
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
1663

PAPER Special Section on Information and Communication System Security

Building a Scalable Web Tracking Detection System:
Implementation and the Empirical Study

Yumehisa HAGA†a), Yuta TAKATA††b), Nonmembers, Mitsuaki AKIYAMA††c), and Tatsuya MORI†d), Members

SUMMARY Web tracking is widely used as a means to track user’s
behavior on websites. While web tracking provides new opportunities of
e-commerce, it also includes certain risks such as privacy infringement.
Therefore, analyzing such risks in the wild Internet is meaningful to make
the user’s privacy transparent. This work aims to understand how the web
tracking has been adopted to prominent websites. We also aim to under-
stand their resilience to the ad-blocking techniques. Web tracking-enabled
websites collect the information called the web browser fingerprints, which
can be used to identify users. We develop a scalable system that can detect
fingerprinting by using both dynamic and static analyses. If a tracking site
makes use of many and strong fingerprints, the site is likely resilient to the
ad-blocking techniques. We also analyze the connectivity of the third-party
tracking sites, which are linked from multiple websites. The link analysis
allows us to extract the group of associated tracking sites and understand
how influential these sites are. Based on the analyses of 100,000 websites,
we quantify the potential risks of the web tracking-enabled websites. We
reveal that there are 226 websites that adopt fingerprints that cannot be de-
tected with the most of off-the-shelf anti-tracking tools. We also reveal
that a major, resilient third-party tracking site is linked to 50.0 % of the
top-100,000 popular websites.
key words: web tracking, web browser fingerprint

1. Introduction

In the rapidly evolving web industry, people’s behavior is
diversifying, including viewing videos and purchasing on
shopping sites. Companies track users’ behavior, analyze
their personality and tastes, and use the obtained informa-
tion for online advertising or marketing. This activity is
generally called “Web Tracking.” However, web tracking
poses some risks. In particular, there is the risk of privacy
violations by revealing user behavior without the user con-
sent. In addition, web tracking is exploited for malicious
purposes, whereby certain users are lured to malicious sites
such as fishing sites or drive-by-download sites. In 2016,
high-profile sites in US was hit by massive malvertising
campaign [1]. Although some countermeasures against web
tracking have been proposed, the tracking technology itself
is increasingly sophisticated. Thus, there are actually no
methods to entirely avoid tracking.

Manuscript received September 8, 2016.
Manuscript revised January 30, 2017.
Manuscript publicized May 18, 2017.
†The authors are with the Dept. of Communication Engineer-

ing, Waseda University, Tokyo, 169–8555 Japan.
††The authors are with the NTT Secure Platform Laboratories,

Musashino-shi, 180–8585 Japan.
a) E-mail: yumehisa.haga@nsl.cs.waseda.ac.jp
b) E-mail: takata.yuta@lab.ntt.co.jp
c) E-mail: akiyama.mitsuaki@lab.ntt.co.jp
d) E-mail: mori@nsl.cs.waseda.ac.jp

DOI: 10.1587/transinf.2016ICP0020

Furthermore, there is still an open debate on whether
all web tracking activities are malicious and should be dis-
abled. Web tracking provides certain benefits to the users,
such as allowing sites to display ads that are more relevant
to the users’ interests. Therefore, it is commonly accepted
that users should determine whether web tracking should be
allowed. The World Wide Web Consortium has made the
“Do not track” function standard. By activating “Do not
track,” [2] users can automatically deny all tracking requests
from websites and thus protect themselves from the risks of
tracking. However, tracking is actually performed by most
websites without restriction, irrespective of the will of the
user. For example, in 2013, Facebook paid 9.5 million dol-
lars after litigation on a matter of unauthorized use of users’
online histories in the US [3].

1.1 Mothods of Web Tracking

When websites conduct web tracking, they need to identify
the user. They often use cookies as identifiers. However,
tracking with cookies is restrictive because a cookie can be
easily deleted or blocked by a simple operation and cannot
be accessed across domains owing to the same-origin pol-
icy. Therefore, as an alternative, an identifier called the web
browser fingerprint (WBF) is recently used. The WBF com-
bines several feature points such as the type of the user’s
browser, screen resolution, installed plug-in, and installed
fonts. The WBF is easily collected with JavaScript. Ecker-
sley et al. [4] indicated that in JavaScript and Flash-enabled
browsers, websites can identify the user’s browser with a
94.2% accuracy using the WBF. Tracking performance or
“Tracking power” depends on the WBF combination. There
are the following three primary differences between a WBF
and a cookie: 1) There are no restrictions such as the same-
origin policy, and the WBF can be accessed across domains,
2) It is difficult for the user to delete or modify the value
of the WBF, and 3) It is difficult to determine the use of
the WBF, normal or for tracking. Therefore, the WBF is
a greater threat than the cookie in tracking. Thus, in the
present study, we focus on web tracking using WBF.

1.2 First-Party Site and Third-Party Site

A first-party site is a website visited by the user, whereas
a third-party site is an external website that is linked to the
first-party site. Third-party sites are located in domains dif-
ferent from those of first-party sites. They are linked from

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers



1664
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

many different websites at the same time and track users
across the Internet. Therefore, third-party tracking is more
influential than first-party tracking, and countermeasures are
urgently required. Conversely, first-party sites sometimes
acquire WBFs to adjust the appearance of web screen. Con-
sequently, disabling WBFs would lead to a decrease in us-
ability [5]. In this study, we focus on web tracking only by
third-party sites, which are henceforth known as “Tracking
Sites.”

1.3 Purpose and Approach

Our study aims to proactively investigate web tracking and
help establish measures for detecting or blocking web track-
ing. In particular, we focus on third-party tracking using
WBFs. In particular, we calculate the “tracking ability” and
the “influence score” of every tracking site and visualize the
potential risk of web tracking. To achieve this, we develop
a system that crawls websites and detects fingerprinting by
tracking sites. This crawler detects tracking sites exhaus-
tively using static and dynamic analysis with JavaScript.

1.4 Contribution

The major contribution of our work is outlined as follows:

• We develop a generic tracking detection system using
JavaScript analysis.
• We propose methods that group related tracking sites

and quantify the potential risk of web tracking using
multiple scales.
• Using our system, we examine most major tracking

sites, which are linked to half the popular websites. We
determine that most anti-tracking tools cannot defend
the WBF.

We first review the most important related works in
Sect. 2. Next, Sect. 3 presents an overview of the web track-
ing detection system used for our analysis. In Sect. 4, we
show the results of investigating and analyzing tracking
sites. Section 5 discusses some limitations of our work. Fi-
nally, Sect. 6 presents the conclusions.

2. Related Work

In this section, we describe several works related to web
tracking or the WBF.

Eckersley et al. [4] demonstrated the effectiveness of
using WBFs in web tracking for the first time. They showed
that we can identify users with a 94.2% accuracy using in-
formation such as the user agent, the HTTP accept header,
the screen resolution, the time zone, the installed plug-in,
and the installed fonts. Afterward, many studies were con-
ducted on the subject, which revealed that we can use perfor-
mance measurements [6], JavaScript engines [7], rendering
engines [8], Cascading Style Sheets [9], and HTML5 can-
vas [10] as fingerprints for identifying users.

Acer et al. [11], [12] developed a system that detected
fingerprinting by dynamic analysis of JavaScript and inves-
tigated web tacking. This system revealed that many third-
party sites are tracking users using the WBF.

Iso et al. [13] implemented a system for collecting and
analyzing the WBF. After about four months’ analyses of
the collected 1,767 fingerprints, they observed that some of
their values changed over time. In addition, they reported
which fingerprints contribute more in identifying users, by
calculating the fingerprint’s variation degrees (entropy) for
each device.

In the present work, we develop a system that is more
advanced than the one constructed by Acer’s team and inves-
tigate web tracking. In addition, we quantitatively compute
the potential risk of web tracking based on several scales in-
cluding the WBF feature observed by the Eckersley and Iso
groups.

3. Web Tracking Detection System

We develop a system, which can detect the process of ac-
quiring WBFs by investigating a tracking site. In this sec-
tion, we explain the features of this system.

3.1 Web Browser Fingerprint

In Table 1, we show a list of WBFs that can be obtained by
websites using JavaScript. In addition, we indicate the de-
grees of fingerprint variation (Entropy) as High, Med, and
Low, as well as the resistance against passage of time (Du-
ration) as Long, Med, and Short. If the entropy is high, a
website can identify users more accurately. If the duration
is long, websites can track users for a longer time. These
evaluations were heuristically decided based on our research
and the studies by Eckersley et al. [4] and Iso et al. [13] For
example, in the case of a user agent, the entropy is relatively
high because it contains information on the browser type and
version, whereas the duration is short because the browser
version changes frequently because of upgrading. In con-
trast, the platform represents user’s OS, and its entropy is
low because the type of OS is restrictive but the duration is
long because users rarely change their OS. There are several
other methods for obtaining the WBF, apart from JavaScript,
such as Flash or HTTP request header, but JavaScript is most
frequently used because it is the easiest to use. Therefore,
we target the JavaScript tracking code in our investigation.

3.2 Overview of the System

An overview of the developed system appears in Fig. 1.
There are three main components in the system: a headless
browser, a driver, and an analyzer.
Headless Brower: A headless browser is a browser without
a GUI. It has basic browser functions, such as loading and
drawing web pages and running JavaScript, and it is often
used for frontend testing by web developers. The imple-
mented functions for web tracking detection in this case are



HAGA et al.: BUILDING A SCALABLE WEB TRACKING DETECTION SYSTEM: IMPLEMENTATION AND THE EMPIRICAL STUDY
1665

Table 1 WBFs which can be taken by JavaScript

Property or Method Description Entropy Duration

toDataURL(), getImageData() Canvas image data High Short
navigator.appCodeName Code name of the browser Low Long
navigator.appName Name of the browser Low Long
navigator.appVersion Version of the brower High Short
navigator.userAgent User-Agent High Short
navigator.mimeTypes MIME types Med Long
navigator.plugins Installed plugins High Short
navigator.language Language of the brower Med Long
navigator.platfoorm Platfrom of the browser Low Long
screen.height, screen.width Size of screen Med Med
screen.availHeight, screen.availWidth Size of screen (excluding the Windows taskbar) Med Med
screen.colorDepth Bit depth of the color palette Med Med
screen.pixelDepth Color resolution of the screen Med Med
getFontList() Installed fonts High Med
getTimezoneOffset() Time Zone Med Med

Fig. 1 Overview of web tracking detection system

shown in Sects. 3.3 and 3.4. This headless browser can de-
tect all WBF acquisition processes shown in Table 1. We
used HtmlUnit [14] as a base headless browser.
Driver: The driver is a Python program, which runs head-
less browsers in parallel and parse from the output log to
JSON files. A headless browser takes 3∼10 seconds to an-
alyze a website. Thus, we can increase the number of web-
sites analyzed using the diver, depending on the machine
specs, and crawl websites rapidly.
Analyzer: The analyzer conducts various analyses for the
JSON files and stores the results in the database.

In this system, all these processes are automated, en-
abling the efficient investigation of websites.

3.3 Dynamic/Static Analysis of JavaScript

In our work, we expand the HtmlUnit mentioned above,
and add functions for detecting fingerprinting by JavaScript.
To obtain the WBF using JavaScript, it is necessary to ac-
cess specific objects or run specific functions. For exam-
ple, if we want to find the user agent, we should access
“navigator,userAgent.” Here, we detect fingerprinting
through two approaches, namely, dynamic analysis and
static analysis. In dynamic analysis, we run the JavaScript
in the headless browser and hook access to objects or run-
ning functions related to the WBF. In static analysis, we
dump JavaScript source codes and search the strings related

Fig. 2 Example of JavaScript obfuscation

to the WBF. The benefit of combining dynamic analysis and
static analysis is significant. Dynamic analysis can evaluate
functions running strictly and is not affected by the source
code obfuscation, but it may overlook some instructions not
running because of branch processes. We actually observed
that tracking codes that perform branch processing depend
on which WBF is taken. In contrast, static analysis cannot
be used to evaluate functions running on strict mode, but
is not affected by branch processing of JavaScript. There-
fore, these two methods compensate each other’s weakness,
allowing the detection of fingerprinting more comprehen-
sively.

3.4 Decode Obfuscation

In our system, we add a function to decode JavaScript obfus-
cation. Obfuscation is the process of encoding source codes
so that people cannot read them. It is often used to protect
against reverse engineering as well as conceal malicious or
tracking codes. In JavaScript, the eval() function is pri-
marily used for obfuscation (Fig. 2). If obfuscation is per-
formed, we cannot apply static analysis. However, we can
when we run the eval() function dynamically and dump
its result. We implement this function on our system and
enable performing static analysis of obfuscated JavaScript
codes.



1666
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

4. Investigation of Tracking Sites

In our study, we investigate tracking site using the system
mentioned in Sect. 3. In this section, we describe the method
of grouping tracking sites and quantifying the tracking risk,
and we present the results of our analysis.

4.1 Target Websites

As we described in Sect. 1, tracking sites are external third-
party websites, which are linked to first-party websites vis-
ited by users. Our target is tracking sites linked to the top
one hundred thousand websites of the Alexa ranking [15].
We access these top pages and analyze JavaScript. We
distinguish tracking sites by the domain (FQDN) of the
URL, which we call the “Tracking Name.” As a result of
the crawls, we extract 37,812 tracking sites and determine
that 17,290 of them are taking at least one WBF using
JavaScript. The frequency of WBF use in the JavaScript
files is presented in Fig.3. The most collected fingerprints
are User-Agent, or screen sizes. These information is often
referred when websites adjust the appearance of the screen.

4.2 Grouping Tracking Sites by Recursive Jaccard Calcu-
lation

Some tracking sites using different tracking names belong
to the same community. These are likely to exchange track-
ing information. We call these tracking sites a “Tracking
Group.” If there is a big tracking group composed of small
tracking sites, we may investigate each tracking site inde-
pendently, without considering the tracking group as an en-
tity. Thus, before analysis, we group the tracking sites.

We observed that tracking sites belonging to the same
community are often linked to almost the same first-party
sites. Therefore, we cluster tracking sites based on which
first-party sites each tracking site is linked to. As a method
to cluster tracking sites, we adopted an algorithm, which cal-
culates the Jaccard coefficient recursively. The Jaccard coef-
ficient is a measure of the similarity between two sets. First,
we calculate the similarity between the two sets. When A
is a set of first-party sites linked to one tracking site and B
is a set of first-party sites linked to another tracking site, the

Fig. 3 Frequency of use of WBF

Jaccard coefficient, which represents the similarity between
A and B, is calculated as follows.

Jaccard =
|A ∩ B|
|A ∪ B|

In our work, if the Jaccard coefficient is above 0.8, we re-
gard these sets as the same tracking group. By applying
this process for all tracking sites, there are some track-
ing groups that have a maximum of two elements. Next,
we compare these tracking groups to form a bigger group
(Fig. 4). Then, we repeat this process and the formed
tracking groups increase each time. Finally, we finish
this process, when no more new tracking groups are ex-
tracted. A similar method was used for Hostname-IS Clus-
ter (HIC) in drive-by download research [16]. As a result
of the recursive Jaccard calculation, tracking groups con-
taining a maximum of three tracking sites are extracted, for
example fb.travel-assets.com, a.travel-assets.com, c.travel-
assets.comg, fwww.homeaway.jp, static0.homeaway.jp,
static1.homeaway.jpg, fwww.tribdss.com, ssor.tribdss.com,
www.trbas.comg. Since these tracking sites have similar
names, we assume that they are connected.

4.3 Quantification of Tracking Risk

It is difficult for users to know how the WBF is utilized by
the web administrator and whether the WBF is actually used
for malicious purposes. However, it is possible to deter-
mine the “potential” risk suffered when users’ tracking (pri-
vacy) information is leaked. To quantify such this risk of
web tracking, we define two indexes, the Tracking Ability
(TA) and the Influence Score (IS). TA represents the accu-
racy in user identification and the length of time that it is
valid, and it is calculated from the entropy and the dura-
tion of the obtained WBF. If a website collects many high-
entropy and long-duration WBFs, the tracking performance
would be improved. When the set of collected WBFs is
X = {x1, x2, . . . , xn}, TA is calculated as follows.

T A =
n∑

i=1

{
αE(xi) + (1 − α)D(xi)

}
E and D mean entropy and duration. We define the value of

Fig. 4 Recursive Jaccard calculation



HAGA et al.: BUILDING A SCALABLE WEB TRACKING DETECTION SYSTEM: IMPLEMENTATION AND THE EMPIRICAL STUDY
1667

entropy and duration as 3 pt, 2 pt, 1 pt based on the High,
Med, Low and Long, Med, Short characterizations, respec-
tively, as shown in Table 1. We empirically assign α = 0.75
based on contribution of each metrics for user identification.

Conversely, influence score represents the range within
which a tracking site can track a user, and it is calculated by
the number of links from first-party sites and the number of
visitors to each site. If the influence score is high, users can
be tracked across a wide range of the Internet. The number
of visitors to each website can be estimated from the Alexa
ranking. When a set of first-party sites linked to a tracking
site is Y = {y1, y2, . . . , yn}, IS is calculated as follows.

IS =
n∑

i=1

max(R(yi)) − R(yi)
β

,

where R denotes the Alexa ranking and max(R(yi)) =
100, 000, which is the number of Alexa ranked websites we
studied. β is the normalizing constant set to 1,000.

4.4 Result of Analysis

We present the distribution of TA and IS calculated using the
method mentioned in Sect. 4.2. The tracking groups with
high TA or IS are shown in Tables 2 and 3, respectively. All
the tracking groups on these tables have only one tracking
site.

According to Table 2, “cdn.krxd.net” has the highest
TA (33.0 points), which means it takes almost all WBF on
Table 1. “cdn.krxd.net” is obtained by Krux [17], which pro-
vides marketing services based on tracking users’ informa-
tion collected in websites. All tracking groups shown in Ta-
ble 2 are organizations providing services such as market-
ing, advertisement, and information security based on ac-
cess analysis.

Next, we evaluate whether the existing anti-tracking
tools can block fingerprinting. We can measure the defen-
sive performance of these tools by calculating TA based on
the WBFs they can protect. If a tool has TA larger than the
one computed for a website, it implies that the tool has the
greater ability of protecting the tracking activities than the
tracking ability of the website. It is worth noting that this
does not necessarily indicate that the tool can protect all the
tracking activities of websites with lower TAs because there
could be several fingerprints that cannot be covered with the

Fig. 5 Distribution of TA (Left) and IS (Right)

tool. However, since the tool with large TA can block major-
ity of fingerprints for a given website, remaining fingerprints
have less information to be used for tracking a user. Simi-
larly, even a website has greater TA than a tool, that does
not necessarily indicate that the website can always track all
the users who are using the tool. Our objective here is to
measure the performance of websites and tools with respect
to their tracking ability and protecting ability, respectively.
TA is a concise and useful metrics to understand the track-
ing ability of a broad spectrum of large-scale websites and
the protecting ability of various existing tools. The cumula-
tive IS represents the effectiveness of the anti-tracking tools.
If a tool is highly effective, it can be used to protect from
more tracking sites. In this study, we investigate the follow-
ing anti-tracking tools: PriVaricator (PV) [18], FireGloves
(FG) [19], Random Agent Spoofer (RAS) [20], Tor Browser
(Tor) [21], and FP-Block (FPB) [5]. For each anti-tracking
tool, we calculate TA, website coverage, and effectiveness
on Table 4. Among these tools, FP-Block has the highest
defensive performance. According to Table 2, FP-Block can
protect from all tracking sites, whereas other tools do not
have sufficient defensive performance for this. FP-Block is a
relatively new tool, whereas other tools have been generally
used for long time. This suggests that tracking technology

Table 2 High-TA tracking groups

Third-party Path TA

cdn.krxd.net ctjs/controltag.js.875f. . . 33.0
static.fraudmetrix.cn fm.jsv?er=0.1&t=402217 31.0
cse.google.com adsense/search/async-ads.js 30.5
app.trustev.com api/v2.0/TrustevJS?key=7a3. . . 29.0
cdn.tagcommander.com 362/tc Aspartam 3.js 28.5
tags.mdotlabs.com tracking.php?siteID=e8AJ 27.5
static.audienceinsights.net t.js 26.0
t.qservz.com js/pi.js 25.5
tags.tiqcdn.com utag/wsjdn/wsjpages/prod/ utag.56.js. . . 25.5
servedby.openxmarket.asia servedby.openxmarket.asia/w/ 1.0/jstag 25.5

Table 3 High-IS tracking groups

Third-party Links IS

www.google-analytics.com 49,963 2,493,837
pagead2.googlesyndication.com 17,586 875,754
connect.facebook.net 17,147 853,935
www.googletagmanager.com 12,226 650,517
partner.googleadservices.com 10,241 599,434
ajax.googleapis.com 11,592 566,757
www.googleadservices.com 10,474 547,918
apis.google.com 10,310 512,459
platform.twitter.com 10,099 506,008
tpc.googlesyndication.com 9,715 449,372
static.xx.fbcdn.net 6,649 303,266

Table 4 Defensive performance of anti-tracking tools

Tool TA Coverage % Effectivity

PriVaricator 4.8 53.3 1,345,753
FireGloves 16.5 96.6 9,314,979
Random Agent Spoofer 20.0 98.7 14,354,210
Tor Browser 24.8 99.8 17,014,206
FP-Block 34.0 100.0 17,238,061



1668
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

has been progressing recently. Indeed, Canvas fingerprint
has been used in recent years [10], and old tools such as Fire-
Gloves cannot protect against taking the Canvas fingerprint.
Therefore, users who want to block tracking should choose
an anti-tracking tool carefully, and, for now, using FP-Block
is the best choice.

Next, according to Table 3, it is revealed that high IS
tracking sites are organizations providing very popular ser-
vices such as Google, Twitter, and Facebook. Surprisingly,
Google Analytics [22], Google’s access analysis service, has
a much higher IS than others, and it is linked to half of
the first-party sites investigated in this study. Nevertheless,
Google Analytics’ TA is 17.25 pt, and its tracking can be
protected by using the anti-tracking tools mentioned above.

In Fig. 6, we show the information propagation which
occurs, when we access Alexa top-ranked websites linked
to Google Analytics, Facebook, or Twitter. The graph of
Google Analytics, which has a high IS, has a large slope.

Fig. 6 Information propagation on tracking site

Fig. 7 Distribution of tracking groups

Therefore, user information is leaked more rapidly than
from other tracking sites. Consequently, it is important to
consider third-party sites as well as first-party sites with re-
gard to web tracking. In Fig. 7, we show the relationship
between TA and IS for each tracking group. When both TA
and IS are high (plot on the upper right), the web tracking
risk is high. We can see Google, Facebook, Twitter, Yan-
dex, Baidu, or AddThis on the upper right of the figure. And
we can observe Google differences in collecting WBFs and
adjustments in its TP depending on the services provided.
The dashed line in this figure indicates the defensive per-
formance of the anti-tracking tools. If a plot is above the
line, the corresponding tracking site cannot be blocked us-
ing this tool. As we mentioned above, there are many track-
ing groups which cannot be blocked by anti-tracking tools
except FP-Block.

5. Discussion

In this section, we discuss the limitations of our work and
future work.

In JavaScript static analysis of our web tracking detec-
tion system, there are some false positives of fingerprinting.
That is because we search strings related fingerprinting and
some simple word such as “screen”, “height” and “width”
are often seen in the source code. So we need to reveal how
much impact of false positives to the accuracy of web track-
ing detection, or take any measures to reduce false positives.

We defined entropy and duration and calculated the TP
heuristically based on some researches, but we have not de-
fined clear criteria for it. Therefore, it is necessary to im-



HAGA et al.: BUILDING A SCALABLE WEB TRACKING DETECTION SYSTEM: IMPLEMENTATION AND THE EMPIRICAL STUDY
1669

plement a system, which collects and analyzes WBFs and
defines the entropy and duration of WBFs quantitatively, to
ensure the validity of these values.

Although we quantify the “potential” tracking risk, we
cannot know how WBFs are actually utilized, and we cannot
detect malicious tracking sites directly. Thus, for example,
we could let a website take our own WFB, and if we iden-
tify any behaviors (such as advertisements) related to web
tracking in different sites, we would know our information
has been leaked unintentionally. In addition, when WBFs
are taken even with the use of Do Not Track, the opt-out
declaration of tracking, the website could be malicious.

In this work, we only focused on WBF, but our system
we developed has the other several functions except WBF
analysis. For example, the system can dump information
such as Cookie, HTTP header, and asynchronous commu-
nication using Ajax. In addition, the headless browser can
enable Do Not Track. These functions can be applied to
various analysis related to web tracking in the future.

In addition, we plan to expand the range of investiga-
tion (0.1 million sites→ 1 million sites) or change the crawl-
ing period. We expect we can find some new features of
tracking group or relationship between Alexa ranking and
tracking group.

6. Conclusion

We developed a scalable system that can detect third-party
web tracking sites linked to many first-party sites. The key
idea was to detect WBF-taking sites by combining dynamic
and static analysis. Our extensive analysis using the Alexa
top 100,000 sites revealed the many tracking sites that auto-
matically collect WBFs from users. We aimed to quantify
the power and influence of tracking sites and revealed that
there are 226 of popular websites that adopt fingerprints that
cannot be detected with the most of the off-the-shelf anti-
tracking tools.

Our results indicated that web tracking sites with the
powerful traking abilitiy cannot be blocked with the most of
anti-tracking tools except the state-of-the-art tool, FP-block.
These observations lead us to the following suggestions /
future work for the two stakeholders; users who want to
block tracking and tracking companies. First, we suggest
users who want to block tracking to use the most powerful
tracking detecting system such as FP-block. As we revealed,
there are non-negligible number of web sites that use quite
strong WBFs that cannot be detected with the existing tools.
We note that major tracking sites are linked to the major-
ity the popular websites; it indicates the ubiquity of the risk
of tracking. We also note that even FP-block cannot detect
all the tracking sites; this fact indicates the need for further
research to detect tracking activities. Second, we adovo-
cate that tracking companies need to adopt more transparent
tracking system so that users will not lose right to not be
tracked. Since the purpose of performing tracking for the
tracking company is to make revenue from the online ser-
vices, which are freely available in many cases, we under-

stand that it is always challenging to strike a good balance
between privacy and healthy business model. One good ap-
proach toward the goal is to build a privacy-aware advertise-
ment system. For instance, Guha et al. presented Privad, an
online advertising system designed to more private than ex-
isting systems [23]. The Privad system has three main prin-
ciples: users are not tracked, users opt-in, and advertisers
cannot target sensitive information. In future, the tracking
companies may want to adopt the system like Privad.

References

[1] Trend Micro, “Massive Malvertising Campaign in US Leads to
Angler Exploit Kit/BEDEP.” http://blog.trendmicro.com/trendlabs-
security-intelligence/malvertising-campaign-in-us-leads-to-angler-
exploit-kitbedep/.

[2] “Tracking Preference Expression (DNT).” https://www.w3.org/TR/
tracking-dnt/.

[3] D. Kravets, “Facebook’s $9.5 Million ’Beacon’ Settlement
Approved.” http://www.wired.com/2012/09/beacon-settlement-
kapproved/.

[4] P. Eckersley, “How unique is your web browser?,” Proc. 10th Inter-
national Conference on Privacy Enhancing Technologies, PETS’10,
pp.1–18, 2010.

[5] C.F. Torres, H. Jonker, and S. Mauw, “Fp-block: usable web privacy
by controlling browser fingerprinting,” Proc. 20th European Sym-
posium on Research in Computer Security (ESORICS), Lect. Notes
Comput. Sci., pp.3–19, 2015.

[6] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Finger-
printing information in JavaScript implementations,” Proc. Web 2.0
Workshop on Security and Privacy (W2SP) 2011, 2011.

[7] M. Schmiedecker, P. Reschl, M. Huber, M. Leithner, S.
Schrittwieser, and E. Weippl, “Fast and reliable browser identifica-
tion with JavaScript engine fingerprinting,” Proc. Web 2.0 Workshop
on Security and Privacy (W2SP) 2013, 2013.

[8] T. Unger, M. Mulazzani, D. Frühwirt, M. Huber, S. Schrittwieser,
and E. Weippl, “SHPF: Enhancing HTTP(S) Session Security with
Browser Fingerprinting,” Proc. 2013 International Conference on
Availability, Reliability and Security, ARES ’13, pp.255–261, 2013.

[9] N. Takei, T. Saito, K. Takasu, and T. Yamada, “Web browser finger-
printing using only cascading style sheets,” Proc. 10th International
Conference on Broadband and Wireless Computing, Communica-
tion and Applications (BWCCA) 2015, pp.57–63, 2015.

[10] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting can-
vas in HTML5,” Proc. Web 2.0 Workshop on Security and Privacy
(W2SP) 2012, 2012.

[11] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens,
and B. Preneel, “Fpdetective: Dusting the web for fingerprinters,”
Proc. 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, CCS ’13, pp.1129–1140, 2013.

[12] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C.
Diaz, “The Web Never Forgets: Persistent Tracking Mechanisms in
the Wild,” Proc. 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pp.674–689, 2014.

[13] Y. Iso, N. Kiryu, K. Tsukamoto, K. Takasu, T. Yamada, N. Takei, and
T. Saito, “An implementation of browser fingerprinting website and
analysis of its collected data (in japanese),” Proc. Computer Security
Symposium (CSS) 2014, pp.377–370, 2014.

[14] “HtmlUnit.” http://htmlunit.sourceforge.net/.
[15] Alexa Top Sites. http://www.alexa.com/topsites.
[16] J. Zhang, C. Seifert, J.W. Stokes, and W. Lee, “Arrow: Generating

signatures to detect drive-by downloads,” 2011.
[17] Krux. http://www.krux.com/.
[18] N. Nikiforakis, W. Joosen, and B. Livshits, “Privaricator: Deceiving

fingerprinters with little white lies,” Proc. 24th International Confer-

http://dx.doi.org/10.1007/978-3-642-14527-8_1
http://dx.doi.org/10.1007/978-3-642-14527-8_1
http://dx.doi.org/10.1007/978-3-642-14527-8_1
http://dx.doi.org/10.1007/978-3-319-24177-7_1
http://dx.doi.org/10.1007/978-3-319-24177-7_1
http://dx.doi.org/10.1007/978-3-319-24177-7_1
http://dx.doi.org/10.1007/978-3-319-24177-7_1
http://dx.doi.org/10.1109/ares.2013.33
http://dx.doi.org/10.1109/ares.2013.33
http://dx.doi.org/10.1109/ares.2013.33
http://dx.doi.org/10.1109/ares.2013.33
http://dx.doi.org/10.1109/bwcca.2015.105
http://dx.doi.org/10.1109/bwcca.2015.105
http://dx.doi.org/10.1109/bwcca.2015.105
http://dx.doi.org/10.1109/bwcca.2015.105
http://dx.doi.org/10.1145/2508859.2516674
http://dx.doi.org/10.1145/2508859.2516674
http://dx.doi.org/10.1145/2508859.2516674
http://dx.doi.org/10.1145/2508859.2516674
http://dx.doi.org/10.1145/2660267.2660347
http://dx.doi.org/10.1145/2660267.2660347
http://dx.doi.org/10.1145/2660267.2660347
http://dx.doi.org/10.1145/2660267.2660347
http://dx.doi.org/10.1145/1963405.1963435
http://dx.doi.org/10.1145/1963405.1963435
http://dx.doi.org/10.1145/2736277.2741090
http://dx.doi.org/10.1145/2736277.2741090


1670
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

ence on World Wide Web, WWW ’15, pp.820–830, 2015.
[19] K. Boda, Á.M. Földes, G.G. Gulyás, and S. Imre, “User tracking on

the web via cross-browser fingerprinting,” Proc. 16th Nordic Con-
ference in Secure IT Systems, NordSec ’11, pp.31–46, 2011.

[20] Random Agent Spoofer. https://github.com/jmealo/random-ua.js.
[21] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-

generation onion router.,” Proc. 13th conference on USENIX Secu-
rity Symposium - Volume 13, SSYM ’04, pp.21–21, 2004.

[22] Google Analytics. https://www.google.com/analytics/.
[23] S. Guha, B. Cheng, and P. Francis, “Privad: practical privacy in on-

line advertising,” Proc. 8th USENIX conference on Networked sys-
tems design and implementation, NSDI ’11, pp.169–182, 2011.

Yumehisa Haga was born in 1992. He re-
cieved B.E. degree in computer science and en-
gineering from Waseda University in 2015. He
is currently a master course student in the De-
partment of Computer Science and Communi-
cations Engineering, Waseda University. He has
been engaged in research of network security
and web security.

Yuta Takata received his B.E. and M.E.
degrees in computer science and engineering
from Waseda University in 2011 and 2013. He
is currently a Ph.D. student in the Department
of Computer Science and Communications En-
gineering, Waseda University. Since joining
Nippon Telegraph and Telephone Corporation
(NTT) in 2013, he has been engaged in research
and development of network security, especially
honeyclient and malicious code analysis. He is
now with the Cyber Security Project of NTT Se-

cure Platform Laboratories.

Mitsuaki Akiyama received the M.E. de-
gree and Ph.D. degree in Information Science
from Nara Institute of Science and Technology,
Japan in 2007 and 2013, respectively. Since
joining Nippon Telegraph and Telephone Cor-
poration NTT in 2007, he has been engaged in
research and development of network security,
especially honeypot and malware analysis. He is
now with the Network Security Project of NTT
Secure Platform Laboratories.

Tatsuya Mori is currently an associate
professor at Waseda University, Tokyo, Japan.
He received B.E. and M.E. degrees in applied
physics, and Ph.D. degree in information sci-
ence from the Waseda University, in 1997, 1999
and 2005, respectively. He joined NTT lab in
1999. Since then, he has been engaged in the re-
search of measurement and analysis of networks
and cyber security. From Mar 2007 to Mar 2008,
he was a visiting researcher at the University of
Wisconsin-Madison. He received Telecom Sys-

tem Technology Award from TAF in 2010 and Best Paper Awards from
IEICE and IEEE/ACM COMSNETS in 2009 and 2010, respectively. Dr.
Mori is a member of ACM, IEEE, IEICE, and USENIX.

http://dx.doi.org/10.1145/2736277.2741090
http://dx.doi.org/10.1145/2736277.2741090
http://dx.doi.org/10.1007/978-3-642-29615-4_4
http://dx.doi.org/10.1007/978-3-642-29615-4_4
http://dx.doi.org/10.1007/978-3-642-29615-4_4

