
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
1703

PAPER Special Section on Information and Communication System Security

APPraiser: A Large Scale Analysis of Android Clone Apps∗

Yuta ISHII†a), Takuya WATANABE††b), Nonmembers, Mitsuaki AKIYAMA††c), and Tatsuya MORI†d), Members

SUMMARY Android is one of the most popular mobile device plat-
forms. However, since Android apps can be disassembled easily, attack-
ers inject additional advertisements or malicious codes to the original apps
and redistribute them. There are a non-negligible number of such repack-
aged apps. We generally call those malicious repackaged apps “clones.”
However, there are apps that are not clones but are similar to each other.
We call such apps “relatives.” In this work, we developed a framework
called APPraiser that extracts similar apps and classifies them into clones
and relatives from the large dataset. We used the APPraiser framework
to study over 1.3 million apps collected from both official and third-party
marketplaces. Our extensive analysis revealed the following findings: In
the official marketplace, 79% of similar apps were attributed to relatives,
while in the third-party marketplace, 50% of similar apps were attributed to
clones. The majority of relatives are apps developed by prolific developers
in both marketplaces. We also found that in the third-party market, of the
clones that were originally published in the official market, 76% of them
are malware.
key words: mobile security, Android, repackaging, large-scale data

1. Introduction

Android is an open-source operating system used for mo-
bile devices such as smartphones. Android is one of the
most popular mobile device platforms widely used in the
world. Worldwide shipments of Android smartphones ex-
ceeded 1 billion units in 2014 [2]. The number of Android
apps available on Google play has exceeded 2.3 million, as
of August, 2016 [3]. Of the millions of Android apps that
can work on a billion smartphones, it is known that a non-
negligible number of apps were replicated from the origi-
nal apps. For instance, through the analysis of 23K apps
collected from six different third-party marketplaces, Zhou
et al. [4] reported that 5 to 13% of apps hosted on third-
party marketplaces were repackaged. They also reported
in Ref. [5] that “piggybacked apps,” which added malicious
payloads to legitimate apps, accounted for 0.97% to 2.7%

Manuscript received September 7, 2016.
Manuscript revised January 29, 2017.
Manuscript publicized May 18, 2017.
†The authors are with the Dept. of Communication Engineer-

ing, Waseda University, Tokyo, 169–8555 Japan.
††The authors are with the NTT Secure Platform Laboratories,

Musashino-shi, 180–8585 Japan.
∗An earlier version of this paper was presented at 2nd ACM In-

ternational Workshop on Security And Privacy Analytics 2016 [1].
The authors will clear the copyright transfer issues before the pub-
lication in case the paper is accepted for publication.

a) E-mail: yuta@nsl.cs.waseda.ac.jp
b) E-mail: watanabe.takuya@lab.ntt.co.jp
c) E-mail: akiyamam@acm.org
d) E-mail: mori@nsl.cs.waseda.ac.jp

DOI: 10.1587/transinf.2016ICP0012

of 5K apps they collected. In this work, we generally call
those repackaged apps “clones.” The high number of clones
stems from the fact that repackaging an Android is not a hard
task. In fact, there are several tools that can systematically
repackage apps [6].

As previous studies have revealed [4], [5], many of the
clones are created for malicious purposes, e.g., inserting ad-
vertising modules that were not present in the original ver-
sion, replacing accounts used for ad libraries, and/or insert-
ing a malicious code that steals privacy-sensitive informa-
tion. While these clones add malicious payloads to the orig-
inal apps, there is another class of clones — pirated apps
— that illegally repackage/crack paid apps. The existence
of these clones is harmful not only for end users but also
for many other stakeholders such as app developers, copy-
right holders, and marketplace providers. Besides clones,
there are apps that are not clones but are unintentionally
similar to each other, i.e., they have mostly similar appear-
ances and behaviors. As we shall present in this paper, such
similar apps originate from two categories: apps generated
with app building frameworks/services and apps developed
by the same developer, possibly with a fixed template. In
this work, we generally call those unintentionally similar
apps “relatives.”

Both clones and relatives are the apps that are simi-
lar in nature to other apps. However, we need to distin-
guish between clones and relatives because the former apps
are harmful and should be removed from the marketplace.
Given this background, this paper aims to answer the fol-
lowing two research questions through the analysis of An-
droid apps:

RQ1: How can we distinguish between clones and rela-
tives?
RQ2: What is the breakdown of clones and relatives in the
official and third-party marketplaces?

As a solution to the first research question, we developed
a light-weight framework called APPraiser that automati-
cally extracts similar apps and classifies them into clones,
relatives, and other sub-categories. The key idea of the
APPraiser framework is to adopt a three-stage strategy; it
first extracts similar apps using the appearance analysis.
It then extracts relatives by using several intrinsic finger-
prints, such as developer identities and application package
names. Finally, it classifies clones using the code differ-
ence analysis and antivirus checkers. To address the sec-
ond research questions, we use the APPraiser framework

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

1704
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

to study over 1.3 million apps collected from both official
and third-party marketplaces. Analyzing apps published on
two different types of markets enabled us to perform intra
and inter-market analyses of clones and relatives. We stress
that although our approach has some limitations, which will
be discussed in Sect. 7, good scalability of the APPraiser
framework has enabled us to perform the analysis on a mil-
lion apps; thus, we can understand the entire picture of
clones disseminated in the wild.

Our extensive analysis revealed the following findings:
In the official marketplace, 79% of similar apps were at-
tributed to relatives while, in the third-party marketplace,
50% of similar apps were attributed to clones. The majority
of relatives are apps developed by prolific developers in both
marketplaces. We also found that in the third-party market,
of the clones that were originally published in the official
market, 76% are malware.

The rest of this paper is organized as follows. Sec-
tion 2 presents an overview of the APPraiser framework.
Sections 3, 4, and 5 describe the methodologies to extract
similar apps, relatives, and clones, respectively. Section 6
presents key findings we obtained through the analysis of
our dataset with the APPraiser framework. Section 7 dis-
cusses the limitations of the APPraiser framework and fu-
ture research directions. We also discussed the possible
countermeasures against malicious clones. Section 8 sum-
marizes the related work. We conclude our work in Sect. 9.

2. Overview of the APPraiser Framework

In this section, we describe the goal and present an overview
of the APPraiser framework. The goal of the APPraiser is
to extract clones and relatives from a given set of apps. The
key challenge here is to cope with a huge number of apps in
a scalable manner. To meet this, the APPraiser adopts the
three-stage strategy we describe below.

Figure 1 depicts the high-level overview of the AP-
Praiser framework. In the first stage, the APPraiser frame-
work extracts similar apps, using the appearance analysis,
which will be described in Sect. 3. The extracted similar
apps are clustered according to the similarity measure. For
each cluster, the APPraiser framework identifies the origin
app by checking the metadata of the apps, e.g., the ID num-

Fig. 1 High-level overview of the APPraiser framework.

ber in the market, the number of downloads or published
date, etc. In the second stage, the APPraiser framework
extracts relatives, which are composed of two categories;
mass-production and auto-built (the apps generated by a
prolific developer and the apps generated with app-building
frameworks/services, respectively). The details of extract-
ing relatives and the two categories will be given in Sect. 4.
In the third stage, the APPraiser framework extracts and
classifies clones, which are composed of four categories;
malware, adware, suspicious apps, and ad-injected apps. To
this end, we adopt antivirus checkers and code difference
analysis. The details of extracting relatives will be given
in Sect. 5. We also discuss the breakdown of the remaining
apps, i.e., “other similar apps” in Fig. 1.

3. Extraction of Similar Apps

In this section, we describe how the APPraiser framework
extracts similar apps. The key idea is to measure the dif-
ferences between two apps by examining their appearances.
The reason why we adopt appearance as a measure to extract
similar apps comes from the following observation. When
an app is intentionally cloned, its appearance is likely un-
changed. For instance, because the objective of creating ma-
licious clones is to attract end users by pretending to be an
authentic one, there is no reason to change its appearance.
For relatives, we empirically found that a majority of apps
have similar resources except for the superficial appearance
such as the name of apps or app icons. Thus, we can as-
sume that most similar apps have the similar appearances to
the originals. In fact, several studies such as Ref. [7] and
Ref. [8] adopted resource files in detecting similar apps. We
note that while these studies used the same approach in de-
tecting similar apps, they did not consider the difference be-
tween clones and relatives.

In the followings, we first describe the methodologies
we used to extract information from Android app files. Next,
we present the appearance analysis that extracts similar apps
from a large number of apps. We also present how we ag-
gregate the extracted similar apps into clusters.

3.1 Processing APK Files

An Android app is packaged with a format called APK.
An APK file is an archive that consists of developer cer-
tificate, manifest file, DEX file, and resource/asset files. De-
veloper certificate can be used to extract information about
the developer of an app. The Manifest file consists of
essential information about an app. For instance, it de-
clares permissions to access resources. By carefully ana-
lyzing the Manifest file, we can check which permissions
are added/removed from an original app. The DEX file con-
sists of Dalvik bytecode where Dalvik is a virtual machine
that executes applications on Android OS. The DEX format
file can be disassembled by using a tool such as smali [9].
Again, by carefully analyzing smali code, we can check
which API functions are added/removed from an original

ISHII et al.: APPRAISER: A LARGE SCALE ANALYSIS OF ANDROID CLONE APPS
1705

app. The resource file and asset file are used to control the
appearance of an app. These consist of XML files that de-
fine the layout of the screen, image files, sound files, and
etc. The way we use all this information will be described
below.

3.2 Appearance Analysis

In the following, we present the procedure of extracting sim-
ilar apps using the resource files. We first compute the MD5
digest for each resource file. In this work, we consider the
files in assets and lib folders also as the resource files. We
then apply the DF-thresholding technique, which is widely
used for text classification tasks [10]. By applying it, we
eliminate very popular resources that appear in a majority
of the apps. These resources are too generic to measure
the similarity between apps. Specifically, we introduced a
threshold, K, and eliminated the top-K resources. We em-
pirically derived the threshold as K = 100, 000, which ac-
counted for roughly 0.1% of all resources.

We now compute the appearance similarity between
two apps by using the Jaccard index, which is a metrics used
for computing the similarity of given two sets. Let a set of
hash digests of an app x be R(x). For apps a and b, the
Jaccard index of the two apps is computed as:

J(a, b) =
| R(a) ∩ R(b) |
| R(a) ∪ R(b) |

The Jaccard index takes a range between 0 and 1. If there
are no common resource files between two apps, the Jac-
card index becomes zero. If entire resource files are com-
mon between two apps, their Jaccard index becomes one. In
extracting resource files, we made use of a tool called An-
droguard [11].

Figure 2 shows the relationship between the computed
Jaccard index for all pairs and cumulative fractions of pairs.
Note that the number of all pairs is N(N − 1)/2, which is
much larger than the number of actually similar apps. We
can see that the majority of the pairs have a Jaccard index
that is close to zero. In fact, more than 99.98% of pairs
had a Jaccard index of zero. We will efficiently leverage the
sparseness in computing similarities between app pairs.

As a threshold to determine the similarity between two
apps, we empirically adopt 0.8; i.e., if J(a, b) for a given pair
of apps is a and b, we extract these two apps as similar apps.
We note that the threshold is not so sensitive to our findings,
i.e., other thresholds such as 0.7 and 0.9 did not affect our
findings.

3.3 Fast Algorithm to Compute the Jaccard Index for All
Pairs

A naive approach to extract similar apps is to compute the
Jaccard index for pairwise combinations of all apps. Clearly,
such approach is not scalable because its time complexity is
O(N2), where N ≈ 1.3 × 106 for our dataset. We leverage
the fact that data has sparseness; i.e., many of the pairs do

Fig. 2 Jaccard index vs. cumulative fractions of app pairs.

Algorithm 1: An algorithm to compute Jaccard in-
dex for all pairs in a set of applications, A.
1 c(x, y) = 0 /* a counter of a tuple (x, y) */
2 S = ∅ /* a set to check entrance */

3 T = ∅ /* will be used in Algorithm 2 */

4 U = ∅ /* will be used in Algorithm 2 */

5 for ∀a ∈ A do
6 for ∀r ∈ R(a) do
7 for ∀b ∈ I(r) do
8 c(a, b)← c(a, b) + 1
9 if (a, b) � S then

10 add (a, b) into S

11 for (a, b) ∈ S do
12 J(a, b) = c(a, b)/ (|R(a)| + |R(b)| − c(a, b))
13 if J(a, b) ≥ 0.8 then
14 if (a, b) � T then
15 add (a, b) into T

16 if a � U then
17 add a into U

18 if b � U then
19 add b into U

not have common resources, and the Jaccard index is zero
for such pairs. We denote a set of all applications A. Let
I(r) denote a set of applications that have a resource, r. An
algorithm that computes the Jaccard index for all pairs is
shown in Algorithm 1. Note that if (a, b) � S , the Jaccard
index is J(a, b) = 0.

Now, we turn our attention to the time complexity of
the algorithm. The algorithm has the time complexity of
O(|A|〈R〉〈I〉) = O(n〈R〉〈I〉), where 〈R〉 is the expected value
of |R(a)| and 〈I〉 is the expected value of |I(r)|, respec-
tively. They can be computed as 〈R〉 = 1

|A|
∑

a∈A |R(a)|and

〈I〉 = 1
|R|
∑

r∈R |I(r)|,where R is a set of all resource files. In
theory, the worst case time complexity is O(n2〈R〉), where
|I(r)| = n for all r, which implies that all the apps are iden-
tical. Clearly, such assumption is unrealistic. In practice,
thanks to the sparseness of the data, in most cases, |I(r)| = 1.

1706
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Algorithm 2: A greedy clustering algorithm.
1 G(x) = ∅ /* a set of items in cluster x */
2 while U � ∅ do
3 x = random(U)
4 for ∀y such that (x, y) ∈ T do
5 add y into G(x)
6 remove y from U

7 remove x from U

In fact, in the case of our dataset with n = O(106), the ex-
pected value was 〈I〉 = 1.72. Note that we have already
eliminated the top-K resources as described in Sect. 3.2. In
addition, the average number of resource files for the APK
was 〈R〉 = 140.2, which is not directly associated with n.
Thus, our algorithm works with the time complexity of O(n)
in practice if it is applied to data with sparse structure.

3.4 Clustering Similar Apps and Identifying the Origin
App in a Cluster

Using the greedy clustering algorithm shown in Algo-
rithm 2, which is equivalent to the special case of the DB-
SCAN algorithm [12], we aggregate apps into clusters. We
note that the obtained clusters are not always optimized.
This comes from the fact that the DBSCAN algorithm is not
deterministic, i.e., the clustering result can depend on the
order of the samples. However, through several trials using
different random seeds, we empirically validated that the ob-
tained results are not sensitive to our key findings. Because
our objective was to study the origins of similar apps in the
wild, we decided to choose the better scalability rather than
the better accuracy. We further discuss the issue in Sect. 7.

Finally, for each cluster G(x), we identify an original
app with the following criteria: For the official market, we
consider that an app is original if it has the maximum num-
ber of downloads among the apps in a cluster. For the third-
party market, we make use of the ID of apps as a heuristic
to that market. Since ID’s are sequentially incremented, in
the group of similar apps, the app with the least ID is likely
to be an original app. We note that these approaches could
fail if the actual original app is missing in our data, i.e., all
the apps in a cluster could be all relatives or clones.

4. Extraction of Relatives

This section describes how the APPraiser framework ex-
tracts relative apps. The key idea is to apply fingerprints
that indicate apps are generated by a prolific, identical de-
veloper or generated with an application generation frame-
work/service. It is natural that apps developed by the same
person are not clones in our context. We consider clones
to be apps that are developed by an outsider who is not as-
sociated with the author of the original app(s). In the fol-
lowing, we present the details of each category and how the
APPraiser framework extracts them.

4.1 Mass-Produced Apps

It has been reported that there are a few prolific develop-
ers who publish a large number of apps [13]. We observed
that apps published by such developers tend to be similar
to each other. Although this is not conclusive, we conjec-
ture that such prolific developers need to use the same tem-
plate, which includes common resources, to publish a large
number of apps in a short period of time. Also, outsourc-
ing companies that develop Android apps may use the same
template or even develop their own app-developing frame-
work to generate apps quickly. Use of the same template
or the same app-developing framework may introduce some
similarity between the apps developed. Let us call such apps
mass-produced apps.

Information about a developer can be obtained from
two channels: developer certificate and developer name. A
developer certificate can be extracted from an APK file. The
format of a digital certificate is X.509 v3. We extract a
public key from the given certificate and use it as a fin-
gerprint. We note that a developer may use different pairs
of secret/public keys for signing certificates. To cope with
such a case, we relax the condition; we extract key features
of a subject from the given certificate. Namely, we generate
a tuple, organization name (O) and locality (L), and use it
as a fingerprint. Furthermore, developers in an organization
such as an app developing company may use distinct certifi-
cates that are not associated with each other. To cope with
such a case, we further relax the condition; we use a devel-
oper name, which can be extracted from the app’s metadata
published on a marketplace.

In summary, to extract mass-produced apps, we obtain
a certificate and developer name for each app. Next, if there
are; at least, two apps that have exactly the same public keys,
same subjects of certificates, or developer names, we extract
the apps as mass-produced.

4.2 Auto-Built Apps

There are several cloud-based app building services such
as iBuild App [14] or Bizness Apps [15]. These services
provide an intuitive web interface and enable a developer
to generate a multi-platform app without writing codes for
it. In this work, we call apps developed with such ser-
vices Auto-built apps. It is known that Auto-built apps tend
to unnecessarily install many permissions, and put callable
APIs for the permissions into the codes [13]. Auto-built apps
also tend to be shipped with common resources even though
many of them are not used. Thus, resources and code of
Auto-built apps resemble each other even though they are
independently developed by different developers.

By analyzing the frequencies of package names of
apps, we were able to compile a list of such services. Ta-
ble 1 lists the compiled services and the corresponding fin-
gerprints that are derived from intrinsic keywords included
in the package names. Using Table 1, we can extract Auto-

ISHII et al.: APPRAISER: A LARGE SCALE ANALYSIS OF ANDROID CLONE APPS
1707

Table 1 A list of app building services and their fingerprints.

App building service fingerprint
Andromo andromo
Appery.io appery
appexpress appexpress
AppMachine artistapp
Apps Bar appsbar
AppsBuilder appsbuilder
Appy Pie appypie
Bizness Apps app ***.layout
como .conduit.
GoodBarber goodbarber
iBuild APP appbuilder
MIT App Inventor appinventor
ReverbNation reverbnation
vBulletin Mobile Suite vbulletin

build apps. We note that this approach clearly has a lim-
itation, i.e. if an app building service provides arbitrary
package names, this approach fails. Although the approach
seems to work well for the current popular services, we
might need to address such cases in the future. We envi-
sion that app building services should leave some form of
footprints in their artifacts.

5. Extraction/Classification of Clones

This section describes how the APPraiser framework ex-
tracts clones from the remaining similar apps and classi-
fies them into four categories: malware, adware, suspicious
apps, and ad-injected apps. Note that because our dataset is
composed of only free apps, we cannot extract another type
of clone — a pirated app that cracked an original paid app.

5.1 Extraction of Malware and Adware

We first extract two categories of malicious clones, malware
and adware. Our assumption is as follows: If an app B is
likely repackaged from a legitimate original app A and the
app B is detected as malware/adware, we consider that the
app B is a malicious clone of app A. On the basis of this
assumption, we first check whether a given similar app is
malware or adware. We note that we detect malware/adware
clones only if their origin app is legitimate; i.e., the origin
app was not classified as malware/adware.

Because the aim of this work is not to propose a
new method that detects new malware/adware, we adopt a
straightforward approach to extract them. We apply Virus-
Total [16], which is an online antivirus service composed of
more than 60 different commercial antivirus checkers. All
the remaining similar apps are applied to the VirusTotal. For
a given app, if at least one of the antivirus checkers detects
the app as malware, we consider that the app is a malicious
clone (malware). If an app is not detected as malware, and at
least one of the antivirus checkers detect the app as adware,
we consider that the app is a malicious clone (adware).

We note that VirusTotal may introduce detection errors.
In addition, we cannot prove that detected malware and ad-

Table 2 List of dangerous permissions.

Permissions

ACCESS FINE LOCATION SEND SMS
ACCESS COARSE LOCATION READ SMS
ACCESS LOCATION EXTRA COMMANDS RECEIVE SMS
READ LOGS WRITE MEDIA STORAGE
INSTALL SHORTCUT RESTART PACKAGES
SYSTEM ALERT WINDOW INSTALL PACKAGES
SYSTEM OVERLAY WINDOW ACCESS WIFI STATE
RECEIVE BOOT COMPLETED DISABLE KEYGUARD
CHANGE NETWORK STATE READ CONTACTS
DOWNLOAD WITHOUT NOTIFICATION READ PHONE STATE
MOUNT UNMOUNT FILESYSTEMS

ware apps are actually repackaged from the original ones.
However, our manual inspection using randomly sampled
apps validated the accuracy of the approach. Therefore, we
believe that potential errors due to some limitations, which
are made to achieve high scalability, may not affect the over-
all findings we derived from the analysis. Furthermore, we
introduce the following two categories that can catch poten-
tial malware/adware that could be missed by VirusTotal.

5.2 Extraction of Suspicious Apps/ad-Injected Apps

We extracted two categories, suspicious apps and ad-
injected apps, which are aimed at covering malware and
adware that are not detected by antivirus checkers. After
employing VirusTotal, we perform the static code analy-
sis. The APPraiser framework extracts and analyzes the
following features, i.e., permissions, API calls associated
with privacy-sensitive permissions, and FQDN used for ad-
libraries. These features are extracted from the Manifest file
or disassembled DEX file. We then check the differences of
features between the two given apps, A and B, which repre-
sent origin and the app similar to the origin, respectively.

Table 2 lists the dangerous permissions, which could
be added to an app A. If an app B adds; at least, one of the
permissions listed in Table 2 and the added permission was
not present in the app A, we consider that the B is suspicious.
We also check API’s. If an app B adds; at least, one of the
API’s associated with the permissions listed in Table 2 and
the added API function was not present in the app A, then
the app B is considered as suspicious. Here, we made use
of the API calls for permission mappings extracted by a tool
called PScout [17], which was developed by Au et al. [18].
To check the existence of API’s, we checked whether a set
of API’s is included in the disassembled code of an APK
file.

Similarly, we checked whether the app B added a new
FQDN associated with an ad library. Let’s denote such
FQDN as ad-FQDN. The key idea of our approach was to
make use of a list of ad-FQDNs that were compiled to block
network communications invoked by ad libraries. We first
collected such list of ad-FQDNs from popular ad-block sites
such as AdAway [19]. We then pruned FQDNs that were
clearly wrong records, such as schema.android.com. In
total, the number of ad-FQDNs we compiled was 1, 027. Fi-
nally, we explored disassembled codes of apps and checked
ad-FQDNs. If the app B added at least one ad-FQDN, which

1708
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 3 Summary of Android apps used for this work.

marketplace # of APK files Data collection periods

Google Play 1,296,537 Oct 2014
Anzhi 74,185 Nov 2013 – Apr 2014

Total 1,370,722 –

was not present in the app A, the app B was considered as
ad-injected.

6. Analysis

In this section, we present our key findings through the anal-
ysis of a huge number of Android apps in the wild. We first
illustrate the data we used for our analysis. Next, we try to
answer RQ2 by applying the APPraiser framework to the
entire data set. Finally, we demonstrate the validity of our
methodology using randomly sampled APK files.

6.1 Data

We collected Android apps from the official market-
place [20] and third-party marketplaces [21]. Both of these
marketplaces have huge user bases. Note that these were all
free apps. Although we might see some disparity between
free and paid apps, we leave this issue open for future re-
search. For Android apps published on official markets, in
particular, we made use of the data presented in Ref. [8].
Since the original dataset included versions of an app, we
adopt only the latest version for a given app. We also elimi-
nate apps that are likely corrupted for some reason.

Using the data, we can study the qualitative differences
between the two types of marketplaces, the official market
and the third-party market. It has been reported that the offi-
cial marketplace has installed special defense mechanisms
called Bouncer [22]. Therefore, as previous studies have
reported, the official market tends to have fewer numbers
of malicious apps, as compared to those in third-party mar-
kets [4]. It is noteworthy that in China, a country with the
highest population, the official Google Play market has been
unavailable. Therefore, people who hope to enjoy popular
apps published in Google Play may have an incentive to im-
port the clones into a third-party market. In fact, as Zhou et
al. [4] reported, 5 to 13% of apps hosted on third-party mar-
kets were repackaged. In this work, we will study the differ-
ences between two types of markets with a lens of similar
apps.

6.2 Classification of Apps and Their Properties

As an answer to RQ2, we now present the results of extrac-
tion/classification of apps, using the APPraiser framework.
First, Table 4 shows the numbers/fractions of detected sim-
ilar apps in each market. As we expect, the fraction of the
similar apps is much higher in the third-party market; this
observation generally agrees with the previous reports. We
note that even in the official market, non-negligible numbers

Table 4 Numbers/fractions of detected similar apps.

Google Play Anzhi

Similar apps 78,919 (6.1%) 19,206 (25.9%)

Table 5 Breakdown of similar apps.

Google Play Anzhi

relatives 62,164 (78.8%) 8,121 (42.3%)
clones 6,076 (7.7%) 9,545 (49.7%)

unknown 10,679 (13.5%) 1,540 (8.0%)

Table 6 Breakdown of relatives.

Google Play Anzhi

Mass-produced 55,722 (89.6%) 8,121 (100.0%)
Auto-built 6,442 (10.4%) 0 (0.0%)

Fig. 3 Breakdown of the clones.

of apps are categorized into similar apps.
Next, Table 5 shows the breakdown of the detected

similar apps. We first notice that the fraction of relatives is
significantly high in Google Play. The result indicates that
most of the similar apps detected with the resource-based
approach are attributed to relatives but not clones, which
should require more attention. Our framework, APPraiser,
enabled us to distinguish the two categories systematically.
We also notice that the fraction of clones in Anzhi is much
higher than that in Google Play. Again, the observation gen-
erally agrees with the previous reports. The further break-
downs of these categories will be presented later in the pa-
per.

Table 6 shows the breakdown of relatives. Clearly,
the majority of relatives is attributed to mass-produced; i.e.,
prolific developers tend to publish many similar apps, pos-
sibly using the same template. In this work, we were not
able to find popular app-building services for the third-party
market. As a result, the number of auto-built apps in the
third-party market was zero. We need to come up with
other heuristics to detect app-building services popular in
the third-party marketplace. We leave the issue for our fu-
ture study.

Figure 3 shows the breakdown of clones, where we
excluded the origin apps. As a cross-market analysis, we
consider the case where apps published in the official mar-

ISHII et al.: APPRAISER: A LARGE SCALE ANALYSIS OF ANDROID CLONE APPS
1709

Fig. 4 CDF of cluster size (Google Play).

ket were repackaged and published in the third-party mar-
ket. For the official marketplace, roughly half of the clones
were identified as ad-injected while the proportion of mal-
ware was around 20%. This may correlate to the exis-
tence of defense mechanisms, e.g., Bouncer, installed in the
official marketplace; in the official market, the proportion
of malware is lower than in the third-party marketplaces.
We can also observe that roughly 70% of clones were not
detected by commercial antivirus checkers; thus our code
analysis worked effectively in catching such potential mal-
ware/adware. We will present examples of those apps later.
For the third-party marketplace, roughly 60% of clones were
attributed to malware. Furthermore, for the cross-market,
roughly 80% of clones were attributed to malware. This im-
plies that the majority of malicious clones found in the third-
party market repackaged apps had been originally published
on the official market.

Figure 4 plots CDF of cluster size for Google Play.
While more than 50% of clusters consist of just two apps,
which is the minimum value to form a cluster, more than
10% of clusters consist of 10+ apps. We manually inspected
these large clusters and found that most of the apps in such
a large cluster are classified as relatives.

We studied which categories of apps were more likely
cloned. Figure 5 presents the distributions of apps per the
category defined in the official marketplace. We notice that
while the distributions are mostly similar among three types
of apps, all apps, similar apps, and clones, clones are more
likely repackaged from game apps. We conjecture that the
authors of clones tend to repackage popular apps. In fact,
among all apps, the game category was the most popular.
The results shown in Table 7 also support the conjecture.
That is, the average/median number of downloads for the
original apps that were cloned is higher than the total aver-
age/median. Note that on Google Play, the number of down-
loads is expressed with the discretized ranges; e.g., 0 ∼ 10,
10 ∼ 50, 50 ∼ 100, etc. Thus, clones tend to target more
popular apps, so that they can attract victims.

Fig. 5 Distributions of apps per category (Google Play).

Table 7 Mean and median of # downloads of origin apps.

mean median

All 37,439 50 ∼ 100
clones 364,329 10, 000 ∼ 50, 000

Table 8 Accuracies of clone detection.

clone category # of classified apps # of actual clone apps

malware 30 29
adware 30 25

suspicious 30 23
ad-injected 30 28

Total 120 106

6.3 Validity of Extracted/Classified Clones

While the classification accuracy of relatives should be high
because we use intrinsic signatures to detect them, we need
to validate the classification accuracy of clones. Since
there is no ground-truth database, we validate the accuracy
through a manual inspection, which includes in-depth static
analysis and dynamic analysis. Of the samples that were
classified as clones, we randomly picked up 30 samples for
each category of clones, i.e., malware, adware, suspicious,
and ad-injected. In total, we picked up 120 samples for val-
idation. We then checked whether the 120 samples were
actual clones by manual inspections. Table 8 summarizes
the results. As we see, the accuracies were generally good
over the categories. We further analyzed the falsely classi-
fied samples carefully and found that many of them should
have been classified as relatives. Such apps used common,
but minor UI frameworks that made them look similar in
their code bases. It is an another issue that we need to ad-
dress in our future work. Other than the small number of

1710
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Fig. 6 Screenshots: original apps (left) and clones (right).

errors, the classification of clones worked successfully. In
the following, we picked up typical samples for each cate-
gory and presented what we found through the manual in-
spection.
1) Malware: We show two samples here. The first exam-

ple, shown in Fig. 6 (a), is taken from a cross-market clone
(malware). It clearly adds a large advertisement window on
the initial screen of a game app. Furthermore, it asks to in-
stall an additional app. In the second example, shown in

Fig. 6 (b), the number of downloads for the original app was
10, 000 ∼ 50, 000 while that for the clone was 50 ∼ 100. As
shown in the screenshots, the clone app was unexpectedly
quit soon after it launched. Both the origin and the clone
were still available on the market as of July, 2015.
2) Adware: The example is shown in Fig. 6 (c). The clone

was repackaged from a puzzle game app. Although the
clone uses different icons and images, the structure of the
app was identical. The clone has been removed from the
marketplace.

3) Suspicious: The example is shown in Fig. 6 (d).
An app for exploring the constellations. Although its
appearance looks identical, the suspicious clone added
the following new permissions that were not present in
the origin app: ACCESS WIFI STATE, GET TASKS,
READ PHONE STATE, RECEIVE BOOT COMPLETED,
and WRITE EXTERNAL STORAGE. The clone also adds
several additional API’s such as getDeviceId(), and new ad-
ditional services, such as DownloadService and PushMes-
sageService. The clone has been removed from the market.
4) Ad-injected: The example shown in Fig. 6 (e). As shown
in the screenshots, advertisement modules that were not
present in the original version were added in the clone,
which was not detected as adware by antivirus checkers.
The clone has been removed from the market.

7. Discussion

In this section, we discuss several limitations of the AP-
Praiser framework. We also outline several future research
directions that can help extend our framework. First, to cope
with the high volume of data, we adopt a simple algorithm
to find similar apps. Therefore, the clusters generated by the
algorithm are not always optimized. In our future work, we
will try some scalable clustering algorithms and see whether
we see some difference. Second, because we limit our anal-
ysis on free apps, we were not able to find pirate apps that
cracked paid apps. To fully understand the problems of app
thefts and clones, we may need to shed lights on paid apps
as well. We leave the issue for future study. Finally, as we
have mentioned earlier, we adopted an approach of using
antivirus checkers to detect malware and adware. However,
the use of an antivirus checker is prone to detection errors.
Here, we note the cases where an antivirus checker is use-
ful in finding malicious clones, which are difficult to find
otherwise. In the third-party marketplace, we observed that
non-negligible numbers of malicious clones are encrypted
using a tool called SecAPK [23], which encrypts bytecode
to evade reverse engineering. In our dataset, all the apps en-
crypted with the SecAPK were detected as malicious with
VirusTotal. There are no clear reasons that a developer who
is not associated with the author of the original app repack-
aged an originally legitimate app using such an encryption
tool. Therefore, the detected apps encrypted with SecAPK
are likely malicious clones if they originate from a legiti-
mate app developed by another author.

ISHII et al.: APPRAISER: A LARGE SCALE ANALYSIS OF ANDROID CLONE APPS
1711

8. Related Work

There have been several studies that work on analyzing sim-
ilar Android apps. They are broadly classified into two
categories: code-based approaches and resource-based ap-
proaches. We present an overview of studies for each cate-
gory. We also discuss the differences between the previous
studies and ours.

8.1 Code-Based Approach

DroidMOSS [4] is a framework that detects repackaged
apps. The key idea was to make use of opcode in the disas-
sembled code. It uses the features derived from opcode to
detect repackaged apps by leveraging fuzzy hashing in cal-
culating the edit distance between apps. Since the analysis
requires pairwise computation, it has a time complexity of
O(n2). DNADroid [24] is a framework that detects cloned
apps. It makes use of program dependency graph (PDG)
to characterize an app. The framework compares PDGs be-
tween methods in a pair of apps. Again, since the analysis
requires pairwise computation, it has the time complexity
of O(n2). PiggyApp [5] is a framework that detects “pig-
gybacked app” which is a repackaged app that injects new
malicious code into the original app. The key idea of the
PiggyApp framework was to adopt a technique called mod-
ule decoupling, which partitions the app code into primary
and non-primary modules. They also proposed a scalable
approach that extracts semantic features from the decoupled
primary modules. The approach has the time complexity of
O(n log n).

In general, the computation cost of code-based ap-
proaches is high. For instance, although the time complexity
of PiggyApp is O(n log n) with respect to the number of apps
to be analyzed, module decoupling requires additional com-
putation costs in constructing PDG for each app. Due to the
high computation cost, the numbers of apps analyzed with
these approaches are limited; i.e. n = 68, 817 for Droid-
MOSS, n = 75, 000 for DNADroid, and n = 84, 767 for
PiggyApp. Another limitation of the code-based approach
is that it is difficult to cope with the obfuscated/encrypted
apps. Based on these observations, the resource-based ap-
proach has attracted attention because it can detect similar
apps at a low cost and is not affected with code obfusca-
tion/encryption. We will summarize such work in the next
subsection.

8.2 Recourse-Based Approach

Viennot et al. [8] developed a system called PlayDrone,
which efficiently crawls the official Google Play Store. Us-
ing roughly 1 million apps collected with PlayDrone, they
performed various analyses of Android apps, including the
analysis of similar apps. To this end, they used resources as
a feature to search apps that are similar to each other. They
revealed that roughly 25% of apps had duplicated content

for various reasons, such as application re-branding or ap-
plication cloning.

Yury et al. [7] proposed a framework called FSquaDRA,
which detects similar apps using resource information. They
aimed to speed up hash calculations of resources by lever-
aging the SHA1 digest of each file that was included in the
Manifest file. They evaluated the effectiveness of their ap-
proach using n = 55, 779 apps. The time complexity of the
algorithm was O(n2).

8.3 Key Differences between Past Studies and Ours

As we presented earlier, our framework APPraiser com-
bined both the code-based and resource-based approaches.
This idea enabled us to establish high scalability with
the resource-based approach and fast algorithm and fine-
grained analysis of similar apps with the code-based anal-
ysis. Our key algorithms, which leveraged sparseness of
the data, had the time complexity of O(n) and worked ef-
ficiently over n = 1, 370, 000 apps. Our new contributions,
which have not been established in [8], are as follows. First,
unlike Ref. [8], we categorized similar apps into two pri-
mary categories: relatives and clones, which are further sub-
categorized. The detailed classification enables us to clar-
ify the proper actions we need to take against similar apps.
For instance, while relative apps are likely legitimate, clones
include pirated apps, which should be eliminated from the
marketplace. Second, while Ref. [8] studied the official mar-
ketplace, we expanded the analysis to the third-party mar-
ketplaces. We employed the correlation analysis using the
apps collected from both types of marketplaces. This cross-
market analysis enabled us to understand the differences in
managing similar apps in the marketplace. We note that the
fraction of similar apps we discovered in the official market-
place was lower than the one shown in Ref. [8], i.e., 6.1% vs.
25%. We speculate that this is because we considered only
the latest version for each app, while the Playdrone dataset
comprises duplicated apps with different versions.

9. Conclusion

In this paper, we aimed to answer the following two research
questions: (RQ1) How can we distinguish between clones
and relatives? (RQ2) What is the breakdown of clones and
relatives in the official and third-party marketplaces? Our
solution to the first research question was achieved with
the APPraiser framework that systematically extracts sim-
ilar apps and classifies them into clones and relatives. The
key idea of the APPraiser framework was to adopt a three-
stage strategy: (1) extraction of similar apps using the ap-
pearance analysis, (2) extraction of relatives using several
intrinsic fingerprints, and (3) extraction and classification of
clones using the outcomes of antivirus checkers and code
difference analysis. To answer the second research ques-
tion, we applied the APPraiser framework to the over 1.3
million apps collected from official and third-party market-
places. Our key findings are summarized as follows: In the

1712
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

official marketplace, 79% of similar apps was attributed to
relatives while, in the third-party marketplace, 50% of sim-
ilar apps was attributed to clones. The majority of relatives
are apps developed by prolific developers in both market-
places. We also found that in the third-party market, of the
clones that were originally published in the official market,
76% of them are malware.

The key contributions of this work can be summarized
as follows: First, we clarified the breakdown of “similar”
Android apps with the notion of clones and relatives. Such
clarification enables us to take proper actions against apps
with content duplications. Second, we quantified the origins
of similar apps using over 1.3 million Android apps, which
is equivalent to the size of the official market. To perform
such a huge-scale analysis, we also developed lightweight
algorithms that can extract similar items from a huge, sparse
dataset with the time complexity of O(n).

Acknowledgments

A part of this work was supported by JSPS Grant-in-Aid for
Scientific Research B, Grant Number JP16H02832.

References

[1] Y. Ishii, T. Watanabe, M. Akiyama, and T. Mori, “Clone or relative?:
Understanding the origins of similar android apps,” Proceedings of
the 2016 ACM on International Workshop on Security And Privacy
Analytics, pp.25–32, ACM, 2016.

[2] “Stragety analytics.” https://www.strategyanalytics.com/strategy-
analytics/blogs/devices/smartphones/smart-phones/2015/03/11/
android-shipped-1-billion-smartphones-worldwide-in-2014, Jan.
2015.

[3] AppBrain, “Android operating system statistics.” http://www.
appbrain.com/stats/.

[4] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” Proc.
of the second ACM CODASPY 2012, pp.317–326.

[5] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of “piggybacked” mobile applications,” Proc. of the third
ACM CODASPY 2013, pp.185–196.

[6] “Fake apps: Feigning legitimacy.” http://www.trendmicro.com/
cloud-content/us/pdfs/security-intelligence/white-papers/wp-fake-
apps.pdf.

[7] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina, and E.
Moser, “FSquaDRA: Fast Detection of Repackaged Applications,”
Proceedings of the 28th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security and Privacy, DBSec ’14, pp.131–
146, 2014.

[8] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” Proc. of ACM SIGMETRICS 2014, June 2014.

[9] smali. https://github.com/JesusFreke/smali.
[10] Y. Yang and J.O. Pedersen, “A comparative study on feature selec-

tion in text categorization,” Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, ICML ’97, pp.412–420,
1997.

[11] Androguard. https://github.com/androguard/androguard/.
[12] M. Ester, H.P. Kriegel, J. Sander, X. Xu, et al., “A density-based

algorithm for discovering clusters in large spatial databases with
noise.,” Kdd, pp.226–231, 1996.

[13] T. Watanabe, M. Akiyama, T. Sakai, H. Washizaki, and T. Mori,
“Understanding the inconsistencies between text descriptions and
the use of privacy-sensitive resources of mobile apps,” Symposium

on Usable Privacy and Security (SOUPS), 2015.
[14] iBuildApp. http://ibuildapp.com/.
[15] Bizness Apps. https://www.biznessapps.com/.
[16] VirusTotal. https://www.virustotal.com/.
[17] PScout, “Analyzing the Android Permission Specification.” http://

pscout.csl.toronto.edu/.
[18] K. Au, W. Yee, Y.F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing

the android permission specification,” Proc. of ACM CCS, pp.217–
228, 2012.

[19] AdAway, “http://adaway.org/hosts.txt.”
[20] Google Play. http://play.google.com/.
[21] anzhi.com. http://www.anzhi.com/.
[22] J. Oberheide and C. Miller, “Dissecting the android bouncer.” Sum-

merCon, Brooklyn, NY., 2012.
[23] “The gray-zone of malware detection in android os.” https://blog.

avast.com/2014/03/31/the-gray-zone-of-malware-detection-in-
android-os/.

[24] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” Proc. of the 17th European
Symposium on Research in Computer Security, pp.37–54, 2012.

Yuta Ishii received B.E degree in computer
science from Waseda University in 2011. He is
currently a 2nd-year graduate student in the De-
partment of Computer Science and Engineering,
Waseda University. His research intrerest is net-
work security and mobile security.

Takuya Watanabe recieved M.E. degree in
computer science and engineering from Waseda
University, Japan in 2016. Since joining Nippon
Telegraph and Telephone Corporation (NTT) in
2016, he has been engaged in research and de-
velopment of mobile security. He is now with
the Cyber Security Project of NTT Secure Plat-
form Laboratories.

Mitsuaki Akiyama received the M.E. de-
gree and Ph.D. degree in Information Science
from Nara Institute of Science and Technology,
Japan in 2007 and 2013, respectively. Since
joining Nippon Telegraph and Telephone Cor-
poration NTT in 2007, he has been engaged in
research and development of network security,
especially honeypot and malware analysis. He is
now with the Network Security Project of NTT
Secure Platform Laboratories.

http://dx.doi.org/10.1145/2875475.2875480
http://dx.doi.org/10.1145/2133601.2133640
http://dx.doi.org/10.1145/2435349.2435377
http://dx.doi.org/10.1145/2591971.2592003
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1007/978-3-642-33167-1_3

ISHII et al.: APPRAISER: A LARGE SCALE ANALYSIS OF ANDROID CLONE APPS
1713

Tatsuya Mori is currently an associate
professor at Waseda University, Tokyo, Japan.
He received B.E. and M.E. degrees in applied
physics, and Ph.D. degree in information sci-
ence from the Waseda University, in 1997, 1999
and 2005, respectively. He joined NTT lab in
1999. Since then, he has been engaged in the re-
search of measurement and analysis of networks
and cyber security. From Mar 2007 to Mar 2008,
he was a visiting researcher at the University of
Wisconsin-Madison. He received Telecom Sys-

tem Technology Award from TAF in 2010 and Best Paper Awards from
IEICE and IEEE/ACM COMSNETS in 2009 and 2010, respectively. Dr.
Mori is a member of ACM, IEEE, IEICE, IPSJ, and USENIX.

