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Supervisory Control of Partially Observed Quantitative Discrete
Event Systems for Fixed-Initial-Credit Energy Problem

Sasinee PRUEKPRASERT†∗a), Nonmember and Toshimitsu USHIO††b), Fellow

SUMMARY This paper studies the supervisory control of partially ob-
served quantitative discrete event systems (DESs) under the fixed-initial-
credit energy objective. A quantitative DES is modeled by a weighted au-
tomaton whose event set is partitioned into a controllable event set and an
uncontrollable event set. Partial observation is modeled by a mapping from
each event and state of the DES to the corresponding masked event and
masked state that are observed by a supervisor. The supervisor controls the
DES by disabling or enabling any controllable event for the current state
of the DES, based on the observed sequences of masked states and masked
events. We model the control process as a two-player game played between
the supervisor and the DES. The DES aims to execute the events so that its
energy level drops below zero, while the supervisor aims to maintain the
energy level above zero. We show that the proposed problem is reducible
to finding a winning strategy in a turn-based reachability game.
key words: supervisory control, discrete event system, partial observation,
optimal control, energy game

1. Introduction

The supervisory control, which was introduced by Ramadge
and Wonham in [1], is a formal approach to the design of a
controller for a discrete event systems (DES). In [1], a DES
is modeled by an automaton that spontaneously generates
events that are partitioned into controllable and uncontrol-
lable events. A supervisor observes the sequence of events
generated by the DES, and then control it by disabling any
of the controllable events at the current state of the DES.
The supervisory control problem is to design a supervisor
such that the language generated by the controlled DES sat-
isfies a control specification, i.e., a given target language.
Controller design problems can be formulated as two-player
games played between the controller and the system. In [2],
the control problem under budget constraints was consid-
ered under a two-player game setting. In [3], the minimum
attention controller synthesis for omega-regular objectives
was studied using a two-player game automaton.

The supervisor may not be able to clearly observe some
events or some states due to the lack of sensors. As a re-
sult, the supervisor may not be able to explicitly determine
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the current state of the system. The framework of supervi-
sory control under partial observation was introduced in [4],
where the set of events is partition into the set of observable
and unobservable ones. In real world, sensors can be classi-
fied into 2 kinds: state-based sensors (i.e., location sensors)
and event-based sensors (i.e., touch sensors). In [5], Takai
et at. proposed another framework for partial observability
by introducing mappings from each event and each state to
the corresponding masked event and masked state, respec-
tively. Then, the supervisor determines the set of possible
current states of the DES and controls it based on the ob-
served masked events and masked states.

Energy games are two-player games played on
weighted graphs where player-1 aims to maintain the energy
of the system in a given range, and player-2 aims to prevent
player-1 from achieving her goal. This class of games is ap-
plicable in the design of resource-constrained reactive sys-
tems, for example, an automatic lawn mower system with
rechargeable battery [9]. In [10], a polynomial-time algo-
rithm for deciding the strategy of player-1 in energy games
under full observation was proposed. The energy game un-
der partial observation with fixed initial credit is shown to be
in ACK-complete [11]. However, the game with unknown
initial credit is undecidable [12].

In this paper, we study the supervisory control of par-
tially observed quantitative DESs under the energy objec-
tive where the initial credit energy is fixed [12]. We model
the control of the DES using a two-player game played be-
tween the supervisor and the DES on a weighted automaton.
The DES aims to execute the events so that its energy level
drops below zero after a finite number of events occur. On
the other hand, the supervisor aims to maintain the energy
level above zero. The fixed-initial-credit energy problem is
to compute a supervisor under which the controlled DES
contains no deadlock and the energy level of the DES never
goes below zero. We show that the proposed problem is re-
ducible to finding a winning strategy in a turn-based reacha-
bility game [12], [13]. The preliminary version of this paper
was presented in [14].

The rest of the paper is organized as follows. Section 2
introduces quantitative DESs and provides the basic nota-
tions. Section 3 introduces supervisory control under partial
observation based on two-player game setting. Section 4
formulates the control problem and proposes algorithms.
Section 5 provides an application example of a path plan-
ing robot problem that is a fundamental problem in mobile
robots. Finally, Sect. 6 presents the conclusions.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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2. Quantitative Discrete Event Systems

In this paper, N denotes the set of natural numbers including
zero, and Z denotes the set of integers.

We consider a quantitative DES modeled by a weighted
automaton G =< X,Σ, δ, xG0, w >, where X is a finite set
of states, Σ is a finite set of events, δ ⊆ X × Σ × X is a
set of transition relations, xG0 ∈ X is the initial state, and
w : δ → Z is a function that assigns a weight to each tran-
sition. The event set Σ is partitioned into two disjoint sets:
the uncontrollable events set Σu and the controllable events
set Σc. Likewise, transitions in δ is partitioned into a set of
controllable transitions δc = δ ∩ (X × Σc × X) and a set of
uncontrollable transitions δu = δ \ δc. At each state x ∈ X,
an event σ ∈ Σ is called an active event if there exists an
out-going transition (x, σ, x′) ∈ δ. Moreover, the transition
(x, σ, x′) ∈ δ is said to be an active transition at the state x.
Let Σ(x) = {σ ∈ Σ|∃x′ ∈ X, (x, σ, x′) ∈ δ} be the set of active
events at the state x. A state x ∈ X such that Σ(x) = ∅ is
called a deadlock state.

The DES G repeatedly executes one of the active events
at its current state. Starting from the initial state xG0, the
DES changes its states according to any of the active transi-
tions that are labeled by the generated events. The behavior
of the DES is represented by the generated sequence, called
the run, of its executed events and system states. Formally,
a run is an finite sequence r = x0σ1x1 . . . xn ∈ X(ΣX)∗ such
that (xi, σi+1, xi+1) ∈ δ for each i ∈ {0, 1, . . . , n − 1}. Let
last(r) denote the last state xn of the run r. Namely, xn is
the current state of the DES after the run r is generated. The
run r is called a cycle if x0 = xn (i.e., the DES state re-
turns the state x0), and is called a deadlock run if Σ(xn) = ∅
(i.e., the DES enters a state with no active events and halts).
For each state x ∈ X, Run(G, x) = {x0σ1x1 . . . xn|x0 =

x and (xi, σi+1, xi+1) ∈ δ,∀i ∈ {0, 1, . . . , n − 1}} is the set
of all runs generated by the DES G starting from x. Let
Run(G) = Run(G, xG0).

3. The Control under Partial Observation

We consider partially observed DESs whose states or events
cannot be completely observed by a supervisor. The par-
tially observed DESs studied in this paper is based on the
framework proposed in [5]. Since the supervisor may not be
able to determine the current state of the DES, the supervi-
sor controls the DES based on the set of possible candidates
of the current state of the DES.

Let Y be the set of masked states and Λ be the set of
masked events [5]. A surjective function MY : X → Y (resp.
MΛ : Σ → Λ) maps each state (resp. event) to its masked
state (resp. masked event). A supervisor cannot detect the
states of the DES and the executed events, but their masked
states and masked events. We assume that the masked state
of the initial state is MY (xG0) = yG0. An observation func-
tion MO :

⋃
x∈X Run(G, x) → Y(ΛY)∗ is defined as follows:

for each run r = x0σ1x1 . . . σnxn ∈ ⋃x∈X Run(G, x),

Fig. 1 A partially observed DES, where x0 is the initial state, Σu =

{a1, a2}, Σc = {b1}, MY (x0) = MY (x3) = y0, MY (x1) = MY (x2) = y1,
MY (x4) = MY (x5) = y2, MΛ(a1) = MΛ(a2) = a, and MΛ(b1) = b. The
label of each transition represents the corresponding event and weight.

MO(r) =

⎧
⎪⎪⎨
⎪⎪⎩

MY (x0), if r = x0,

MO(x0σ1 . . . xn−1)MΛ(σn)MY (xn) otherwise.

The function MO maps each generated run to the se-
quence of masked states and masked events, called the
masked run, that is observed by the supervisor. For the
DES in Fig. 1, we have MO(x0a1x1) = MO(x0a2x2) = y0ay1.
Therefore, if the supervisor observes the sequence y0ay1, the
set of possible current states of the DES is {x1, x2}. For each
set of runs R ⊆ Run(G), let MO(R) = {MO(r)|r ∈ R} be the
set of all masked runs of R.

A supervisor observes the generated masked runs, and
controls the DES by disabling some controllable events at
the current state of the system. A set of controllable events
γ ⊆ Σc is called a control pattern. Let Γ = 2Σc be the set
of all control patterns. If the DES generates a run r and
the supervisor observes the masked run MO(r) and assigns
a control pattern γ ∈ Γ, then the events included in γ are
disabled at the state last(r) in the controlled DES.

We consider the control process as a two-player game
played between the supervisor and the DES. A strategy
of the supervisor (resp. the DES) is a function πS :
MO(Run(G)) → Γ (resp. πD : Run(G) × Γ → δ). We im-
pose the following conditions on the strategy πD: for each
run r ∈ Run(G) and each control pattern γ ∈ Γ such that
Σ(last(r)) \ γ � ∅, if πD(r, γ) = (x, σ, x′), then x = last(r)
and σ ∈ Σ \ γ. In other words, the strategy πD selects an
active transition at the current state that is enabled by the
supervisor if it exists.

For each generated run r, the supervisor first selects
the control pattern γ = πS (MO(r)), then the DES executes
the transitions (last(r), σ, x′) = πD(r, γ). This process is re-
peated so that the set of runs generated under the pair of
strategies (πS , πD) is Play(G, πS , πD) = {x0σ1x1 . . . xn ∈
Run(G)|σi+1 ∈ Σ(last(x0σ1 . . . xi)) \ πS (MO(x0σ1 . . . xi))
and (xi, σi+1, xi+1) ∈ πD(x0σ1 . . . xi, πS (MO(x0σ1 . . . xi)) for
each i ∈ {0, 1, . . . , n − 1}}. Notice that there may ex-
ist more than one run generated under (πS , πD) because
the strategy πS is a function defined on the set of masked
runs MO(Run(G)). Thereby, Play(G, πS , πD) is a set of
runs. ΠS and ΠD denote the sets of strategies of the su-
pervisor and the DES, respectively. Let Play(G, πS ) =
{r ∈ Play(G, πS , πD)|πD ∈ ΠD} (resp. Dead(G, πS ) = {r ∈
Play(G, πS )|Σ(last(r))\πS (MO(r)) = ∅}) be the set of all runs
(resp. deadlock runs) generated under the strategy πs ∈ ΠS .

4. Fixed-Initial-Credit Energy Problem

Let e0 ∈ N be the initial credit energy given at the initial
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state xG0 of the DES. For each transition (x, σ, x′) ∈ δ, the
weight w(x, σ, x′) indicates the energy that the system gains
(if w(x, σ, x′) ≥ 0) or loses (if w(x, σ, x′) < 0) by executing
the transition. Then, we consider the following problem.

Problem 1. For a given initial credit energy e0 ∈ N, the
fixed-initial-credit energy problem is to find a strategy πs ∈
ΠS such that

1) Dead(G, πS ) = ∅, and
2) EL(r) ≥ 0 for all r = x0σ1x1 . . . σnxn ∈ Play(G, πS ),

where EL(r) = e0 +
∑n−1

i=0 w(xi, σi+1, xi+1).

EL(r) is called an energy level of the system by the run r.

In other words, the strategy πs controls the DES in such
a way that 1) there is no deadlock run and 2) the energy level
of the system never drops below zero. Next, we show that
the problem is reducible to computing a winning strategy in
a turn-based reachability game [13].

In order to solve the problem, we introduce an obser-
vation function which indicates the set of possible current
states of the DES and their energy levels. Formally, an ob-
servation function is a function o : X → Z ∪ {⊥}. For each
state x ∈ X, if o(x) ∈ Z, then x is a possible current state and
the energy level of the system is o(x). Otherwise, x is not
the current state. Denoted by supp(o) = {x ∈ X|o(x) � ⊥} is
the set of all possible current states of the DES according to
the observation function o. The function o is said to be non-
negative if o(x) ≥ 0 for all x ∈ supp(o). Let O be the set of
all observation functions of the DES G. We consider a rela-
tion � defined on O as follows: for each o1, o2 ∈ O, we have
o1 � o2 if (1) supp(o1) = supp(o2) and (2) o1(x) ≤ o2(x)
for each x ∈ supp(o1).

For a control pattern γ ∈ Γ, a masked event λ ∈ Λ, and
a masked state y ∈ Y , o2 is the (γ, λ, y)-successor of o1 if the
following conditions hold.

1. supp(o2) = {x2 ∈ X|∃(x1, σ, x2) ∈ δ, x1 ∈
supp(o1), σ ∈ M−1

Λ
(λ) \ γ,MY (x2) = y}.

2. For each x2 ∈ supp(o2), o2(x2) = min{o1(x1) +
w(x1, σ, x2)|(x1, σ, x2) ∈ δ, x1 ∈ supp(o1), σ ∈ M−1

Λ
(λ)\

γ}.
3. For each x1 ∈ supp(o1), there exists (x1, σ, x2) ∈ δ such

that σ ∈ M−1
Λ

(λ) \ γ.
Namely, the (γ, λ, y)-successor of o1 the set of possible cur-
rent states changes from supp(o1) to supp(o2) if the super-
visor selects the control pattern γ, and observes the masked
state y and the masked event λ. The condition 3 guarantees
that the selected control pattern γ enables at least one event
at each state in supp(o1). Therefore, assigning the control
pattern γ for the observation supp(o1) does not generate a
deadlock run. Moreover, the observation o2 indicates the
worst-case energy of the DES at each state in supp(o2). For
any observation o ∈ O, succ(o, γ, λ, y) denotes the (γ, λ, y)-
successor of o.

Then, we construct a game automaton H =< QH =

QS ∪QD,ΣH = Γ∪(Λ×Y), δH = δS ∪δD, oH0 >, where QS ⊆
O((Λ×Y)O)∗ (resp. QD ⊆ O((Λ×Y)O)∗Γ) is the set of states

Algorithm 1 H(G)
Require: G =< X,Σ, δ, xG0, w >, e0

1: Q+ ← ∅,QD ← ∅, δS ← ∅, δD ← ∅
2: oH0(xG0)← e0 and oH0(x)← ⊥ for all x ∈ X \ {xG0}
3: QS ← {oH0}
4: for all qs = o0(λ1, y1)o1 . . . (λn, yn)on ∈ QS do
5: if on is non-negative and pre(qs)= −1 then
6: for all (γ, λ, y) ∈ Γ × Λ × Y such that exists o =

succ(on, γ,MΛ(σ),MY (x′)) do
7: add qsγ in QD and (qs, γ, qsγ) in δS
8: if q′s = qs(λ, y)o � Qs then
9: add q′s in Qs

10: end if
11: add (qsγ, (λ, y), q′s) in δD

12: end for
13: else if on is non-negative then
14: add qs ∈ Q+

15: end if
16: end for
17: return H =< QH = QS ∪QD,ΣH = Γ∪ (Λ× Y), δH = δS ∪ δD, oH0 >
,Q+

18: function pre(o0(λ1, y1)o1 . . . (λn, yn)on)
19: if ∃m ∈ {0, 1, . . . , n − 1}, om � on then
20: return o0(λ1, y1) . . . om

21: else
22: return −1
23: end if
24: end function

Fig. 2 The game automaton constructed from the DES in Fig. 1 using
Algorithm 1. The control patterns are γ1 = {b1} and γ2 = ∅. Observations
o0, o1, o2, o3, o4, and o5 are defined as follows. supp(o0) = {x0}, o0(x0) =
e0 = 0. supp(o1) = {x1, x2}, o1(x1) = 0, o1(x2) = 1. supp(o2) = {x3},
o2(x3) = 5. supp(o3) = {x5}, o3(x5) = 1. supp(o4) = {x4}, o4(x4) = −1.
supp(o5) = {x5}, o5(x5) = 4. Then, we have h0 = o0, h1 = h0(a, y1)o1,
h2 = h0(b, y0)o2, h3 = h1(a, y2)o3, h4 = h1(b, y2)o4, h5 = h3(b, y0)o0,
h6 = h3(b, y2)o5.

of the supervisor (resp. the DES).† δS ⊆ QS × Γ×QD (resp.
δD ⊆ QD × (Λ × Y) × QS ) is the set of out-going transitions
from the supervisor’s (resp. the DES’s) states, and oH0 ∈ QS

is the initial state. Algorithm 1 computes the game automa-
ton H, and the set Q+ = {q = o0(λ1, y1)o1 . . . (λn, yn)on ∈
QS |on is non-negative, ΣH(q) = ∅, and there exists an in-
teger m ∈ {0, 1, . . . , n − 1} such that om � on}. For each
q = o0(λ1, y1)o1 . . . (λn, yn)on ∈ Q+, pre(q) is the index
m < n such that om � on. This algorithm is modified from
the algorithm for solving the fixed initial credit energy prob-
lem for a two-player game played on graph proposed in [12].

Figure 2 shows the game automaton constructed from
the DES in Fig. 1 using Algorithm 1 where the initial credit
e0 = 0. The deadlock states in this automaton are h2, h4, h5,
and h6. Notice that h2 = o0(b, y0)o2, and supp(o2) contains
the deadlock state x3. Moreover, h4 = o0(a, y1)o1(b, y2)o4,
and the function o4 is not non-negative because o4(x4) = −1.

†In these concatenations, each element in O is regarded as a
symbol representing the corresponding observation function.
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Therefore, we have Q+ = {h5, h6}.
Theorem 2. The state set QH is finite.

Proof. Let O be regard as the set of symbols representing
the observation functions. Consider an infinite sequence
o0o1 . . . ∈ Oω such that for each k ∈ N, ok represents a
non-negative observation function. Since the state set X is
finite, {supp(o)|o ∈ O} ⊆ 2X is also finite. Then, there exist
i, j ∈ {0, 1, . . .} such that i < j and oi � o j by Dickson’s
lemma [15].

We prove this theorem using a contradiction. Suppose
that QH is infinite. Since X and Σ are finite, the number of
outgoing transitions at each state in QH is also finite. By
König’s lemma [16], [17], there exists an infinite sequence
qS

0 γ1qD
1 (λ1, y1)qS

1 . . . such that (qS
i , γi+1, qD

i+1) ∈ δS and
(qD

i+1, (λi+1, yi+1), qS
i+1) ∈ δD for each i ∈ N. From the con-

struction of H, there exists o0(λ1, y1)o1 . . . ∈ O((Λ × Y)O)ω

such that o0(λ1, y1)o1 . . . (λk, yk)ok ∈ QS for each k ∈ N,
all observations o0, o1, . . . are non-negative, and there is no
i, j ∈ N such that i < j and oi � o j. This is a contradiction
to Dickson’s lemma in the above discussion. �

From Theorem 2, the construction of H always termi-
nates. From the construction of H, the set Run(H) does not
contain a cycle. Moreover, each deadlock state q of H (i.e.,
each q ∈ Q such that ΣH(q) = ∅) is included in QS .

Then, we consider a turn-based reachability game
played on H between the supervisor and the DES. A strat-
egy of the supervisor (resp. the DES) is a function φS :
QS → δS (resp. φD : QD → δD). We restrict that for
each qd ∈ QD (resp. qs ∈ QS ), φD(qd) (resp. φS (qs)) is
an out-going transition from qd (resp. qs). Let Φs and ΦD

be the sets of strategies of the supervisor and the DES for
the game H, respectively. Both players play the game by
alternately selecting an out-going transition from the cur-
rent state of the game in their turns. Recall that we have
Q+ = {q = o0(λ1, y1)o1 . . . (λn, yn)on ∈ QS |on is non-
negative, ΣH(q) = ∅, and ∃m ∈ {0, 1, . . . , n − 1} such that
om � on.}. The objective of the supervisor is to reach a
state in Q+, while the objective of the DES is to prevent
the game from entering Q+. Since Run(H) does not contain
any cycle, this game always terminate at a deadlock state
of the automaton H. Let Play(H, φs, φd) ∈ Run(H) be the
set of runs generated under strategies φs and φd by the au-
tomaton H, and Dead(H, φs) = {h ∈ Play(H, φs, φd)|φd ∈
Φd,ΣH(last(h)) = ∅.}.
Problem 3. The Q+-reachability problem is to find φs ∈ Φs

such that last(Dead(H, φs)) ⊆ Q+.

Let H′ =< QH \ Q+,ΣH , δ
′
H , oH0 > be the automaton

modified from H as follows: for each (qd, (λ, y), qs) ∈ δH ,
(qd, (λ, y), pre(qs)) ∈ δ′H if qs ∈ Q+, and (qd, (λ, y), qs) ∈ δ′H
otherwise. For each r ∈ Play(H, φs) visiting pre(qs) and
qs such that qs ∈ Q+, there is a corresponding run r′ ∈
Play(H′, φs) that visits the state pre(qs) twice. Recall that
pre(qs) � qs. Therefore, the runs generated by H′ represent
the sequences of observation functions in Q+.

Fig. 3 The automaton modified from one in Fig. 2.

qS
0 γ1qD

1 (λ1, y1)qS
1 . . . q

S
m . . . q

S
n ∈ Run(H) such that

qS
n ∈ Q+ and qS

m = pre(qS
n ), there exists runs

qS
0 γ1qD

1 (λ1, y1)qS
1 . . . q

S
mγm+1qD

m+1(λm+1, ym+1)(qS
m+1 . . . q

S
n )∗ ⊂

Run(H′) that contains the corresponding non-negative cycle
in qS

m . . . q
S
n . The modified automaton of the game automa-

ton in Fig. 2 is illustrated in Fig. 3. Then, from a given strat-
egy φs ∈ Φs for the game H, we define a strategy πφs ∈ ΠS

for the game G as follows. For each r = y0λ1y1 . . . λnyn ∈
MO(Run(G)),

1. if there exists a run rH = qS
0 γ1qD

1 (λ1, y1)qS
1 . . . γnqD

n
(λn, yn)qS

n ∈ Run(H′) such that γi = φs(qS
i ) for each

i ∈ {0, 1, . . . , n − 1}, then πφs (r) = φs(rH);
2. otherwise, πφs (r) = ∅.

Theorem 4. There exists πs ∈ ΠS that satisfies the fixed-
initial-credit energy problem if and only if there exists φs ∈
Φs that satisfies the Q+-reachability problem. Moreover, for
a given strategy φs ∈ Φs that satisfies the Q+-reachability
problem, the strategy πφs ∈ ΠS satisfies the fixed-initial-
credit energy problem.

Proof. (→) Let πs ∈ Πs be a strategy of the supervisor for
the game G that satisfies the fixed-initial-credit energy prob-
lem. Let φs ∈ Φs be a strategy of the supervisor for the game
H defined as follows.

1. φs(qH0) = πs(MY (xG0)).
2. For each q = o0(λ1, y1)o1 . . . (λn, yn)on ∈ QS ,

φs(q) = πs(MY (xG0)λ1y1 . . . λnyn).

Then, we show that last(Dead(H, φs)) ⊆ Q+ using a contra-
diction. From the construction of H, we have Dead(H, φs) ⊆
Qs. Suppose that there exists rH ∈ Dead(H, φs) where
last(rH) � Q+. Since Algorithm 1 does not add any out-
going transition from the state last(rH) in δS , at least one of
the following cases holds.

1. last(rH) is not non-negative.
2. There does not exist a transition (γ, λ, y, o) ∈ Γ × Λ ×

Y × O such that o is the (γ, λ, y)−successor of on.

For case 1, from the construction of H, there exists
rG = x0σ1x1 . . . xn ∈ Play(G, πs) such that MO(rG) =
yG0λ1y1 . . . λnyn, and e0 + EL(rG) < 0. For case 2, from
the construction of H, there exists rG = x0σ1x1 . . . xn ∈
Play(G, πs) such that MO(rG) = yG0λ1y1 . . . λnyn and
Σ(xn) = ∅. Therefore, Dead(G, πs) � ∅. Both cases are
contradictions to the definition of Problem 1.

(←) Let φs ∈ Φs be a strategy of the supervisor for the
game H that satisfies the Q+-reachability problem. We show
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that the strategy πφs ∈ Πs satisfies the fixed-initial-credit
energy problem using a contradiction. Suppose that πφs does
not satisfy the problem. By the definition of Problem 1 1, we
have Dead(G, πφs ) � ∅ or there exists rG ∈ Play(G, πφs ) with
e0 + EL(h) < 0.

First, consider the case where Dead(G, πφs ) � ∅.
Let rG = x0σ1x1 . . . σnxn ∈ Dead(G, πφs ). From
the constructions of H and H′, there exists rH =

qS
0 γ1qD

1 (λ1, y1)qS
1 . . . γnqD

n (λn, yn)qS
n ∈ Play(H′, φs) such

that ΣH(qS
n ) = ∅ and MO(rG) = yG0λ1y1 . . . λnyn. However,

since qs
n ∈ Q′H and ΣH(qS

n ) = ∅, we have qs
n � Q+. Thus,

rH ∈ Play(H, φs) is the run that visits a deadlock state which
is not in Q+. This is a contradiction to the definition of Prob-
lem 3.

Next, consider the case where there exists rG =

x0σ1x1 . . . σnxn ∈ Play(G, πφs ), e0 + EL(h) < 0. From
the constructions of H and H′, there exists rH =

qS
0 γ1qD

1 (λ1, y1)qS
1 . . . γnqD

n (λn, yn)qS
n ∈ Play(H′, φs) such

that o = last(qS
n ) ∈ O is not non-negative and MO(rG) =

yG0λ1y1 . . . λnyn. From the construction of H′, rH must also
be included in Play(H, φs). Obviously, qS

n � Q+. This is a
contradiction to the definition of Problem 3. �

From Theorem 4, the fixed-initial-credit energy prob-
lem can be solved by algorithms for computing a wining
positional strategy of the first player turn-based reachability
games [13]. By the similar discussion in [11], [18], the up-
per bound of the size of game H, as well as the upper bound
of the time complexity of Algorithm 1, is bounded by the
Ackermann function.

5. Application Example

We consider the synthesis of a supervisor for robot path
planing for exploring the rooms shown in Fig. 4 (a). The
paths are represented by the weighted automaton shown in

Fig. 5 The game automaton that is computed from the DES in Fig. 4 (b) using Algorithm 1.

Fig. 4 (b). The task of the robot is to explore an area while
receiving the control commands sent via a wireless network.
The initial state is x0, the initial credit energy is e0 = 0, and
the transition from x0 to x1 represents the energy recharge.
The negative weight of the other transitions represent the
energies needed for traveling through the paths. The uncon-
trollable event u0 represents a doorway that always open,
while the controllable events c0 and c1 represent ones that
are controlled by the supervisor. Since the doorways c0 and
u0 at each state are close to each other, they are observed by
the masked event λ0. Moreover, the states in the same areas
are mapped to the same masked state. The control objective
is to allow the robot to explore the rooms provided that its
energy never drops below zero.

By applying algorithm 1, we obtain the game automa-
ton in Fig. 5. The square states are the states of the super-
visor (in QS ) and the circle states are ones of the DES (in
QD). The square states with thick frames belong to the set
Q+. Due to limitations of space, we only show the last ob-
servation function at each state of the supervisor. Moreover,
instead of showing the labels of the transitions in δD, we

Fig. 4 (a) The area map for the robot system to explore. (b) The paths
of the DES represented by an automaton where x0 is the initial state and u0

is the only uncontrollable event. The functions MY and MΛ are as follows:
MY (x0) = y0, MY (x1) = MY (x2) = MY (x3) = y1, MY (x4) = MY (x5) = y2,
MY (x6) = MY (x7) = y3, MΛ(u0) = MΛ(c0) = λ0, and MΛ(c1) = λ1.
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show the disabled events at each state of the DES. That is,
the circle states labeled by (c0, c1), c1, c0, and the no-labeled
circle states represent the control patterns {c0, c1}, {c1}, {c0}
and ∅, respectively. We only show the states of the DES
where at least one controllable event is disabled. For exam-
ple, at the initial state o0, we only consider the control pat-
tern ∅ because there is no outgoing controllable transition at
the state x0 of the DES in Fig. 4 (b).

By using the algorithms for reachability games [13], we
compute the strategies of the supervisor that can control the
generated runs to reach the states in Q+. The runs are shown
as the black-line transitions in Fig. 5. Notice that there are
two possible ways to control the DES for the masked run
o0(λ0, y1)o1: by disabling or enabling the event c0. If we
enable the event c0, the corresponding strategy πs of the su-
pervisor for the DES in Fig. 4 (b) is as follow:

• πs(o0) = πs(o0(λ0, y1)o1) = ∅,
• πs(o0(λ0, y1)o1(λ0, y1)o3) = {c0, c1},
• πs(o0(λ0, y1)o1(λ0, y1)o3(λ0, y2))o7 = ∅,
• πs(o0(λ0, y1)o1(λ0, y1)o3(λ0, y3))o4 = ∅,
• πs(o0(λ0, y1)o1(λ0, y1)o3(λ0, y2))o7(λ0, y3)o12) = ∅,
• πs(o0(λ0, y1)o1(λ0, y1)o3(λ0, y3))o4(λ1, y3)o9)= {c0, c1},
• πs(o0(λ0, y1)o1(λ0, y1)o3(λ0, y2))o7(λ0, y3)o12(λ1, y3)

o18) = {c0, c1}, and
• πs(r) = ∅ for any other masked run r.

The runs generated by the supervised DES under πs are
shown in thick lines in Fig. 4. In the supervised DES, the
energy of each run never drops below zero.

6. Conclusions

We studied the supervisory control of partially observed
quantitative DESs under the fixed-initial-credit energy ob-
jective. Partial observation is modeled by a mapping from
each event and state of the DES to the corresponding masked
event and masked state that are observed by a supervisor.
The fixed-initial-credit energy problem is to synthesize a su-
pervisor under which the controlled DES does not contain
a deadlock and the energy level of the system never goes
below zero. Then, the proposed problem was reduced to
computing a winning strategy in a turn-based reachability
game whose size is bounded by the Ackermann function.
It is future work to consider the lower bound of the size of
reachability game.
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