
1172
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

PAPER Special Section on Formal Approach

Verifying Scenarios of Proximity-Based Federations among Smart
Objects through Model Checking and Its Advantages∗

Reona MINODA†a), Student Member and Shin-ichi MINATO†b), Senior Member

SUMMARY This paper proposes a formal approach of verifying ubiq-
uitous computing application scenarios. Ubiquitous computing application
scenarios assume that there are a lot of devices and physical things with
computation and communication capabilities, which are called smart ob-
jects, and these are interacted with each other. Each of these interactions
among smart objects is called “federation”, and these federations form a
ubiquitous computing application scenario. Previously, Yuzuru Tanaka pro-
posed “a proximity-based federation model among smart objects”, which is
intended for liberating ubiquitous computing from stereotyped application
scenarios. However, there are still challenges to establish the verification
method of this model. This paper proposes a verification method of this
model through model checking. Model checking is one of the most pop-
ular formal verification approach and it is often used in various fields of
industry. Model checking is conducted using a Kripke structure which is
a formal state transition model. We introduce a context catalytic reaction
network (CCRN) to handle this federation model as a formal state transi-
tion model. We also give an algorithm to transform a CCRN into a Kripke
structure and we conduct a case study of ubiquitous computing scenario
verification, using this algorithm and the model checking. Finally, we dis-
cuss the advantages of our formal approach by showing the difficulties of
our target problem experimentally.
key words: ubiquitous computing, catalytic reaction network, formal veri-
fication, model checking, smart object

1. Introduction

Today, we are surrounded with a lot of devices with com-
putation and communication capabilities. These devices are
called smart objects (SOs). SOs include PCs, smart phones,
embedded computers, sensor devices and RFID tags. By
embedding RFID tags in physical things such as mugs, food
and medicine bottles, we can also treat them as SOs. The no-
tion of ubiquitous computing assumes that a lot of these SOs
surround enough around users. Here we use the term federa-
tion to denote the definition and execution of interoperation
among resources that are accessible either through the Inter-
net or through peer-to-peer ad hoc communication. For ex-
ample, let us consider that there are a phone, a medicine bot-
tle and food; and RFID tags are embeded in a medicine bot-
tle and food. Imagine that this food and the medicine have
a harmful effect when eaten together. If all these things are

Manuscript received August 29, 2016.
Manuscript revised December 18, 2016.
Manuscript publicized March 7, 2017.
†The authors are with the Graduate School of Information

Science and Technology, Hokkaido University, Sapporo-shi, 060–
0814 Japan.

∗This paper is the extended version of our work which was
published in proceedings of UBICOMM 2016 [1].

a) E-mail: minoda@meme.hokudai.ac.jp
b) E-mail: minato@ist.hokudai.ac.jp

DOI: 10.1587/transinf.2016FOP0009

Fig. 1 Example of ubiquitous computing application scenario

close to each other, a phone rings to inform a user to warn
not to eat them together. This phenomenon is a federation.
Of course, we can also consider other federations related to
other SOs and these federations may be involved in each
other. And we call these federations “ubiquitous comput-
ing application scenarios” (see Fig. 1). As various kinds of
devices and physical things can be treated as SOs thanks to
technological innovation, our real world environment is now
steadily laying the foundation for the concept of ubiquitous
computing which Mark Weiser looked beyond [2].

Since Weiser proposed the notion of ubiquitous com-
puting, it has been almost quarter of century. In the mean-
time, a lot of different frameworks have been proposed to
realize ubiquitous computing. However, regardless of spe-
cific research areas in ubiquitous computing, Yuzuru Tanaka
pointed out that these researches typically only consider two
types of application scenarios [3]. One is “location trans-
parent service continuance” (i.e., a user can use a service
wherever the user goes). The other one is “context-aware
service provision” (i.e., a user can use different kinds of ser-
vices depending on where the user is). Robin Milner thought
that the lack of models for describing ubiquitous comput-
ing application scenarios caused to prevent from consider-
ing various types of application scenarios [4]. Besides, ac-

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

MINODA and MINATO: VERIFYING SCENARIOS OF PROXIMITY-BASED FEDERATIONS AMONG SMART OBJECTS THROUGH MODEL CHECKING
1173

cording to Milner, it is not possible to describe all concepts
of ubiquitous computing by using a single model [4]. Mil-
ner argued that the hierarchical structure of models (Milner
called it “a tower of models”) was necessary. In a tower
of models, each higher model should be implemented by a
lower model.

Following the notion of a tower of models, Tanaka once
proposed the basic idea for describing ubiquitous comput-
ing application scenarios using catalytic reaction network
model [3]. This idea includes following three models:

• At the first (lowest) level, the port matching model de-
scribes the federation mechanism between two SOs in
close proximity to each other.
• At the second (middle) level, the graph rewriting model

describes the dynamic change of federation structures
among SOs.
• At the third (highest) level, the catalytic reaction net-

work model describes application scenarios involving
mutually related multiple federations.

Then, Julia and Tanaka brushed up these three mod-
els and established a concrete tower of models by prov-
ing that a higher model is surely implemented by a lower
model [5]. Moreover, Julia’s model implementation has er-
ror handling mechanisms assuming unexpected situations
such as the connection failures between two SOs. There-
fore we can focus on the catalytic reaction network model
for describing application scenarios of ubiquitous comput-
ing.

However, there are still challenges of establishing the
verification method of the catalytic reaction network model.
So far, when we made a scenario using the catalytic reaction
network model, we could not prove easily whether a partic-
ular federation would occur because federations of multiple
devices are formed by proximity sensitive connections be-
tween SOs. So when we discuss a scenario using the cat-
alytic reaction network, we also need to consider the prox-
imity relations of SOs.

In this paper, we propose a verification method of
device-federation model based on catalytic reaction net-
work. Basically we transform a scenario into the well-
known state-transition model such as Kripke structure. This
enables us to apply existing model checking verifiers. With
this method, we can discuss the following things:

• Determining whether a property described in a linear
temporal logic (LTL) specification (e.g., a particular
federation finally occured) is satisfied or not in the
given scenario described by the catalytic reaction net-
work model.
• Showing a counterexample if there is any case violating

the property described above.

In a scenario using original catalytic reaction network
model, there are so many proximity relations among SOs
(n SOs would have 2n proximity relations). This sometimes
causes the state explosion problem in the model checking.
We need to constrain the proximity relations in the origi-

nal catalytic reaction network model. For this reason, we
will first define the constrained model called “Context Cat-
alytic Reaction Network (CCRN).” Then, we will propose
the method to transform CCRN into the well-known state
transition model such as a Kripke structure that can apply
existing model checking verifiers.

This paper is extended version of our work which was
published in proceedings of UBICOMM 2016 [1]. In addi-
tion to the content of the proceeding, this paper also contains
more detailed explanations about our verification method,
additional considerations of case study and experimental
analyses of difficulties of our target problem.

The rest of this paper is organized as follows. The rest
of this section introduces related works of our research. Sec-
tion 2 provides preliminaries of this paper, such as basic
definitions and notations. Using them, we define a CCRN
in Sect. 3. Then, we propose the verification method of a
CCRN in Sect. 4. Section 5 introduces the case study of the
verification. We also evaluate the scalability of our method
in Sect. 6. Finally, we summarize the results of this paper in
Sect. 7.

1.1 Releated Works

1.1.1 Formal Verification of Cyber Physical Systems

Similarly to ubiquitous computing, a lot of devices such as
sensors measure physical phenomena such as temperature,
humidity, acceleration and so on, while actuators manipu-
late the physical world, like in automated robots. The com-
bination of an electronic system with a physical process is
called cyber physical system (CPS). In the field of CPS,
Drechsler and Kühne use timed automata [6] as a state tran-
sition model to conduct formal verifications of given sys-
tems’ properties [7].

1.1.2 Context Inconsistency Detection

In the field of ambient computing, Xu and Cheung propose a
method of context inconsistency detection [8]. This method
detects inconsistencies from a series of gathered events such
as “a user entered a room” and “the temperature of room is
30◦C” by logical deduction. Unlike a formal verification,
this method can be applied only after the system begins to
work. Instead, a formal verification can find the failed cases
from a given system in advance.

2. Preliminaries

In this section, we give definitions and notations which is
necessary for this paper.

2.1 Basic Definitions and Notation

Let X and Y be any two sets, we use X ∪ Y , X ∩ Y and
X \ Y to denote the union, intersection and difference of X
and Y respectively. For a set X, we denote its power set (i.e.,

1174
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

Fig. 2 Example of a catalytic reaction

all subsets) by 2X and its cardinality by |X|. For a family
M of sets (i.e., a set of sets), we denote the union and the
intersection of all sets in M by

⋃
M and

⋂
M respectively.

2.2 Catalytic Reaction Network

A catalytic reaction network is originally proposed by Stu-
art Kauffman in the field of biology to analyze protein
metabolism [9]. Based on this model, Tanaka applied it to
the field of ubiquitous computing as the way to describe
an application scenario involving mutually related multiple
federations among SOs [3]. In this paper, we mean the latter
by the term “catalytic reaction network”.

A catalytic reaction network is a set of catalytic re-
actions. Each catalytic reaction takes input materials and
transforms them into output materials. And each catalytic
reaction has a catalyst which is called context. It may be
also possible to include a catalyst in input materials. We
call this kind of catalyst stimulus. A catalytic reaction is oc-
curred when all required SOs are in the proximity of each
other. We use the term “scope” to denote the inside of the
proximity area (we assume a range of Wi-Fi radiowave, and
so on). The scope of a SO o is represented as a set of SOs
which are accessible from the SO o. Tanaka assumed that
all scopes of the context and SOs involved in a catalytic re-
action are considered [3]. However, as we mentioned in pre-
vious section, this causes the state explosion problem dur-
ing the model checking. For this reason, in this paper, we
assume that only the scopes of contexts are considered in-
stead. In other words, we consider that the catalytic reaction
is occurred if all required SOs just enter into the scope of
the corresponding context.

Figure 2 shows an example of single catalytic reaction.
In this example, there is a gate c1 regarded as a context and a
user has three SOs i.e., a phone a, a headset b and an IC card
s. If the user enters into the scope of c1, c1 makes a and b
federated. This action is triggered by s. After that, phone a
and headset b are federated. We denote federated SOs such
as a and b by a concatenation of a and b, i.e., ab. During
this process, c1 and s work as catalysts. In particular, s is
a stimulus in this reaction. We express this reaction as the
right hand side diagram of Fig. 2.

In catalytic reaction networks, there are four types of
catalytic reactions as we show in Fig. 3. We categorize

Fig. 3 Four types of a catalytic reactions

these four types of reactions into two groups. One group is
the composition reaction group (Fig. 3 (i) and (ii)), the other
group is the decomposition reaction group (i.e., Fig. 3 (iii)
and (iv)). A catalytic reaction of Fig. 2 is a type (i) catalytic
reaction. We also consider the catalytic reaction without a
stimulus such as Fig. 3 (ii). In type (ii), if a user who has
SO a and SO b enters into the scope of context c2, c2 makes
a and b federated without a stimulus. In a similar way, we
consider the decomposition reactions such as Fig. 3 (iii) and
(iv). In type (iii), if a user who has two SOs that are feder-
ated into ab enters into the scope of context c3, c3 decom-
poses these SOs ab into a and b triggered by SO s. Type (iv)
is a decomposition reaction without a stimulus.

The output SO of a reaction may promote other reac-
tions as a stimulus or become an input SO of other reactions.
In this way, catalytic reactions form a network of reactions.

Now we define a catalytic reaction network formally.
First, let O be a set of SOs, we give a definition of a feder-
ated SO of by o f ∈ 2O \ {∅} where |o f | > 1. If |o f | = 1, we
treat o f as a single SO. Next, we define a catalytic reaction
as follows:

Definition 1 (Catalytic Reaction): Let O and C be a set of
SOs and a set of contexts respectively, a catalytic reaction is
defined as a tuple (c,M,N) where

• c ∈ C, M ⊆ 2O \ ∅, N ⊆ 2O \ ∅
• ∀o f∀o′f ∈ M.(o f � o′f → o f ∩ o′f = ∅)• ∀o f∀o′f ∈ N.(o f � o′f → o f ∩ o′f = ∅)• ⋃M =

⋃
N, and

• (|M ∩ N| + 1 = |N|, |M| > |N|) ∨
(|M ∩ N| + 1 = |M|, |M| < |N|) (∗)

MINODA and MINATO: VERIFYING SCENARIOS OF PROXIMITY-BASED FEDERATIONS AMONG SMART OBJECTS THROUGH MODEL CHECKING
1175

The former of the last condition (signed by (∗)) and the lat-
ter of the last condition correspond to a necessary condi-
tion for composition reaction and decomposition reaction
respectively.

We give some examples of catalytic reactions. Given
C = {c1, c3},O = {a, b, s}, a catalytic reaction of Fig. 3 (i)
and (iii) can be defined by (c1, {{a}, {b}, {s}}, {{a, b}, {s}}) and
(c3, {{a, b}, {s}}, {{a}, {b}, {s}}) respectively.

Finally, a catalytic reaction network is defined as fol-
lows:

Definition 2 (Catalytic Reaction Network): A catalytic re-
action network is a set of catalytic reactions.

2.3 Model Checking

A model checking is a method to verify a property of a
state transition system. It has been often used in various
fields, which ranges from electronic-circuit-design verifica-
tion [10] to secure-network-protocol (e.g., Secure Sockets
Layer (SSL) protocol) design verification [11]. In the model
checking, it is typically assumed to use a Kripke structure
as a state transition system. The property of a Kripke struc-
ture is described by a modal logic. There are two kind of
commonly used modal logics such as linear temporal logic
(LTL) and computational tree logic (CTL). In this paper, we
use LTL to describe the property of the Kripke structure.

2.3.1 Kripke Structure

Before we look on the detail of a model checking, we give
the definition of a Kripke structure [12] which is necessary
for a modal logic and a model checking.

Definition 3 (Kripke Structure): Let AP be a set of atomic
propositions, a Kripke structrue M is a tuple (S , I,R, L),
where

• S is a finite set of states,
• I ⊆ S is a set of initial states,
• R ⊆ S × S is a set of transition relation such that R is

left-total, i.e., ∀s ∈ S , ∃s′ ∈ S such that (s, s′) ∈ R,
and
• L : S → 2AP is a labeling function.

2.3.2 Linear Temporal Logic

LTL is one of the most well-known modal logic. LTL was
first proposed for the formal verification of computer pro-
grams by Amir Pnueil in 1977 [13]. First, we give a defini-
tion of LTL syntax.

Definition 4 (Linear Temporal Logic Syntax): Let AP be a
set of atomic propositions, a linear temporal logic formula φ
is defined by the following syntax recursively.

φ ::= � | ⊥ | p | ¬φ | φ ∨ φ | X φ | G φ | F φ | φ U φ

where p ∈ AP.

These right-hand terms denote true, false, p, negation, dis-
junction, next time, always, eventually and until respec-
tively.

Next, we define a transition path π of a Kripke structure
M.

Definition 5 (Transition Path): Let M be a Kripke struc-
ture, π = (π0, π1, π2, . . .) is a transition path in M if it re-
spects M’s transition relation, i.e., ∀i.(πi, πi+1) ∈ R. πi de-
notes π’s ith suffix, i.e., πi = (πi, πi+1, πi+2, . . .).

Also it can be shown that

(πi) j = (πi, πi+1, πi+2, . . .)
j

= (πi+ j, πi+ j+1, πi+ j+2, . . .)

= πi+ j.

Now we focus on the semantics of linear temporal
logic. First, we define the binary satisfaction relation, de-
noted by |=, for LTL formulae. This satisfaction is with re-
spect to a pair – 〈M, π〉, a Kripke structure and a transition
path. Then we enumerate LTL semantics as follows:

• M, π |= � (true is always satisfied)
• M, π �|= ⊥ (false is never satisfied)
• (M, π |= p) iff (p ∈ L(π0)) (atomic propositions are

satisfied when they are members of the path’s first ele-
ment’s labels)

And there are two LTL semantics of boolean combinations
as follows:

• (M, π |= ¬φ) iff (M, π �|= φ)
• (M, π |= φ ∨ ψ) iff

[
(M, π |= φ) ∨ (M, π |= ψ)

]

And there are four LTL semantics of temporal operators as
follows:

• (M, π |= X φ) iff (M, π1 |= φ)

• (M, π |= F φ) iff
[
∃i.(M, πi |= φ)

]

• (M, π |= G φ) iff
[
∀i.(M, πi |= φ)

]

• (M, π |= φ U ψ) iff[
(∃i.(M, πi |= ψ)) ∧ (∀ j < i.(M, π j |= φ))

]

2.3.3 Model Checking Problem

Intuitively saying, a model checking problem is to judge
whether a given Kripke structure M satisfies a given prop-
erty described in a modal logic formula φ. A model check-
ing problem is formally stated as follows.

Definition 6 (Model Checking Problem): Given a desired
property described by a modal logic formula φ (in this pa-
per, we use LTL) and a Kripke structure M, a model check-
ing problem is a decision problem whether the following
formula

∀π.(M, π |= φ)

is satisfied or not. Note that a set {π | (M, π �|= φ)} is particu-
larly called a set of counterexamples.

1176
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

It is known that a model checking problem can be reduced
to a graph search if M has finite states.

There are several implementations of the model check-
ing verifier such as Simple Promela INterpreter (SPIN) [14],
Label Transition System Analyzer (LTSA) [15], New
Symbolic Model Verifier version 2 (NuSMV2) [16] and
so on. In this paper, we use a model checking verifier
NuSMV2.

3. Context Catalytic Reaction Network

This section introduces a segment graph and a CCRN.

3.1 Segment Graph

As we discussed in previous section, a catalytic reaction is
occurred when required SOs enter into the scope of the cor-
responding context. To analyze the property of a given cat-
alytic reaction network as a state transition system, it is nec-
essary to formalize the movement of SOs. For example, in
Fig. 4 (i), there are contexts c1 and c2 and these scopes have
an overlap. A user can walk around the path αβ shown in
Fig. 4 (i). This situation can be represented as a segment
graph shown in Fig. 4 (ii). We consider that the user walk
around this segment graph and the user is always located at
one of the nodes of this segment graph. Each node of a seg-
ment graph has a corresponding set of scopes of contexts.
In this way, the given situation like Fig. 4 (i) including over-
laps of scopes of contexts can be represented as a discrete
structure. Now we define a segment graph as follows.

Definition 7 (Segment Graph): Let C be a set of contexts,
a segment graph G is a tuple (S, E, F), where

Fig. 4 Example of segment graph

• S is a finite set of segments,
• E ⊆ S × S is a set of directed edges between two seg-

ments, and
• F : S → 2C is a function returning scopes of contexts

at corresponding segments.

3.2 Context Catalytic Reaction Network

A context catalytic reaction network (CCRN) is a discrete
structure of a situation involving SOs in a catalytic reaction
network. A CCRN is defined as a conbination of a segment
graph and a catalytic reaction network.

Definition 8 (Context Catalytic Reaction Network): A con-
text catalytic reaction network (CCRN) is a tuple
(O,C,R,G, LFIX, l0), where

• O is a set of smart objects,
• C is a set of contexts,
• R is a set of catalytic reactions,
• G is a segment graph (S , E, F),
• LFIX ⊆ O × S is the locations of fixed SOs, and
• l0 ∈ S is the initial segment locating mobile SOs (mo-

bile SOs can be represented as O \ {o ∈ O | ∃s ∈
S .((o, s) ∈ LFIX)}).

4. Verification Method of a CCRN

In this section, we propose a verification method of a CCRN.
Before discussing the details of the method, we assume that
all mobile SOs are carried together (by a single user). A
state of a CCRN can be represented as a combination of the
location of mobile SOs (e.g., mobile SOs are located at seg-
ment s) and the presence of federated SOs (e.g., federated
SOs o f and o′f are existing) and we regard these two kind of
facts as atomic propositions. We use the following atomic
propositions (AP):

• locOMOB (s): mobile SOs are located at segment s
• fed(o f): federated SOs o f is existing

While mobile SOs move around a segment graph, more
than one federated SOs may appear. For example, federated
SOs {a, b} and {c, d} may appear at the same time. For that
reason, we define a single state of the presence of feder-
ated SOs as the subset of 2O (e.g., {{a, b}, {c, d}} is a subset
of 2{a,b,c,d}). But each SO can not be a part of more than
one federated SOs. For example, we do not permit fed-
erated SOs like {a, b} and {b, c} are presented at the same
time because SO b is a part of both of these two federated
SOs. Considering this constraint, a set of states of presence
of federated SOs can be represented as OF = {∅} ∪ {oF |
oF ⊆ 2O,∀o f , o′f ∈ oF .(o f � o′f → o f ∩ o′f = ∅),∀o f ∈
oF .(|o f | > 1)}. Finally, we represent a state of a CCRN
as state(s, oF) where s is the segment at which mobile SOs
are located and oF is the set of federated SOs. For exam-
ple, state(s0, {{a, b}, {c, d}}) means mobile SOs are located at
segment s0 and federated SOs {a, b} and {c, d} are existing.

Using the above representation of a state of a CCRN

MINODA and MINATO: VERIFYING SCENARIOS OF PROXIMITY-BASED FEDERATIONS AMONG SMART OBJECTS THROUGH MODEL CHECKING
1177

Fig. 5 Mechanism of the Algorithm

and atomic propositions, we conduct verification of a CCRN
by constructing a Kripke structure from a given CCRN. For
example, let a set of SO O be {a, b} and given a catalytic
reaction network and a segment graph such as Fig. 5 (i). In
this case, OF is a set { ∅, {{a, b}} } and a set of segments is
S = {s1, . . . , s5}. So we consider the product of OF and
S as the set of states in Kripke structure. White colored
nodes in Fig. 5 (ii) are states in Kripke structure. States en-
closed in dotted rectangle I . . . V correspond to the element
s1 . . . s5 ∈ S repectively. States enclosed in dotted rectan-
gle A correspond to the element ∅ ∈ OF . Similarly, states
enclosed in dotted rectangle B correspond to the element
{{a, b}} ∈ OF . If we consider the state of Kripke structure in
this way, we can treat the movement of SOs without any cat-
alytic reactions as transitions between two states which both
are in either group A or B. We can also treat the movement
of SOs with any catalytic reactions as transition between two
states which are in different groups. In this example, if no
catalytic reaction is occured during SOs’ movement, corre-
sponding transition is defined as (state(s, of), state(s′, o f))
where s, s′ ∈ S , (s, s′) ∈ E and o f ∈ OF and if any catalytic
reactions are occurred during SOs’ movement, correspond-
ing transition is defined as (state(s, of), state(s′, o′f)) where
s, s′ ∈ S , (s, s′) ∈ E, o f , o′f ∈ OF and o f � o′f . In Fig. 5 (ii),
black lined transitions and gray lined transitions and gray
dotted lined transitions correspond to SOs’ movement with-
out any catalytic reactions, SOs’ movement with catalytic
reaction r1 and SOs’ movement with catalytic reaction r2

respectively. Generalizing about this mechanism, here we
give an algorithm in Fig. 6 to construct a Kripke structure

Input: CCRN (O,C,R, (S , E, F), LFIX, l0)
Output: Kripke Structure (S,I,R,L)

Initialization :
1: OMOB = O \ {o ∈ O | ∃s ∈ S .((o, s) ∈ LFIX)}
2: OF = {∅} ∪ {oF | oF ⊆ 2O,∀o f ,o′f ∈ oF .(o f �o′f → o f ∩o′f = ∅),

∀o f ∈ oF .(|o f | > 1)}
3: AP = {locOMOB (s) | s ∈ S } ∪ {fed(o f) | o f ∈ oF , oF ∈ OF }
4: S = {state(s, oF) | s ∈ S , oF ∈ OF }
5: I = state(l0, ∅)
6: R = ∅

Loop Process :
7: for each oF ∈ OF do
8: for each s ∈ S do
9: L(state(s, oF)) = {locOMOB (s)} ∪ {fed(o f) | o f ∈ oF }

10: S ′ = {s′ | (s, s′) ∈ E}
11: for each s′ ∈ S ′ do
12: R′ = {(c,M,N) ∈ R | c ∈ F(s′),

{o f ∈ M \ N | |o f | > 1} ⊆ oF ,O(c) ⊇ ⋃M}
where O(c ∈ C) = OMOB ∪

{o ∈ O | ∃s′′ ∈ S .(c ∈ F(s′′), (o, s′′) ∈ LFIX)}
13: if R′ � ∅ then
14: for each (c,M,N) ∈ R′ do
15: choose o′F ∈ OF s.t.

oF \ o′F = {o f ∈ M \ N | |o f | > 1},
o′F \ oF = {o f ∈ N \ M | |o f | > 1}

16: R = R ∪ {(state(s, oF), state(s′, o′F))}
17: end for
18: else
19: R = R ∪ {(state(s, oF), state(s′, oF))}
20: end if
21: end for
22: end for
23: end for
24: return(S,I,R,L)

Fig. 6 Algorithm for transforming CCRN into Kripke structure

from a given CCRN.
After constructing a Kripke structure from a CCRN,

now we describe properties of a CCRN by LTL formulae.
We enumerate examples of LTL formulae:

• G(¬fed(o f)→ F(fed(of)))
Informally and intuitively saying, federated SOs of fi-
nally exists if o f does not exist at the beginning and this
always happens.
• G((¬fed(o f)→ F(fed(o f)))∨ (¬fed(o′f)→ F(fed(o′f))))

This means federated SOs of finally exists if o f does
not exist at the beginning. Similarly, federated SOs o′f
finally exists if o′f does not exist at the beginning. At
least one of these phenomena always happens.

Finally, we conduct the model checking, giving a
Kripke structure and LTL formulae. This can be done by
various implementations of model checking verifiers which
we introduced in previous section.

5. Case Study of the Verification

We have conducted a case study of a verification of a given
CCRN, using a model checking. We assume that a CCRN is
given by the designer who intend to design applications of
ubiquitous computing. Here we use an example of museum
as shown in Fig. 7. A CCRN of this example is represented

1178
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

Fig. 7 Example of museum

as a tuple (O,C,R, (S , E, F), LFIX, l0) where

• O = {a, b, d, e, s},
• C = {c1, c2, c3, c4, c5, c6},
• R = {(c1, {{a}, {b}, {s}}, {{a, b}, {s}}),

(c2, {{a, b}, {d}}, {{a, b, d}}),
(c3, {{a, b, d}}, {{a, b}, {d}}),
(c4, {{a, b}, {e}}, {{a, b, e}}),
(c5, {{a, b, e}}, {{a, b}, {e}}),
(c6, {{a, b}, {s}}, {{a}, {b}, {s}}) },

• S = {s1, s2, s3, s4, s5, s6, s7, s8, s9},
• E = {(s1, s2), (s2, s1), (s2, s3), (s3, s2), (s3, s4), (s4, s3),

(s4, s5), (s5, s4), (s5, s9), (s9, s5), (s2, s6), (s6, s2),
(s6, s7), (s7, s6), (s7, s8), (s8, s7), (s8, s9), (s9, s8),
(s9, s1), (s1, s9)},

• F = {(s1, ∅), (s2, {c1}), (s3, {c2}), (s4, {c2, c3}), (s5, {c3}),
(s6, {c4}), (s7, {c4, c5}), (s8, {c5}), (s9, {c6})},

• LFIX = {(d, s4), (e, s7)}, and
• l0 = s1.

In this example, a user enters the entrance of a museum, car-
rying a phone a, a headset b and a ticket s. Once the user
entered the entrance, the phone a and the headset b are fed-
erated by a reaction associated with the scope of c1, which
is triggered by the ticket s. Then, the federated SOs ab are
worked as a voice guide of the museum. Next, if the user
enters into room A, the federated SO ab and an exhibit d
are federated by a reaction associated with the scope of c2.
By the federated SO abd, an explanation of the exhibit d
can be provided to the user. After this, the user leaves the
room A and the federated SO abd is decomposed and be-
comes ab again by a reaction associated with the scope of
c3. The similar reactions occur in the room B, which is for
an explanation of an exhibit e. If the user leaves one of the
exhibition rooms and returns to the entrance, the federated
SO ab is decomposed before leaving the museum.

Now we verify a CCRN of this example. Using an al-
gorithm shown in Fig. 6, we can obtain a Kripke structure
M. Then, the designer may give desired properties of the

given CCRN by LTL formulae such as:

• φ1 = G(¬(fed({a, b, d}) ∧ fed({a, b, e}))),
• φ2 = G((¬fed({a, b, d})→ F(fed({a, b, d}))) ∨

(¬fed({a, b, e})→ F(fed({a, b, e})))), and
• φ3 = G((locOMOB (s3) ∨ locOMOB (s6)) ∧ fed({a, b})).

Intuitively saying, φ1 means that no more than one federa-
tion for the explanation of exhibits exists at the same time
and φ2 means that if a user enters into one of the exhibition
rooms, an explanation of each exhibit is always provided
to a user and φ3 means that when a user enters into one of
the exhibition rooms, the federation for a voice guide of the
museum is always ready.

Now we verify a CCRN using a generated Kripke
structure M, φ1, φ2 and φ3. To conduct model checking,
we used NuSMV2 as a model checking verifier.

In NuSMV2, SMV language is used to represent
Kripke structures. In this paper, we enumerated all possible
states, their corresponding atomic propositions and transi-
tions explicitly. For example, if we are given a set of atomic
propositions AP = {p, q} and a Kripke structure (S , I,R, L)
where

• S = {s0, s1, s2, s3},
• I = {s0},
• R = {(s0, s1), (s0, s2), (s1, s2), (s2, s3), (s3, s3)} and
• L(s0) = ∅, L(s1) = {p}, L(s2) = {q}, L(s3) = {p, q};

we generate a SMV language file such as Fig. 8 straight-
forwardly. The size of this SMV language file generated
by like this way is in proportion to the number of states,
atomic propositions and transitions of given Kripke struc-
ture. NuSMV2 manual [17] describes details of SMV lan-
guage format.

We have confirmed that ∀π.(M, π |= φ1) is satisfied.
However, ∀π.(M, π |= φ2) and ∀π.(M, π |= φ3) are not satis-
fied. A model checking verifier also gives a counterexample
πc2 and πc3 corresponding to φ2 and φ3 respectively such as

πc2 = (state(s1, ∅), state(s2, {{a, b}}), state(s3, {{a, b, d}}),

MINODA and MINATO: VERIFYING SCENARIOS OF PROXIMITY-BASED FEDERATIONS AMONG SMART OBJECTS THROUGH MODEL CHECKING
1179

� �
MODULE main

VAR

state : {s0, s1, s2, s3};

ASSIGN

init(state) := s0;

next(state) :=

case

state = s0 : {s1, s2};

state = s1 : {s2};

state = s2 : {s3};

state = s3 : {s3};

esac;

DEFINE

p := state = s1 | state = s3;

q := state = s2 | state = s3;

� �
Fig. 8 Example of a SMV language file

Fig. 9 Counterexample corresponding to φ2 of museum example

state(s4, {{a, b}}), state(s5, {{a, b}}), state(s9, ∅),
state(s5, ∅), state(s4, ∅), state(s5, ∅), state(s4, ∅) . . .),

and

πc3 = (state(s1, ∅), state(s2, {{a, b}}), state(s3, {{a, b, d}}),
state(s4, {{a, b}}), state(s5, {{a, b}}), state(s9, ∅),
state(s8, ∅), state(s7, ∅), state(s6, ∅)).

Bold lines in Fig. 9 and Fig. 10 are the visualization of πc2

and πc3 respectively.
In the case of πc2 , first, the user enters the entrance of

the museum, then, the user goes to the room A and goes
away from room A. But the user enters the room A again
from which the user goes away. Finally, the user stays there.
In this situation, we never obtain the federated SO abd again
since the user stays in the room A. In the case of πc3 , first,
similarly to the case of πc2 , the user enters the entrance of the
museum, then, the user goes to the room A and goes away
from room A. But the user enters the room B from which
is intended for an exit of room B. And then, the user goes
to the entrance of room B reversely. In this situation, the
user don’t have the federated SO ab when the user intend

Fig. 10 Counterexample corresponding to φ3 of museum example

Fig. 11 Revised museum example

to receive the explanation of exhibit e, so the user can not
receive the explanation ob exhibit e.

From these counterexamples, we learned that which
some appropriate constraint on the segment graph is nec-
essary.

Now we debug the system to make all properties of a
given CCRN given by LTL formulae satisfied. To do so,
we need to revise the segment graph of a given CCRN of
this example. We have rewritten E of the given CCRN as
follows (Fig. 11 is the visualization of this revision):

E = {(s1, s2), (s2, s3), (s3, s4), (s4, s5), (s5, s9), (s2, s6),

(s6, s7), (s7, s8), (s8, s9), (s9, s1)}.
This revision indicates that the user should follow the regu-
lar route of the museum.

Then, we have conducted the model checking again us-
ing the revised Kripke structure M, φ1, φ2 and φ3. Finally,
we have confirmed that all of ∀π.(M, π |= φ1), ∀π.(M, π |=
φ2) and ∀π.(M, π |= φ3) are satisfied. If all of these LTL for-
mulae are satisfied, this museum meets all of requirements
defined by the designer of this museum. Of course, the de-
signer can try other properties within range of LTL, using a

1180
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

Fig. 12 Example of museum containing multiple rooms

Table 1 Number of graph walk patterns of museum example

of Steps # of Patterns # of Steps # of Patterns
1 2 11 66,332
2 8 12 182,300
3 20 13 495,900
4 60 14 1,359,132
5 156 15 3,704,604
6 444 16 10,138,396
7 1,180 17 27,664,156
8 3,292 18 75,648,796
9 8,860 19 206,538,524

10 24,476 20 564,549,404

Remark: These results are the case of Fig. 7. In the revised case (Fig. 11),
the number of graph walk patterns will be decreased.

combination of two kind of atomic propositions.
In this case study, we show that our method actually

helps designers of applications to find exceptions of the
design of applications and to debug these exceptions us-
ing counterexamples provided by model checking verifiers
through trial and error. Using our method, we can discuss
the property such as the validity and the safety of appli-
cations consisting of mutually related multiple federations
among SOs without exhaustive hand simulation. As we
mentioned in previous section, model checking problems of
Kripke structure with finite states can be reduced to a graph
search. If we conduct this graph search on the this example
by hand, we must test very large number of patterns of user’s
walk. Table 1 indicates the number of 1–20 steps graph walk
patterns starting from segment s1. For example, to detect the
counterexample πc3 which has 9 steps by hand, we must con-
duct the exhaustive test from 1 step to 9 steps cases to make
sure whether φ3 are satisfied or not. In this case, we must
check 14,022 patterns of user’s walk. This is very expen-
sive. It is important to reduce to a model checking problem
which is able to be solved by various implementations of
model checking verifiers. Formal approaches such as this
kind of verification liberates the designers from conducting
exhaustive checking. Formal approaches such as this kind of
verification is also important because it can avoid specifica-
tions errors of ubiquitous computing applications in advance
of actual implementations of these applications, which may
incur additional costs.

Table 2 Results of the scalability experiment

n |O| |C| |S | |S| CPU Time MEM. Usage
1 4 4 6 30 0.01 s 13.81 MB
2 5 6 11 165 0.04 s 16.50 MB
3 6 8 16 832 0.41 s 48.46 MB
4 7 10 21 4,263 8.69 s 656.75 MB
5 8 12 26 22,802 273.56 s 13,088.76 MB
6 9 14 31 128,340 N/A MEM. Out

Remark: “MEM. Out” means that we abort the calculation due to the lack
of memory space.

6. Scalability of Our Method

We evaluated the scalability of our method. To evaluate, we
used a generalized example of the museum such as Fig. 12.
In this example, there are n rooms and each room i has a
exhibit d(i) and we defined reactions to provide an explana-
tion of exhibit d(i) to the user in corresponding room i. Di-
rected edges (s(i)

6 , s
(i+1)
2) and (s(i+1)

6 , s(i)
2) of the segment graph

represent stairs connected between room i and room i + 1.
We verified this example through the cases from n = 1 to
n = 6. We set properties of these cases by a LTL formula
G(locOMOB (s(1)

1) → F(locOMOB (s(n)
4) → fed({a, b, d(n)})). This

formula means that if the user once enters the museum, the
exhibit explanation of the highest floor is always provided
to the user.

We conducted an experiment by using a Core i7
3820QM machine with 16GB memory. In this experiment,
we use NuSMV2 version 2.6.0 as a model checking verifier.
Table 2 indicates the experiment results of these cases. The
left-hand side and the right-hand side of this table indicate
the size of model checking problems and the cost needed for
solving them by NuSMV2 respectively. The more the num-
ber of rooms, the more cost needed for solving increases
exponentially. This is because of the size of |OF | which is
defined by a power set of O. But note that, as we mentioned
in Sect. 1, if we consider this kind of verification problem by
using original catalytic reaction model, we would be forced
to consider 2n states of n SOs’ proximity relations on each
segment. In that situation, the state space would be exploded
more rapidly and exponentially and we would not be able to

MINODA and MINATO: VERIFYING SCENARIOS OF PROXIMITY-BASED FEDERATIONS AMONG SMART OBJECTS THROUGH MODEL CHECKING
1181

verify even a small case such as shown in Table 2 in realistic
time. For this reason, our framework is important as the first
step of the formularization to verify scenarios of federations
of SOs.

7. Conclusion and Future Work

In this paper, we proposed a verification method of applica-
tions which is described by a CCRN using model checking.
Using our framework, various properties of application sce-
narios of ubiquitous computing can be discussed by logic
such as LTL. Our framework actually helps the designers
to debug ubiquitous computing application scenarios. With
our framework, the cost of detecting any counterexamples
is much reduced compared to hand simulation. We have
considered the case of a single user and we believe this is
enough to verify the connectivity of mutual related multiple
federations among SOs. These contributions are important
as the first step of the formularization to verify ubiquitous
computing scenarios. We assumed that the designers has al-
ready understood the notion of a catalytic reaction network.
But we need to develop more designer-friendly tools such
as graphical user interfaces to generate a CCRN in future
work. To consider more practical situations, there are two
challenges. First, we will also consider the case of multi-
ple users. Namely, more than one user move around, car-
rying SOs simultaneously. This will enable us to consider
more complex applications of ubiquitous computing. An-
other challenge is about the scalability of our framework.
We will consider the efficient way of representing all possi-
ble states of given CCRN by introducing techniques such as
symbolic approaches instead of the naive approach.

Acknowledgements

We would like to thank Prof. Yuzuru Tanaka for advice on
our work. This work was partly supported by JSPS KAK-
ENHI (S) Grant Number 15H05711.

References

[1] R. Minoda, Y. Tanaka, and S. Minato, “Verifying Scenarios of
Proximity-based Federation among Smart Objects through Model
Checking,” Proc. Tenth Intl. Conf. on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies, pp.65–71, 2016.

[2] M. Weiser, “The Computer for the 21st Century,” Scientific Ameri-
can, vol.265, no.3, pp.94–104, Sept. 1991.

[3] Y. Tanaka, “Proximity-based federation of smart objects: liberat-
ing ubiquitous computing from stereotyped application scenarios,”
Knowledge-Based and Intelligent Information and Engineering Sys-
tems, vol.6276, pp.14–30, Springer, 2010.

[4] R. Milner, “Theories for the global ubiquitous computer,” Founda-
tions of Software Science and Computation Structures, vol.2987,
pp.5–11, Springer, 2004.

[5] J. Julia and Y. Tanaka, “Proximity-based federation of smart ob-
jects,” Journal of Intelligent Information Systems, vol.46, no.1,
pp.147–178, Feb. 2016.

[6] R. Alur and D.L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol.126, no.2, pp.183–235, April 1994.

[7] R. Drechsler and U. Kühne, eds., Formal Modeling and Verifica-
tion of Cyber-Physical Systems, Springer Fachmedien Wiesbaden,
Wiesbaden, 2015.

[8] C. Xu and S.C. Cheung, “Inconsistency Detection and Resolution
for Context-aware Middleware Support,” Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp.336–345, 2005.

[9] S. Kauffman, Investigations, Oxford University Press, Oxford New
York, 2002.

[10] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill, “Sequen-
tial circuit verification using symbolic model checking,” Proceed-
ings of the 27th ACM/IEEE Design Automation Conference, DAC
’90, New York, NY, USA, pp.46–51, ACM, 1990.

[11] J.C. Mitchell, V. Shmatikov, and U. Stern, “Finite-state Analysis
of SSL 3.0,” Proceedings of the 7th Conference on USENIX Secu-
rity Symposium - Volume 7, SSYM’98, Berkeley, CA, USA, p.16,
USENIX Association, 1998.

[12] S.A. Kripke, “Semantical Analysis of Modal Logic I Normal Modal
Propositional Calculi,” Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, vol.9, no.5-6, pp.67–96, 1963.

[13] A. Pnueli, “The temporal logic of programs,” 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977), pp.46–57,
1977.

[14] G. Holzmann, “The model checker SPIN,” IEEE Trans. Softw. Eng.,
vol.23, no.5, pp.279–295, May 1997.

[15] J. Magee and J. Kramer, Concurrency State Models and Java Pro-
grams, John Wiley & Sons, New York, USA, 1999.

[16] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M.
Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” Computer Aided Verification,
vol.2404, pp.359–364, 2002.

[17] R. Cavada, A. Cimatti, C.A. Jochim, G. Keighren, E. Olivetti, M.
Pistore, M. Roveri, and A. Tchaltsev, “NuSMV 2.6 User Manual,”
FBK-irst, http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf, ac-
cessed Dec. 14. 2016.

Reona Minoda received B.E. and M.S.
degrees in Information Science from Hokkaido
University in 2010 and 2012, respectively. He
joined JST ERATO MINATO Discrete Structure
Manipulation System Project as a research assis-
tant from 2014 to 2016. He has been a research
assistant at JSPS KAKENHI (S) Discrete Struc-
ture Manipulation System Project since 2016.
He is a student member of IEICE.

Shin-ichi Minato received the B.E., M.E.
and D.E. degrees in Information Science from
Kyoto University in 1988, 1990, and 1995, re-
spectively. He worked for NTT Laboratories
from 1990 until 2004. He was a Visiting Scholar
at the Computer Science Department of Stan-
ford University in 1997. He joined Hokkaido
University as an Associate Professor in 2004,
and has been a Professor since October 2010.
He also serves a Visiting Professor at National
Institute of Informatics from 2015. He served a

Research Director of JST ERATO MINATO Discrete Structure Manipula-
tion System Project from 2009 to 2016, and now he is leading JSPS KAK-
ENHI (S) Project until 2020. He is a senior member of IEICE, a senior
member of IPSJ, and a member of IEEE and JSAI.

http://dx.doi.org/10.1038/scientificamerican0991-94
http://dx.doi.org/10.1007/978-3-642-15387-7_6
http://dx.doi.org/10.1007/978-3-540-24727-2_2
http://dx.doi.org/10.1007/s10844-015-0357-4
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-658-09994-7
http://dx.doi.org/10.1145/1081706.1081759
http://dx.doi.org/10.1145/123186.123223
http://dx.doi.org/10.1002/malq.19630090502
http://dx.doi.org/10.1109/sfcs.1977.32
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/3-540-45657-0_29

