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Finding New Varieties of Malware with the Classification of
Network Behavior
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SUMMARY An enormous number of malware samples pose a major
threat to our networked society. Antivirus software and intrusion detection
systems are widely implemented on the hosts and networks as fundamental
countermeasures. However, they may fail to detect evasive malware. Thus,
setting a high priority for new varieties of malware is necessary to conduct
in-depth analyses and take preventive measures. In this paper, we present
a traffic model for malware that can classify network behaviors of malware
and identify new varieties of malware. Our model comprises malware-
specific features and general traffic features that are extracted from packet
traces obtained from a dynamic analysis of the malware. We apply a clus-
tering analysis to generate a classifier and evaluate our proposed model us-
ing large-scale live malware samples. The results of our experiment demon-
strate the effectiveness of our model in finding new varieties of malware.
key words: malware communication model, clustering analysis, network
behavior classification, new varieties of malware

1. Introduction

Malware target networked systems that support our soci-
ety, and a large number of new malware samples have
been developed over the last few decades [1]. In addi-
tion, another type of malicious software, classified as po-
tentially unwanted programs (PUP), threatens user privacy
and computer security [2], [3]. As a countermeasure to mal-
ware threats, several technologies aim to detect malware
prior to infection, e.g., using virus checkers, blacklisting,
and Intrusion Detection System (IDS). However, these pre-
infection approaches may fail to detect evasive attacks [4],
such as polymorphic malware, various obfuscation tech-
niques, zero-day exploits, and sophisticated social engineer-
ing.

One promising complementary approach is to adopt a
post-infection approach via malware analyses, which can be
roughly classified into static and dynamic analyses. Static
analyses can analyze the call flows of malware samples in
depth; however, they also slightly increase the burden on
the malware analyst. Dynamic analyses [5], [6] execute
malware samples on physical or virtual machines. These
methods enable us to understand the behaviors of malware
quickly with process information, reading/writing files, reg-
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istry hives, packet traces, memory dumps, and screenshots.
We can focus on the packet traces obtained from outside
of a host that execute a malware sample without the anal-
ysis modules being modified by the malware. In addition,
communication with other hosts is indispensable for a re-
cent malware to receive commands, update itself, and con-
tinue to attack. Therefore, malware communication logs are
valuable because they can be used as an Indicator Of Com-
promise (IOC), e.g., if a dynamic analyses system reveals
communication between a malware-infected client and the
command and control server, a Computer Security Incident
Response Team should be notified of an IOC. Traffic logs
also enable the construction of intrinsic signatures of IDS or
rules of Security Information and Event Management that
can be used to detect malware activities.

In this paper, we successfully select new varieties of
malware from a large number of malware samples under the
circumstances that it is difficult to regularly maintain the ad-
equate labeling of malware name. If the network activity of
an unknown malware sample is very close to that of a known
malware family, it can be treated as a known malware fam-
ily because a similar malware has already been analyzed.
Then, we can set a high priority for the new varieties of mal-
ware. Therefore, our goal is to build a novel model of mal-
ware traffic based on the results of past measurement studies
and several rules of thumb obtained from experts in malware
analysis. In addition, we developed a system, illustrated in
Fig. 1, that can automatically collect diverse malware sam-
ples from various sources, such as honeypots and spamtraps,
and analyze the obtained malware with a dynamic analysis
system to generate packet traces associated with each mal-
ware sample. Then, the system applies the malware commu-
nication model to extract feature sets from the packet traces
and executes a cluster analysis to generate a classifier.

The contributions of our study can be summarized as
follows.

• We develop a generic malware communication model
that covers the primary features of communication in-
voked by various malware families.
• By cluster-analyzing large-scale live malware samples,

we confirm that our model can be used to discover
malware families that are labeled differently by virus
checkers but exhibit similar communication patterns.
• We reveal the effectiveness of our classifier, which can

automatically narrow new varieties of malware from
2,019 samples to 649 samples.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 System overview.

Table 1 Malware-specific features (25 features).

Class Feature

Activation timing Time to start communication after binary execution. [sec]
Checking Number of DNS queries and Number of HTTP requests for major web sites. [18]

Number of DNS queries and number of HTTP requests for global IP address check sites.
Information theft Number of HTTP requests contained inherent host information [10]
C2 (Command and Control) Number of sessions matched with each 5 public blacklists.

Number of IRC sessions over TCP and UDP [19].
Number of P2P sessions over TCP and UDP [20].
Number of sessions with sinkhole hosts [21].

Additional executable files downloading Number of downloaded executable files.
Spam/scam email sending Number of DNS queries for MX.

Number of SMTP sessions [7], [16], [18].
Probing Number of ICMP echo requests to the internal host and external hosts [22].
Monetizing Number of HTTP requests contained advertising words.
Verification Number of distinct HTTP User-Agent.

Maximum and minimum length of HTTP User-Agent [16].

These contributions strongly support security analysts to set
a high priority for new varieties of malware and their threats.

The remainder of this paper is organized as follows:
Section 2 describes our proposed malware communication
model and our approach to clustering and classification. In
Sect. 3, we show an overview of the dataset, the validation
of our model, and the result of the classification. Section 4
discusses the limitation of our model and our future work;
Section 5 summarizes the related studies, and we offer our
conclusion in Sect. 6.

2. Methodology

2.1 Malware Communication Model

In this section, we describe a generic model of malware
communication patterns. To construct a model, we ex-
tract the intrinsic features that concisely represent the be-
havior of malware communication. When we extract such
features, we leverage domain knowledge revealed by prior
studies [4], [7]–[16]. While these studies have indepen-
dently proposed their own features to classify or detect mal-
ware, we compiled these features to build a generic model.
In addition, we also extracted new features from our own
experiences with malware analyses. In total, we extracted
95 features and categorized them into 16 classes, consisting
of both malware-specific and generic features. The generic
features are helpful to understand the different communica-
tion patterns of malware. When we identify new varieties of
malware, we can improve this model by adding new feature
after a detailed investigation. To extract 95 features from the

packet traces, we used TShark [17], which is command-line
tool of the strong network analyzer, Wireshark.

2.1.1 Malware-Specific Features

First, we compiled a set of features that represent a typical
behavior of malware communication. In general, malware
starts to communicate with other hosts soon after being ex-
ecuted or several minutes to hours after the execution. The
timing of activation can be arbitrarily set by the malware de-
velopers. Once malware is executed on a host, it first checks
whether the host is a sandbox or the real victim’s host. If
it decides that it can continue working, it then launches the
rest of its activities, e.g., leaking inherent host information,
receiving commands from a remote host, downloading other
malicious files, working as a proxy for sending spam email
messages, probing other vulnerable hosts, and/or clicking
ad-websites for monetization. We translated these activities,
which represent the intention of the malware, into a set of
features. If a security analyst finds one of these features,
he/she can quickly handle the incident. Below, we describe
the details of each feature. Table 1 summarizes the features
and includes some of the corresponding references.
Timing of activating communication: The timing of ac-
tivating communication reflects a difference between mal-
ware families. Via reverse engineering of malware samples,
it has been revealed that some malware developers use APIs
such as Sleep() or SleepEx() to intentionally cause de-
lays to evade dynamic analyses performed over short peri-
ods of time. In addition, they can insert unnecessary loop
functions to create intentional delays. For example, there is
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one malware family that starts communication several min-
utes after reading several registry keys or files.
Checking network reachability: Another strategy a mal-
ware developer may take is to detect whether the malware
is running in a controlled environment where the network is
not connected to the Internet. If such an environment is de-
tected, the malware will stop running or even destroy itself.
To check the network reachability, several malware families
attempt to connect to known websites, such as Google or Ya-
hoo [18]. In addition, in our experiences with malware anal-
yses, we have found that malware also make use of websites
that are used to check the global IP address of a client. In
this paper, we used the Alexa Top 10K sites [23] as a list of
major websites. In addition, we manually compiled a list of
10 global IP address checking websites [24]. Note that pop-
ular dynamic malware analysis services use these heuristics
to detect malware. Therefore, compiling large lists is essen-
tial because malware developers may change the websites
used to check for network reachability. These features can
be extracted by analyzing DNS queries and/or URIs con-
tained in HTTP requests.
Stealing host information: Several malware families have
been reported to steal host inherent information and put
them into URIs used in HTTP communication [10]. There-
fore, if an HTTP request contains inherent host informa-
tion, it is an intrinsic feature of malware that steals infor-
mation. Based on our experience, we manually compiled
a list of regular expressions that are associated with host
inherent information. In particular, we make use of host
name, user name, version of Windows OS, MAC address,
and display size. When we compile the list, we also check
whether a malware accessed to corresponding registry keys.
This feature is also seen in PUP, such as adware or pay-per-
install [25]. Note that a clear limitation of our approach is
that it cannot handle encoded or encrypted strings, which
will be addressed in our future studies. This feature can
be extracted by analyzing the URIs contained in HTTP re-
quests.
Command and Control (C2): Communicating with C2
servers is one of the most intrinsic features of malware com-
munication. As many previous studies have shown, detect-
ing C2 servers is not an easy task. In this paper, we make
use of the following three approaches: a list of C2 servers,
sinkhole information, and protocol detection. For the list of
C2 servers, we used five known blacklists [26] such as ZeuS
Tracker, and DGA [27]. This feature can be detected via the
analysis of DNS queries and HTTP requests or destination
IP addresses associated with blacklisted hostnames. After a
C2 server is taken down, CERTs, police, researchers, or se-
curity vendors install a special server using domain names
used by the C2 server. These special servers are called sink-
hole [21]. The aim of installing a sinkhole server is to let
users know about potential malware infection. Sinkhole
servers can be detected by monitoring the HTTP response.
If an HTTP response contains the “x-sinkhole” header field,
it is a sign of a sinkhole server. As previous studies have
revealed, IRC [19] and P2P [20] are often used as commu-

nication channels between an infected host and C2 servers.
To detect these protocols, we make use of the port numbers
that each protocol often uses.
Downloading executable files: Downloading executable
files is major network activity of malware that are known as
Downloader. The objective of Downloader is to download
a main binary using a small-sized malware that has only a
download function. The number of executable files is identi-
fied via the “Content-type” header field in HTTP responses,
e.g., application/exe and application/x-msdownload. This
header field may not be added, and adequate coding of CGI
pages is necessary; therefore, this feature cannot always be
precisely extracted.
Sending spam/scam email: Once malware is activated as a
spam bot, the malware can send spam emails [7], [16], [18].
First, the malware sends DNS queries for the MX record of
major SMTP servers and resolves the IP addresses of the
SMTP servers from the DNS responses. Next, the malware
attempts to connect to the SMTP servers. If the connection
succeeds, the malware starts to send spam emails. Then,
the number of the DNS queries for the MX record and the
SMTP sessions can easily characterize this behavior.
Probing: To verify the existence of any hosts on the same
network or to check the reachability of a specific exter-
nal host, malware often sends an ICMP echo request [22].
When a host replies to the request, it is assumed that the
malware proceeds to the next step. We define the features of
probing by the number of internal hosts and external hosts
to which the malware sent ICMP echo requests.
Monetizing: So-called Adware is disliked, and users want
to block advertising content from being embedded into web-
sites. The risks of Adware are described in Refs. [2], [3],
e.g., changing the browser settings, installing malware, and
injecting unwanted content. These activities generate rev-
enue for attackers. To detect these activities, Adblock
Plus [28] works as a browser plug-in with a number of fil-
ters. The number of HTTP requests matched with the Ad-
block filters is considered to be an effective feature for iden-
tifying Adware activities.
Verification: As introduced in Refs. [16], some malware
use specific User-Agents with HTTP requests. A malware
developer may intend to add a custom User-Agent to ver-
ify an infected host. In addition, using varieties of custom
User-Agents can evade IDS. The number of distinctive User-
Agents and the length of a User-Agent in the HTTP requests
are instructive features.

2.1.2 General Features

Regardless of the malware-specific features, there are multi-
ple general features that can specify the traffic patterns. To-
tal traffic size is a very fundamental feature of packet traces.
Moreover, TCP, UDP and ICMP are well-known protocols.
Encrypted communication such as SSL/TLS is commonly
used for legitimate communication to protect user privacy;
however, it is also convenient for adversaries to hide mes-
sages from network monitoring. Several varieties of mal-
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Table 2 General features (70 features).

Class Feature

All Total traffic size [bytes]
TCP Number of sessions, Number of destination hosts, maximum traffic size received/sent per session [bytes],

minimum traffic size received/sent per session [bytes]
UDP Number of sessions, Number of destination hosts, maximum traffic size received/sent per session [bytes],

minimum traffic size received/sent per session [bytes]
ICMP Number of destination hosts for echo request, Number of hosts replied from, Number of unreachable destination hosts
SSL/TLS Number of sessions, Number of destination hosts, maximum traffic size received/sent per session [bytes],

minimum traffic size received/sent per session [bytes]
DNS Number of queries over TCP, Number of queries over UDP, Number of queries to the external DNS servers,

Number of queries with each query type (A, NS, PTR, MX, TXT, AAAA, SRV),
Number of responses with each response type (CNAME, SOA)

HTTP Number of requests with each method (GET, POST, HEAD, M-SEARCH),
Patterns of requests (21 patterns; e.g., GET/GET, POST/GET, GET/POST/GET/GET, etc.),
Number of responses with each status code (11 types; e.g., 200, 302, 403, etc.)

ware communicate with other hosts by using these proto-
cols. Therefore, basic traffic features, such as the number of
destination hosts and the maximum traffic size received/sent
per session, are useful to understand the anomalies of net-
work activities.

In addition, there are multiple candidates for useful fea-
tures with respect to DNS and HTTP because these pro-
tocols are usually allowed through a gateway between an
organization’s network and the Internet. In this paper,
we adopt a limited number of the features that were ob-
served via our network monitoring. These general traffic
features, which have been the focus of many prior stud-
ies [7], [10], [11], [15], [16], [18], [22], are compiled in Ta-
ble 2.

2.2 Cluster Analysis

We applied a cluster analysis to the feature sets extracted
by the malware communication model. Cluster analysis is
a fundamental approach to finding patterns without correct
labels. Most previous studies have applied supervised learn-
ing with labels that were detected via a virus checker. How-
ever, because multiple malware samples cannot be detected
using virus checkers, it is difficult for security analysts to
regularly maintain the adequate labeling. Therefore, we first
generated clusters that reflecting the malware communica-
tion model.

Prior to the cluster analysis, we filtered out malware
samples that had small traffic sizes because the range of
Maximum Transmission Unit is between 46 bytes and 1,500
bytes and there is insignificant traffic being dependent on the
dynamic analysis environment, e.g., DNS queries for NTP
servers and ICMPv6 Router Advertisement. Total traffic
sizes less than or equal to 1,000 bytes were not addressed
in this study. Standardization was also executed to rescale
each feature so that it had a mean of 0 and a standard devia-
tion of 1.

Density-Based Spatial Clustering Applications with
Noise (DBSCAN [29] is a clustering algorithm that is often
used in data mining. It can find arbitrarily shaped clusters
with just two major parameters, ε and n. A cluster consists

Fig. 2 Classification concept.

of core points and non-core points that are in areas of high
density. A core point has n points within a radius of ε and
a non-core point is a neighbor of a core point but not a core
point itself. D(xp, xq) is the distance between the samples
xp and xq in set of X. A set Nε(xp) has samples with greater
than n points within a radius of ε. To satisfy the following
formulas, xq is directly density-reachable from xp. Then, a
cluster is defined as the maximum set of directory density-
reachable samples from an arbitrary sample. We used scikit-
learn [30] in Python for the cluster analysis.

xq ∈ Nε(xp)

|Nε(xp)| ≥ n

Nε(xp) = {xq ∈ X|D(xp, xq) ≤ ε}

2.3 Classification

First, to classify target malware samples into generated clus-
ters or errors, as illustrated in Fig. 2, we extracted the feature
set based on the malware communication model described
in Sect. 2.1 and conducted the cluster analysis in Sect. 2.2.

Next, we performed the following individual steps on
all the target samples that had total traffic volume less than
or equal to 1,000 bytes as with the pre-process of cluster
analysis. 1) compute the Euclidean distance between a tar-
get sample and each sample in all the generated clusters; 2)
select the sample in a generated cluster with the minimum
distance from the target sample; 3-A) classify the sample
into the cluster that the selected sample in step 2 belonged
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Table 3 Dataset overview.

Training data Testing data

Collection and analysis period 2014-12-01 - 2015-08-31 (9 months) 2015-09-01 - 2015-09-30 (1 month)
Number of distinct samples 21,717 6,078
File type PE32 (97.9%), Archive (2.0%), PE32 (56.1%), Archive (43.6%)

Others (0.1%: MsOffice, PE32+(x86-64), MS-DOS) Others (0.3%MsOffice, PE32+(x86-64), MS-DOS)
Number of distinct malware name 641 237
Malware type AdWare (37.0%), HEUR:AdWare (31.7%) Undetectable (33.7%), AdWare (25.0%),

Undetectable (16.2%), Downloader (5.7%), Trojan (13.3%), Downloader (10.9%),
Trojan-Downloader (2.4%), Others (7.0%) Trojan-Downloader (5.8%), Others (11.3%)

to if the minimum distance was less than a threshold (θ);
3-B) define the sample as a classification error if the mini-
mum distance is greater than or equal to the θ. Finally, the
samples that make it past step 3-B can be identified as new
varieties of malware.

3. Experimental Evaluation

In this section, we explain the dataset specification. Then,
we evaluate our proposed method with respect to the cluster
analysis and classification.

3.1 Dataset

The dataset consists of both training data for the cluster
analysis (Sect. 2.2) and testing data for the classification
(Sect. 2.3), as shown in Table 3. Both data originate from
large-scale live malware samples on the Internet that were
collected by two types of high-interaction honeypots, server-
type and client-type, from December 2014 to September
2015. The server-type honeypot as described in Ref. [31]
works on top of a Windows OS virtual machine that accepts
attacks from the Internet. The client-type honeypot [32]
works on top of Internet Explorer running on a Windows
OS with installed vulnerable plugins. When the client-type
honeypot crawls suspicious websites, drive-by download at-
tacks can be observed. We crawled multiple websites that
were listed in public blacklists as well as original candi-
dates, such as URLs described in day-to-day e-mail spam.
Both honeypots were distributed in several locations coun-
trywide. In order to avoid any damages to our system and
other hosts, these honeypots do not allow executing mal-
ware and reverting to initial state of a virtual machine. The
collected malware were not only executable files but also
PDF and Office documents, such as Word, Excel, and Pow-
erPoint.

The collected malware samples were analyzed imme-
diately after collection with a dynamic analysis system that
was connected to the Internet. The system starts a guest
Windows machine and executes a malware sample within a
maximum of 5 min. Then, the system reverts to the initial
state of the guest Windows machine. Several access con-
trols are applied to the outgoing traffic that is often used to
send spam e-mail and infect other host, e.g., SMTP and Net-
BIOS, for possible efforts not to cause any damage to other
hosts. Dozens of guest Windows machines work simulta-
neously; however, the packet traces during the analysis are

completely separate. If a sample requires a user interaction,
such as clicking a confirmation button, the system automat-
ically clicks it by default and proceeds with the malware ac-
tivity. We removed duplicate malware binaries, sorted them
in the order of the first-seen date, and divided them into two
periods.

To evaluate the cluster analysis, we built True cat-
egories based on malware names from a virus checker.
We compared the generated clusters with the True cate-
gories. The number of distinct malware names that the virus
checker detected in January 2016 was 641 in the training
data and 237 in the testing data. The detection rate was
83.8% in the training data and 66.3% in the testing data.
The reason why the virus check was conducted more than 4
months after the collection date is that the accuracy of detec-
tion increases with time. We used the full malware names,
e.g., Trojan-Downloader.Win32.Adload.icjy, as labels in the
True categories. Note that 77.4% of undetectable samples
were identified as malicious or suspicious by dynamic anal-
ysis system.

3.2 Cluster Analysis

3.2.1 Cluster Quality

As in the research field of information retrieval and soft-
ware similarity [33], we used three evaluation measures, P
(Purity), iP (Inverse Purity), and the F-measure, which indi-
cates the harmonic mean between P and iP.

P =
1
N

L∑
i=1

max(ni, j)

iP =
1
N

M∑
i=1

⎛⎜⎜⎜⎜⎜⎝
∑L

j=1 ni, j∑M
i=1 ni, j

max(ni, j)

⎞⎟⎟⎟⎟⎟⎠
F =

1

α × 1
P + (1 − α) × 1

iP

(0 ≤ α ≤ 1)

L : the number of generated clusters
M : the number of True category clusters
N : the number of samples
ni, j : the number of samples that belong to

the category j in the cluster i
α : a weight coefficient for P

According to these formulae, a high value of P indi-
cates that many samples of the same virus are named in the
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Fig. 3 Evaluation measures with changes of ε.

cluster. A high value of iP indicates that samples of the
same virus name center on just one cluster. Then, the value
of ε with maximum F need to be determined. Note that F
depends on ε.

ε̂ = arg max
ε

F(ε)

In this study, we set α = 0.5. In addition, we set another
parameter of DBSCAN to n = 1. It would be useful if we
could collect several samples for each cluster, e.g., at least
five samples per cluster, etc. However, in practice, it is not
an easy task to collect the fixed quantity of malware that has
similar network activities. Therefore we decided to make a
choice that we fully make use of the information available
by generating a cluster even though it consists of one sam-
ple. We note that this choice is useful especially for finding
new varieties of malware.

A preliminary experiment indicated that the total traf-
fic size for approximately 21% of the samples in the training
data was less than 1,000 bytes. Therefore, we used 17,167
samples for this evaluation. Figure 3 shows the changes in
the three evaluation measures when ε changed from 0.2 to
10. The result shows that the highest value of F is 0.61
when ε is 4.6. Given the fact that we used a limited scope
of features, i.e., only network traces, this is a reasonable
quantity compared to other research fields, e.g., max(F) =
0.98 in software classification [33] and max(F) = 0.79 in
information retrieval [34]. In fact, Ref. [33] achieves this re-
sult by integrating source code clustering and specification
document clustering. In this paper, we used only network
traces and the full malware names as labels in the True cat-
egories. Although we believe that F can be improved by
various approaches such as integration of other analysis fea-
tures, the aim of this work was to demonstrate the effec-
tiveness of generated clusters obtained through the analysis
of network traces. In this case, the cluster analysis, includ-
ing pre-processing, was performed in 83.1 s with a Mac OS
X (CPU: 1.7 GHz Intel Core i7, Memory: 8GB 1600MHz
DDR3). Note that 310 of 439 clusters had one sample in
one cluster. Of these, 118 clusters could not be detected

Fig. 4 Visualization of top 10 clusters. The horizontal axis denotes
the 95 dimensions of the malware communication features described in
Sect. 2.1. The vertical axis indicates 5 samples for each cluster as “#Index
of cluster (the number of samples in the cluster)”. The dark blue color in-
dicates lower values and the dark red color indicates higher values of each
feature.

by the virus checker. Of the 439 clusters extracted, 55 had
multiple malware names. We summarize the breakdown of
the obtained statistics and the examples of malware names
in Table A· 1. Naturally, undetectable samples were ignored
when computing the three evaluation measures.

3.2.2 Cluster Visualization

Figure 4 visualizes the top 10 clusters to more clearly il-
lustrate the malware communication pattern. It appears that
each cluster is well characterized by the malware commu-
nication model. We give three examples of typical network
activities below.

Cluster 0 is the most popular cluster, and it involves
308 distinct malware names from the 13,661 samples, and
AdWare.Win32.MultiPlug.heur accounts for 43% of the
samples. Checking network reachability and downloading
executable file behaviors were observed. Four HTTP GET
requests and two HTTP POST requests were often sent;
however samples lacked distinguishing characteristics.

AdWare.Win32.iBryte.jif composes approximately
60% of Cluster 7. Timing of activating communication of
samples in this cluster was 30 s after execution, two differ-
ent lengths of User-Agent in the HTTP requests, and they
received one HTTP response with a status code of 410.

Cluster 3 contained 182 samples of Trojan-Downloader.
Win32.Adload.icjy. Checking network reachability and
downloading executable file were conducted, as with Clus-
ter 0; however, a number of SSL/TLS sessions were also
found.

3.3 Classification

As a result of the cluster analysis, samples with different
malware names were gathered into clusters according to
common network activities. Conversely, samples with the



HATADA and MORI: FINDING NEW VARIETIES OF MALWARE WITH THE CLASSIFICATION OF NETWORK BEHAVIOR
1697

Table 4 Appearance ratio of true category labels for classification re-
sults.

(a) θ=3.0
R=0.7 R=0.5 R=0.25 R=0.2

Q=1 0.773 0.773 0.769 0.559
Q=3 0.773 0.773 0.769 0.559
Q=5 0.773 0.773 0.769 0.559
Q=7 0.773 0.773 0.769 0.559

(b) θ=4.6
R=0.7 R=0.5 R=0.25 R=0.2

Q=1 0.742 0.731 0.726 0.595
Q=3 0.743 0.732 0.727 0.595
Q=5 0.747 0.736 0.731 0.598
Q=7 0.747 0.737 0.732 0.599

(c) θ=7.0
R=0.7 R=0.5 R=0.25 R=0.2

Q=1 0.586 0.579 0.568 0.505
Q=3 0.599 0.592 0.581 0.516
Q=5 0.602 0.595 0.584 0.519
Q=7 0.602 0.595 0.584 0.519

same malware names also belonged to different clusters. To
evaluate the classification, we did not specify a represen-
tative of the malware names in each cluster; rather, we al-
lowed representatives of multiple malware names in each
cluster to maintain flexibility. In particular, a cluster should
have a minimum number of samples Q; then, we can com-
pute the appearance ratio of the top R% of malware names
in a cluster for the classification results. 2,398 samples in
the testing data are small size traffic so that these samples
are not subject to classify. The results are shown in Table 4
for three different threshold distances (θ = 3.0, 4.6, and 7.0)
when judging an error. Following the preliminary exper-
iment results, samples in the testing data were able to be
classified 0%, 19.2%, and 90.5% when θ was 2.0, 3.0, and
7.0. 4.6 is same value to the parameter ε of DBSCAN. When
R is greater than 0.5, the best value of the appearance ratio
becomes the value previously shown value. Therefore, we
omit to present all the results and show representative results
in Table 4. From Table 4, we see that even though a higher θ
increases the number of misclassified samples, we obtain a
maximum appearance ratio 77.3% when θ = 3.0 and R � 0.5.
Under these conditions, it took only 0.29 s to classify a sam-
ple. The false cases were 22.7% of samples that did not ap-
pear in the top 50% of malware names in the nearest cluster.
The primary cause was that samples with the same malware
names were classified into multiple clusters or unclassified.
For example, the number of same malware names included
both in classified samples and unclassified samples was 19
as listed in Table 5. These malware samples are roughly
classified into Adware and Downloader/Dropper, and usu-
ally download other content such as advertising data or other
malicious files. The content can be changed with the timing
of dynamic analysis; therefore, the results of classification
could become different even if the sample that had the same
malware name.

To evaluate the effectiveness of the proposed classifica-

Table 5 Malware names included both in classified samples and unclas-
sified samples.

AdWare.JS.MultiPlug.p AdWare.NSIS.Adload.i
AdWare.Win32.AdLoad.flrs AdWare.Win32.Agent.izjh
AdWare.Win32.Amonetize.bgnd AdWare.Win32.Amonetize.bhvk
AdWare.Win32.Eorezo.zby AdWare.Win32.MegaSearch.am
Downloader.NSIS.OutBrowse.bm HEUR:AdWare.Win32.Generic
HEUR:Trojan.Win32.Generic RiskTool.Win32.StartPage.bg
Trojan-Downloader.Win32.Adload.icjy Trojan-Dropper.Win32.Agent.peok
Trojan-Dropper.Win32.Injector.hcun Trojan-Dropper.Win32.Necurs.drf
Trojan.Win32.Agent.ifbi Virus.Win32.Parite.b
WebToolbar.Win32.SearchSuite.ae

Table 6 Result of new varieties of malware narrowed by proposal
method. (θ=3.0)

Number of samples Number of distinct
malware names

Undetectable 1,661 n/a
Detectable 2,019 165

Classified 472 64
in the testing data 106 44

Unclassified 1,547 120
in the testing data 649 90

tion to find new varieties of malware, we counted the num-
ber of classification error samples seen only in the testing
data (Table 6). Because the testing data was collected af-
ter the collection period of the training data, samples with
malware names seen only in the testing data were consid-
ered to be new varieties. The results demonstrate that 649
samples (90 distinct malware names) were revealed as new
varieties of malware by our proposed method. The number
of samples seen only in the testing data where classifica-
tion succeeded was 106 (44 distinct malware names). These
samples, which could be potentially overlooked, are new va-
rieties; however, all samples were classified into Cluster 0,
as explained in Sect. 3.2.2, and their distinguishing charac-
teristics were not observed. Therefore, we succeeded in nar-
rowing the malware samples from 2,019 to 649 of new vari-
eties.

4. Discussion

The effectiveness of our approach was demonstrated via an
experimental evaluation. However, there are limitations to
the malware collection and analysis, the malware communi-
cation model, the cluster analysis, and the classification with
respect to their inherent challenges.
Malware without network behavior: The behavior of re-
cent malware depends on its network interactions, as de-
scribed in Sect. 2.1. For example, the DarkS eoul [35] mal-
ware only overwrites the Master Boot Record of the com-
puter, instructing it to fail booting. Consequently, it does
not need to communicate with other hosts to achieve this
specific objective. In fact, numerous malware without net-
work behavior exist, and this is a severe limitation of our
model.
Evasion malware: Evasion malware constitutes a common
weakness in dynamic analysis systems. There are several
techniques to avoid detection during an analysis. In a run-
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time environment, checking for a debugger’s presence, fin-
gerprinting a virtual machine, checking for Internet reacha-
bility, and checking for a global IP address are popular tech-
niques to avoid being analyzed [36]. In other cases, mal-
ware may require user interaction, run actively after being
rebooted, or run only on a specific date. Our system in-
cludes several techniques to counteract these types of mal-
ware methods; however, these techniques are not yet suffi-
cient.
Malware coverage: At present, our system partially cov-
ers many malware infection paths to a host. Malware as an
email attachment, however, remains a significant threat for
enterprises. Moreover, malware can infect other platforms,
such Mac OS and Linux. We cannot identify the traffic pat-
terns in these malware communications because our system
is based on Windows OS. Notwithstanding the cost, adding
other sources of malware and dynamic analysis systems can
ideally solve this issue. However, it is practically impossi-
ble to cover all malware; therefore, one approach is to focus
on the local data associated with protecting specific objects,
such as a company, a business domain, or an ISP. However,
the generalized model presented here can incorporate data
on malware from multiple sources and environments.

In this paper, the testing data also partially covers all
features of malware. If known malware samples that have
never been analyzed are included in the testing data, our
method identifies them as new malware at that point. It is
necessary for security analysts to judge them malware and
update the clusters regularly. There is another way to up-
date the clusters. If malware samples in the testing data are
detected by antivirus software with a high reputation, these
samples can be included in the training data. Relearning
process of clusters is crucial to improving our system.
Model Improvements: As described in Sect. 3.2, our pro-
posed model successfully identifies the traffic patterns in
malware communications. In terms of malware-specific fea-
tures, the classes of features that are entirely covered are
based on the initial malware behavior; however, each fea-
ture can be expanded by both increasing the matching con-
ditions and upgrading the matching capabilities. There are
multiple public and continuously upgraded data sources that
can be used to increase the matching conditions, such as
major sites for checking the Internet reachability, sites for
checking global IP addresses, and C2 blacklists. Inherent
host information can be used for this purpose as well, even
though it depends on the dynamic analysis environment; this
information can be added by analyzing the host internal ac-
tivity. Malware also attacks other hosts by sending exploit
codes and massive traffic; these attacking behaviors can be
defined by another feature while maintaining the signature
associated with the attacks.

Upgrading the model’s matching capabilities is also
important. Malware can retrieve and send information,
download executable files, and communicate with C2
servers with encoding or encryption. Detecting and analyz-
ing encrypted malware communication [37] is a continuous
challenge.

By contrast, general traffic patterns can contribute to
the above challenges. Trends/changes in general mal-
ware features require investigating malware communication
methods with other hosts. Once this new behavior is identi-
fied based on a more in-depth analysis, the new feature can
be integrated into the model.
Clustering and Classification: In this paper, the labels of
the True categories were added using virus checker. How-
ever, there were many undetectable samples in the dataset.
We did not evaluate these undetectable samples; however, it
is possible to label samples via the results of static and/or
dynamic analyses. We could also choose a better algorithm
for the cluster analysis via comparisons and optimize the
parameters of the algorithm. In terms of classification, we
did not specify a representative of the malware name in each
cluster. Representatives of multiple malware names in each
cluster were allowed for flexibility, and the Euclidean dis-
tance was simply used to classify a sample into a cluster. It
is necessary to improve these approaches for a more precise
determination of a new threat. Moreover, the continuous
maintenance of the generated clusters should be addressed
in a future study.

5. Related Studies

Many previous studies have attempted to achieve automated
malware classification and detection by applying supervised
learning with labels that are detected using a virus checker.
However, it is not an easy task to regularly maintain ade-
quate labels because multiple malware samples cannot be
detected using a virus checker. Our study is a first approach
for security analysts to find new varieties of malware. Here,
we review previous studies according to malware classifica-
tion, malware detection, network signature generation, and
malicious network behavior detection.
Malware classification. : In Ref. [18], an efficient mal-
ware classification system was presented that based on the
protocol-aware and state-space features with potential input
for various classification methods. To extract fine-grained
information, protocol-aware modeling, such as HTTP and
SMTP messages, is useful. The objective of state-space
modeling is to deal with network behavior of unknown pro-
tocols. Ref. [18] evaluated several classification algorithms
against 6,000 unique and active malware samples belong-
ing to 20 families. In Ref. [7], the authors defined behav-
ior graphs based on extracted network flows from packet
traces. To generate the graphs, they used dependencies be-
tween network flows. In their graphs, when the IP address
in the DNS response was associated with the destination IP
address of the HTTP communication, an edge was created
from the DNS node and HTTP node. Once the graph was
generated, 10 features could be extracted to classify the mal-
ware samples, such as the number of nodes and the number
of direct nodes that form the root node. A J48 decision tree
was performed on a few thousand labeled samples from 13
malware families.
Malware detection. : BotFinder [8] was able to detect
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malware infections via a traffic pattern analysis without IP
blacklisting or deep packet inspection. The authors applied
the non-supervised training of six known bot families using
the average time interval between the start times of two sub-
sequent flows in the trace, the average duration of connec-
tions, and the average number of source bytes and destina-
tion bytes per flow. Zhang, et al. [10] introduced a new traf-
fic analysis method to detect stealthy malware activities on
a host by discovering the underlying triggering relations of
huge network events. The experimental results of focusing
on DNS and HTTP events showed its effectiveness against
malicious browser extension, data exfiltration malware, and
DNS tunneling bots. Bartos et al. [38] proposed a robust
representation to classify evolving malware behaviors. The
classifier uses a statistical feature of the bags, which are sets
of network flows. The proposed classification was applied to
proxy logs (only HTTP flows) on large corporate networks,
detected 2,090 new bags of malware variants, and verified 9
of 10 alerts as malicious.
Network signature generation. : Perdisci et al. [15] pre-
sented an HTTP-based malware clustering and signature-
generating system to find simple statistical similarities in
HTTP traffic generated by different malware samples, the
number of HTTP requests, GET requests, POST requests,
and the average URL length. Besides the above features,
the structure of each HTTP request with the method, page,
parameter names, and parameter values was used assume
similarities in server-side applications. Their experimental
results on over 25,000 malware samples showed their sys-
tem was effective at clustering and generating signatures.
FIRMA [16] achieved malware clustering and network sig-
nature generation. To cluster traffic, the authors extracted
the source and destination of the port number and IP ad-
dress, the traffic size, and the hostname of each HTTP, IRC,
SMPT, TCP, and UDP request. In addition, a message tree
was generated following the method in HTTP and the com-
mand in IRC and SMTP. Based on the clustering, a set of
network signatures for each malware family was produced.
Malicious network behavior detection. : There have also
been interesting studies to detect malicious network behav-
ior that have not focused on only malware activities. In
Ref. [12], approximately 40 features of flow level without
deep packet inspection were used to discriminate varieties of
malicious network traffic. To distinguish normal and anoma-
lous computer behavior, a one-class classifier based on feed-
forward neural network was proposed in Ref. [13]. The in-
coming and outgoing TCP, UDP and HTTP packets sizes
of each request per second were major parameters. Proces-
sor usage, memory usage, and disk input/output were also
used as metrics. The results of experiments on TCP/UDP
flooding to web servers showed a promising capacity for
fast anomaly detection. SNAPS [14] is a coherent system
that can discove network anomalies for domain experts by
adapting deep packet inspection, machine learning, and vi-
sualization. MAGMA [39] is a classifier to identify mali-
cious network activity based on a multi-layer network con-
nectivity graph.

6. Conclusions

In this paper, we proposed a novel classifier to find new va-
rieties of malware using packet traces generated by the mal-
ware. We built a malware communication model that cov-
ered the primary features of communication invoked by var-
ious malware families. The model consists of 25 malware-
specific features and 70 general traffic features that leverage
previous studies and several rules of thumb obtained from
experts. Using multiple types of features can improve ro-
bustness against attacks that hide individual activity. We
verified that our model helped discover different malware
families with similar communication patterns via the evalu-
ation of cluster analysis using large-scale live malware sam-
ples. We also revealed the value of the clustering parame-
ter with maximum F-measure and visualized clusters with
explanations of representative network activity. The experi-
mental results demonstrated that the classification accuracy
was 77.3%, and the malware samples were narrowed from
2,019 to 649 new varieties. We assume that the cluster
should be updated after manually judging the maliciousness
of samples extracted by our method. During this manual in-
spection process, dynamic analysis can keep working. We
also note that dynamic analysis process can be scaled-out
by adopting the parallelization approach. Therefore, we fo-
cused on the analysis of execution time for clustering and
classification processes. We were able to conduct the cluster
analysis of the 21,717 malware samples in 83.1 s and were
able to classify a sample in 0.29 s. The limitations of this
study and our future work were discussed from the various
viewpoints of malware without network behavior, evasive
malware, malware coverage, model improvement, and clus-
tering and classification methods. These results and discus-
sions will support security analysts in prioritizing the vast
number of new malware threats.
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Appendix A:

Table A· 1 Number of clusters with multiple malware names and examples within top 10.

Number of Number of Example of
malware names clusters cluster index Malware names (Number of distinct samples)

2 34 4 Trojan-Downloader.Win32.Adload.icjy (28) Trojan-Dropper.Win32.Agent.sbcy (2)
3 4 32 HEUR:AdWare.Win32.MultiPlug.heur (20) AdWare.Win32.MultiPlug.ofcb (6)

Trojan-Banker.Win32.Agent.upd (1)
4 3 1 AdWare.Win32.iBryte.jif (85) AdWare.Win32.iBryte.joo (22)

HEUR:AdWare.Win32.MultiPlug.heur (4) HEUR:AdWare.Win32.Generic (2)
6 4 8 AdWare.Win32.MultiPlug.bwof (229) AdWare.Win32.MultiPlug.oaul (16)

AdWare.Win32.Agent.iziy (5) HEUR:AdWare.Win32.MultiPlug.heur (2)
HEUR:AdWare.Win32.Generic (1) Downloader.Win32.DownloAdmin.fgb (1)

7 2 5 AdWare.Win32.MultiPlug.bwof (197) AdWare.Win32.MultiPlug.oaul (28)
HEUR:AdWare.Win32.MultiPlug.heur (3) AdWare.Win32.Agent.iziy (3)
WebToolbar.Win32.Neobar.a (1) AdWare.Win32.MultiPlug.oarp (1)
AdWare.Win32.Amonetize.xhj(1)

8 2 2 Downloader.Win32.DriverUpd.ipb (14) AdWare.Win32.Agent.djcr (12)
AdWare.Win32.SoftPulse.p (8) Trojan.Win32.Inject.untk (5)
Downloader.Win32.DriverUpd.hlh (2) Downloader.Win32.Agent.cdvd (1)
AdWare.Win32.SoftPulse.ybk (1) AdWare.Win32.SoftPulse.beud (1)

14 1 24 AdWare.Win32.MultiPlug.oaqn (36) WebToolbar.Win32.SearchSuite.ae (33)
HEUR:Trojan.Win32.Generic (5) HEUR:RiskTool.Win32.Generic (2)
HEUR:AdWare.Win32.MultiPlug.heur (1) HEUR:AdWare.Win32.Lollipop.heur (1)
HEUR:AdWare.Win32.Generic (1) AdWare.Win32.MultiPlug.ofcb (1)
AdWare.Win32.Kraddare.aip (1) AdWare.Win32.AdLoad.flxq (1)

16 1 (7 AdWare.Win32.iBryte.jif (483) AdWare.Win32.iBryte.jke (96)
AdWare.Win32.iBryte.jhg (53) AdWare.Win32.iBryte.jkb (24)
AdWare.Win32.MultiPlug.oaul (22) AdWare.Win32.iBryte.jka (18)
AdWare.Win32.iBryte.jjo (15) HEUR:Trojan.Win32.Generic (15)
AdWare.Win32.Agent.iziy (9) HEUR:AdWare.Win32.MultiPlug.heur (3)

19 1 12 AdWare.Win32.MultiPlug.oaul (27) AdWare.Win32.iBryte.jjy (8)
AdWare.Win32.iBryte.jhg (6) AdWare.Win32.MultiPlug.oaqn (3)
AdWare.JS.MultiPlug.p (3) HEUR:Downloader.Win32.Generic (2)
HEUR:AdWare.Win32.OutBrowse.heur (1) HEUR:AdWare.Win32.Generic (1)
HEUR:AdWare.NSIS.Agent.heur (1) AdWare.Win32.SoftPulse.p (1)

22 1 18 Downloader.Win32.LMN.afd(3) AdWare.Win32.SoftPulse.p (2)
AdWare.Win32.Agent.djcr (2) WebToolbar.Win32.Agent.azm (1)
WebToolbar.Win32.Agent.avl (1) RemoteAdmin.Win32.Ammyy.xcs (1)
RemoteAdmin.Win32.Ammyy.jlu (1) RemoteAdmin.Win32.Ammyy.hq (1)
RemoteAdmin.Win32.Ammyy.ani (1) RemoteAdmin.Win32.Ammyy.and (1)

26 1 20 AdWare.Win32.AdLoad.flxq (26) HEUR:Trojan.Win32.Generic (13)
Downloader.Win32.Agent.ajuq (8) AdWare.NSIS.Adload.i (5)
WebToolbar.Win32.SearchSuite.ae (4) AdWare.Win32.Kraddare.aip (3)
Trojan-Dropper.Win32.Injector.hxbu (3) HEUR:Downloader.Win32.Generic (1)
HEUR:Downloader.NSIS.SoftBase.gen (1) HEUR:AdWare.Win32.SoftPulse.heur(1)

308 1 0 HEUR:AdWare.Win32.MultiPlug.heur (6002) AdWare.Win32.MultiPlug.ofcb (1462)
AdWare.Win32.MultiPlug.oaul (1100) AdWare.Win32.iBryte.jjy (412)
AdWare.Win32.iBryte.jhg (370) Downloader.Win32.Somato.g (308)
HEUR:AdWare.Win32.OutBrowse.heur (228) Downloader.Win32.Morstar.bad (207)
Downloader.Win32.Agent.dlzx (204) Downloader.Win32.Agent.clgu (183)
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