sn,b.

Our enumeration algorithm is based on reverse
search [2]. We first define a forest structure in which each
leaf one-to-one corresponds to some ladder lottery in Sn,b.
Then, by traversing the forest, we can enumerate all leaves
of the forest, and all corresponding ladder lotteries in Sn,b.
We designed several enumeration algorithms based on sim-
ilar (but distinct) tree structures [6], [8], [9].

Let L be a ladder lottery in Sn,b. By merging the re-
moving sequence for every L ∈ Sn,b, we have the forest,
called family forest Fn,b. Recall that each ladder lottery has
the unique removing sequence and each removing sequence
ends up with a pre-ladder with exactly two lines and no half-
bar attached to the second line. Hence, each root of the fam-
ily forest is such a pre-ladder and leaves of the family forest
Fn,b one-to-one corresponds to ladder lottery in Sn,b. See
Fig. 5 for an example.

By traversing Fn,b, we can enumerate all the ladder lot-
teries corresponding to the leaves. We have the following
theorem. The proof is given in Appendix.

Theorem 2: One can enumerate all ladder lotteries with n
lines and b bars in O(n + b) time for each. Our algorithm
uses O(n + b) space.

4. Counting

In this section we consider a counting problem. Given two
positive integers n ≥ 2 and b ≥ 0, we wish to count the

number of ladder lotteries with n lines and b bars. Using
the enumeration algorithm in the previous section, we can
count such ladder lotteries one by one, but very slowly. This
method takes Ω(|Sn,b|) time, which may be exponential on
n and b. In this section, we propose an efficient counting
algorithm. Our algorithm does not count ladder lotteries one
by one, but counts each “type” of pre-ladders all together,
and runs in polynomial time †.

We now define the type for each pre-ladder. A pre-
ladder R is type t(�, h, p, q) if R satisfies the following con-
ditions:

(a) R contains � ≥ 2 lines;
(b) R contains h ≥ p+ q half-bars (Each bar is counted as

two half-bars);
(c) p unmatched l-bars are attached to the (�-1)-th line;

and
(d) q unmatched l-bars are attached to the �-th line.

For example, the pre-ladder P(L) in Fig. 4 is type
t(6, 25, 1, 0). Note that a pre-ladder is a ladder lottery with
n lines and b bars if and only if it is of type t(n, 2b, 0, 0).
We denote by T (�, h, p, q) the set of pre-ladders of type
t(�, h, p, q). We give a useful recurrence for |T (�, h, p, q)|.

We have the following four cases.

Case 1: h < p + q or � < 2.
|T (�, h, p, q)| = 0 holds, since h ≥ p + q and � ≥ 2 hold

for any pre-ladder.

Case 2: � = 2, q = 0, and h = p
Clearly such pre-ladder is unique, so |T (�, h, p, q)| = 1

holds.

†We assume that n and b are coded in unary codes.

YAMANAKA and NAKANO: ENUMERATION, COUNTING, AND RANDOM GENERATION OF LADDER LOTTERIES
447

Fig. 5 The family forest F3,4.

Case 3: (� ≥ 3 or h > p) and q = 0
Let R be a pre-ladder of type t(�, h, p, q). The second

last bit of C(R) is always 0. (Otherwise, the �-th line has an
l-bar, a contradiction.) The second last bit 0 in C(R) repre-

sents either an r-bar of �-th line or the end-of-line of (�-1)-th
line. For the former case P(R) is type t(�, h−1, p+1, 0). For
the latter case P(R) is type t(�−1, h, 0, p). For any distinct R1

and R2 of t(�, h, p, q) with (� ≥ 3 or h > p) and q = 0, P(R1)

448
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

Fig. 6 The recurrence for |T (3, 8, 0, 0)|.

and P(R2) are distinct. Hence, we have an injection from
T (�, h, p, q) to T (�, h − 1, p + 1, 0) ∪ T (� − 1, h, 0, p). Now
we also have a surjection, as follows. Let R′ be a pre-ladder
of type t(�, h − 1, p + 1, 0), and let D be the code obtained
from C(R′) by appending 0 as the second last bit. Then, the
appended 0 represents an r-bar of �-th line which matches
with an unmatched l-bar of (�-1)-th line. Hence, the pre-
ladder corresponding to D is of type t(�, h, p, 0). The simi-
lar discussion works for a pre-ladder of type t(� − 1, h, 0, p).
Thus |T (�, h, p, 0)| = |T (�, h − 1, p + 1, 0)|+|T (� − 1, h, 0, p)|
holds.

Case 4: h ≥ p + q and q > 0.
Let R be a pre-ladder of type t(�, h, p, q). The second

last bit in C(R) is either 0 or 1. If the second last bit of C(R)
is 0, then it represents an r-bar attached to �-th line. Thus,
P(R) is type t(�, h−1, p+1, q). Otherwise, the second last bit
of C(R) is 1, then it represents an l-bar attached to �-th line.
Hence, P(R) is type t(�, h − 1, p, q − 1). Note that, for any
distinct R1 and R2 of t(�, h, p, q) with h ≥ p + q and q > 0,

P(R1) and P(R2) are distinct. Let R′ be a pre-ladder of type
t(�, h−1, p+1, q), and let D0 be the code obtained from C(R′)
by appending 0 as the second last bit. Then the appended 0
represents an r-bar which matches with an unmatched l-bar
of (�-1)-th line. Hence the pre-ladder corresponding D0 is
of type t(�, h, p, 0). Let R′′ be a pre-ladder of type t(�, h −
1, p, q − 1), and let D1 be the code obtained from C(R′′) by
appending 1 as the second last bit. Then the appended 1
represents an unmatched l-bar of �-th line. Hence the pre-
ladder corresponding D1 is also of type t(�, h, p, 0). Thus
|T (�, h, p, q)| = |T (�, h − 1, p + 1, q)| + |T (�, h − 1, p, q − 1)|
holds.

For example, Fig. 6 shows the recurrence for
|T (3, 8, 0, 0)|. By the recurrence, we have the following
lemma.

Lemma 1: For four non-negative integers �, h, p, and q,

YAMANAKA and NAKANO: ENUMERATION, COUNTING, AND RANDOM GENERATION OF LADDER LOTTERIES
449

Algorithm 1: DP-Count(n, b)
1 for � = 2 to n do
2 for h = 0 to 2b do
3 for p = 0 to h do
4 for q = 0 to h do
5 if h < p + q then
6 |T (�, h, p, q)| = 0
7 else if � = 2, q = 0, and h = p then
8 |T (�, h, p, q)| = 1
9 else if q = 0 then

10 |T (�, h, p, q)| =
|T (�, h−1, p+1, 0)|+|T (�−1, h, 0, p)|

11 else if q > 0 then
12 |T (�, h, p, q)| = |T (�, h − 1, p +

1, q)| + |T (�, h − 1, p, q − 1)|

|T (�, h, p, q)|

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if h < p + q or � < 2

1 if � = 2, q = 0, and h = p

|T (�, h − 1, p + 1, 0)| + |T (� − 1, h, 0, p)|
if (� ≥ 3 or h > p) and q = 0

|T (�, h − 1, p + 1, q)| + |T (�, h − 1, p, q − 1)|
if h ≥ p + q and q > 0

Based on the recurrence above, Algorithm 1 computes
the number of ladder lotteries with n lines and b bars. Algo-
rithm 1 is a dynamic programming algorithm on the table
of types. The number of entries is nb3, and each entry is cal-
culated in constant time, so the total running time is O(nb3).
As a byproduct the number of ladder lotteries with n′ ≤ n
lines and b′ ≤ b bars are also computed.

Theorem 3: The number of ladder lotteries with n′ ≤ n
lines and b′ ≤ b bars can be calculated in O(nb3) time in
total.

5. Random Generation

In this section we consider random generations of ladder lot-
teries. The recurrence in Lemma 1 generates a tree structure
among the types (see an example in Fig. 6), in which each
path from the root to a leaf one-to-one corresponds to some
ladder lottery of type t(n, 2b, 0, 0). The choice of i-th gener-
ation type decides the meaning of the (i+1)-th last bit of the
code. (Here the root belongs to the first generation.)

The table generated by Algorithm 1 tells us the num-
ber of leaves in the subtree rooted at each type. We can
choose a random path from the root to some leaf, by repeat-
edly choosing some child of the current type so that each
leaf has an equal chance to be reached. Thus we can gener-
ate ladder lotteries, uniformly at random.

Our algorithm is shown in Algorithm 2. Suppose that
we are now at a type T (�, h, p, q) in the tree structure, and
T (�1, h1, p1, q1) and T (�2, h2, p2, q2) are the two child types
of T (�, h, p, q). Algorithm 2 computes a random integer,

Algorithm 2: Random-Generation(�, h, p, q)
1 begin
2 if � = 2, h = p, and q = 0 then
3 return the ladder lottery corresponding to the path

from the root to the current leaf.
4 else
5 if T (�, h, p, q) has only one child, say
6 T (�1, h1, p1, q1) then
7 Random-Generation(�1, h1, p1, q1)

/* Let T (�1, h1, p1, q1) and T (�2, h2, p2, q2)
be the two child types of T (�, h, p, q). */

8 Generate an integer x in [1, |T (�, h, p, q)|] uniformly at
random.

9 if x ≤ |T (�1, h1, p1, q1)| then /* Choose

T (�1, h1, p1, q1) */
10 Random-Generation(�1, h1, p1, q1)
11 else /* Choose T (�2, h2, p2, q2). */

12 Random-Generation(�2, h2, p2, q2)

say x, in [1, |T (�, h, p, q)|] uniformly at random, chooses
T (�1, h1, p1, q1) if x ≤ |T (�1, h1, p1, q1)| and T (�2, h2, p2, q2)
otherwise, then recursively call with the chosen type. Since
Algorithm 1 computes the table as the preprocessing, these
numbers can be looked up in O(1) time. Thus we can gener-
ate ladder lotteries uniformly at random, as in the following
theorem.

Theorem 4: Given two integers n ≥ 2 and b ≥ 0, after
computing the table of |T (�, h, p, q)| by Algorithm 1, we can
generate a ladder lottery with n lines and b bars in O(n + b)
time for each, uniformly at random.

6. Conclusion

We have designed three algorithms for enumeration, count-
ing, and random generation of ladder lotteries with n lines
and b bars. All the three algorithms are based on the code [1]
of ladder lotteries.

Our enumeration algorithm enumerates all the ladder
lotteries with n lines and b bars in O(n + b) time for each.
Our counting algorithm counts the number of ladder lotter-
ies with n lines and b bars in O(nb3) time. Our random gen-
eration algorithm takes O(nb3) time as a preprocessing, then
generates ladder lotteries with n lines and b bars in O(n+ b)
time for each, uniformly at random.

Acknowledgments

This work is partially supported by MEXT/JSPS KAK-
ENHI, including the ELC project. (Grant Numbers
24106007 and 16K00002.)

References

[1] T. Aiuchi, K. Yamanaka, T. Hirayama, and Y. Nishitani, “Coding lad-
der lotteries,” In Proceedings of European Workshop on Computa-
tional Geometry 2013, Braunschweig, Germany, pp.151–154, March
2013.

450
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.3 MARCH 2017

[2] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete
Applied Mathematics, vol.65, no.1-3, pp.21–46, 1996.

[3] J. Kawahara, T. Saitoh, R. Yoshinaka, and S. Minato, “Counting prim-
itive sorting networks by πDDs,” Hokkaido University, Division of
Computer Science, TCS Technical Reports, TCS-TR-A-11-54, 2011.

[4] D.E. Knuth, “Axioms and hulls,” LNCS 606, Springer-Verlag, 1992.
[5] L. Manivel, Symmetric Functions, Schubert Polynomials and Degen-

eracy Loci, American Mathematical Soc., 2001.
[6] S. Nakano, “Efficient generation of triconnected plane triangulations,”

Computational Geometry: Theory and Applications, vol.27, no.2,
pp.109–122, 2004.

[7] N.J.A. Sloane, The on-line encyclopedia of integer sequences, Pub-
lished electronically at https://oeis.org/A006245. Accessed: 2016-07-
24.

[8] K. Yamanaka and S. Nakano, “Listing all plane graphs,” Journal of
Graph Algorithms and Applications, vol.13, no.1, pp.5–18, 2009.

[9] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and K. Nakada, “Ef-
ficient enumeration of all ladder lotteries and its application,” Theo-
retical Computer Science, vol.411, no.16-18, pp.1714–1722, 2010.

Appendix: Traversing Family Forest

If we can traverse the family forest Fn,b, then we can enu-
merate all the ladder lotteries in Sn,b, which correspond to
the leaves of Fn,b. To traverse the family forest, we consider
enumerating all root pre-ladders of Fn,b, and enumerating
all child pre-ladders of a pre-ladder in Fn,b. First, by enu-
merating pre-ladder with two lines and p unmatched l-bars
attached to the first line for each p = 1, 2, . . . , b, we obtain
all root pre-ladder of Fn,b. We next consider to enumerate all
child pre-ladders of any pre-ladder in Fn,b. Now imagine to
generate the code corresponding to a child pre-ladder from
the code corresponding to the parent pre-ladder. The code
of a child pre-ladder is obtained by appending 0 or 1 to the
code corresponding to the parent pre-ladder as the second
last bit. That is, a child pre-ladder is obtained by appending
a half-bar or a line to the parent pre-ladder. Now we explain
the details.

Let R be a pre-ladder in Fn,b, and let C(R) be the code
of R. Recall that R is a pre-ladder derived from some ladder
lottery with n lines and b bars. We introduce a notation, as
follows. R(0) is the pre-ladder corresponding to the code
obtained from C(R) by appending 0 as the second last bit.
Similarly, R(1) is the pre-ladder corresponding to the code
obtained from C(R) by appending 1 as the second last bit.
Note that R(0) is obtained from R by attaching a r-bar or
appending a line, and R(1) is obtained from R by attaching
an l-bar. R(0) and R(1) are candidates of child pre-ladders
of R. R(i) for each i = 0, 1 is a child pre-ladder of R if and
only if R(i) is a pre-ladder in Fn,b

We assume that R has � lines, h half-bars, p unmatched
l-bars attached to the (�-1)-th line, and q unmatched l-bars
attached to the �-th line. Recall that a bar is regarded as a
pair of an l-bar and an r-bar. If R is a ladder lottery with n
lines and b bars, then R has no child. We hence assume that
R is not a ladder lottery with n lines and b bars. Note that
R is ladder lottery with n lines and b bars if and only if R
satisfies � = n, h = 2b, p = 0, q = 0.

Fig. A· 1 Illustration for child generations.

Case 1: p = 0
We first assume that � = n holds. Since there is no

unmatched l-bar attached to the (n-1)-th line in R, R(0) con-
tains n + 1 lines. (Note that, in this case, R(0) is obtained
from R by appending a new line.) Hence, R(0) is not a child
pre-ladder of R. R(1) includes an unmatched l-bar attached
to the n-th line. Note that R(1) is obtained from R by ap-
pending an unmatched l-bar attached to the n-th line. Hence,
R(1) is not a child pre-ladder of R.

We next assume that � = n − 1 holds. If h + q < 2b
holds, then we show that R(0) is not a child pre-ladder of
R and R(1) is a child pre-ladder, as follows. R(0) contains
n lines and q unmatched l-bar such that h + q < 2b holds.
Hence any pre-ladder derived from R(0) cannot contain n
lines and 2b half-bars, namely, b bars. Hence, R(0) is not
a child pre-ladder. On the other hand, R(1) is a child pre-
ladder of R. If h + q = 2b holds, then we show that R(0) is
a child and R(1) is not a child. R(0) is obtained from R by
appending a new line. Hence, R(0) is a child pre-ladder of
R. Since h + q = 2b holds, any unmatched l-bar cannot be
appended to derive a ladder lottery with n lines and b bars.
Hence, R(1) is not a child pre-ladder.

We finally assume that � < n − 1 holds. If h + q <
2b holds, then both R(0) and R(1) are child pre-ladders, as
illustrated in Fig. A· 1 (a). If h+q = 2b holds, then only R(0)
is a child pre-ladder.

Case 2: p > 0
In this case, we can assume that h < 2b holds. (If h =

2b holds, we cannot append any r-bar such that it matches
to an l-bar attached to the (�-1)-th line.) If h + p + q < 2b
holds, then both R(0) and R(1), as illustrated in Fig. A· 1 (b),
are child pre-ladders.

Next, we assume that h + p + q = 2b holds. Then R(0)
is a child pre-ladder. On the other hand, R(1) is not a child
pre-ladder, since any pre-ladder in Sn,b cannot be derived
from R(1).

By the case analysis above, we have the algorithms
shown in Algorithm 3 and Algorithm 4. Algorithm 3
is the main routine. It enumerates all root pre-ladders of
Fn,b, then calls Algorithm 4 (Find-All-Children) for each
root pre-ladder. Algorithm 4 recursively enumerates all
child pre-ladders of a given pre-ladder, so it traverses the

http://dx.doi.org/10.1016/0166-218x(95)00026-n
http://dx.doi.org/10.1007/3-540-55611-7
http://dx.doi.org/10.1016/j.comgeo.2003.06.001
http://dx.doi.org/10.7155/jgaa.00174
http://dx.doi.org/10.1016/j.tcs.2010.01.002

YAMANAKA and NAKANO: ENUMERATION, COUNTING, AND RANDOM GENERATION OF LADDER LOTTERIES
451

Algorithm 3: Generate(n, b)
1 for p = 0 to b do
2 Create a root pre-ladder R with two lines and p

unmatched l-bars attached to the first line.
3 Find-All-Children(R, n, b)

Algorithm 4: Find-All-Children(R, n, b)
1 Let R be a pre-ladder in Fn,b. Assume that R has � lines, h

half-bars, p unmatched l-bars attached to the (�-1)-th line,
and q unmatched l-bars attached to the �-th line.

2 if � = n and h = 2b then /* No child */
3 Output R
4 return

5 if p = 0 then
6 if � = n − 1 then
7 if h + q = 2b then
8 Find-All-Children(R(0), n, b)
9 else /* h + q < 2b */

10 Find-All-Children(R(1), n, b)

11 else if � < n − 1 then
12 if h + q = 2b then
13 Find-All-Children(R(0), n, b)
14 else /* h + q < 2b */
15 Find-All-Children(R(0), n, b)
16 Find-All-Children(R(1), n, b)

17 else /* p > 0 */
18 if h + p + q = 2b then
19 Find-All-Children(R(0), n, b)
20 else /* h + p + q < 2b */
21 Find-All-Children(R(0), n, b)
22 Find-All-Children(R(1), n, b)

family forest and output a ladder lottery at each leaf. Algo-
rithm 4 always stores the current pre-ladder in global mem-
ory and updates it with some difference information which is
needed to reconstruct the previous pre-ladder. Hence, mem-
ory space required in our algorithm is O(n + b). By Algo-
rithms 3 and 4, each child pre-ladder can be generated in
O(1) time. We have the following theorem.

Theorem 5: Our algorithm uses O(n + b) space and enu-
merates every ladder lottery with n lines and b bars in
O(n + b) time for each.

Katsuhisa Yamanaka is an assistant pro-
fessor of Department of Electrical Engineering
and Computer Science, Faculty of Engineer-
ing, Iwate University. He received B.E., M.E.
and Dr. Eng. degrees from Gunma University in
2003, 2005 and 2007, respectively. His research
interests include combinatorial algorithms and
graph algorithms.

Shin-ichi Nakano received his B.E. and
M.E. degrees from Tohoku University, Sendai,
Japan, in 1985 and 1987, respectively. In 1987
he joined Seiko Epson Corp. and in 1990 he
joined Tohoku University. In 1992, he received
Dr. Eng. degree from Tohoku University. Since
1999 he has been a faculty member of Depart-
ment of Computer Science, Faculty of Engineer-
ing, Gunma University. His research interests
are graph algorithms and graph theory. He is a
member of IPSJ, JSIAM, ACM, and IEEE Com-

puter Society.

