
1680
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

PAPER Special Section on Information and Communication System Security

Tracking the Human Mobility Using Mobile Device Sensors∗

Takuya WATANABE†a), Nonmember, Mitsuaki AKIYAMA†b), and Tatsuya MORI††c), Members

SUMMARY We developed a novel, proof-of-concept side-channel at-
tack framework called RouteDetector, which identifies a route for a train
trip by simply reading smart device sensors: an accelerometer, magne-
tometer, and gyroscope. All these sensors are commonly used by many
apps without requiring any permissions. The key technical components
of RouteDetector can be summarized as follows. First, by applying a
machine-learning technique to the data collected from sensors, RouteDe-
tector detects the activity of a user, i.e., “walking,” “in moving vehicle,”
or “other.” Next, it extracts departure/arrival times of vehicles from the se-
quence of the detected human activities. Finally, by correlating the detected
departure/arrival times of the vehicle with timetables/route maps collected
from all the railway companies in the rider’s country, it identifies poten-
tial routes that can be used for a trip. We demonstrate that the strategy
is feasible through field experiments and extensive simulation experiments
using timetables and route maps for 9,090 railway stations of 172 railway
companies.
key words: mobile security, side-channel attack, location identification

1. Introduction

Modern smart devices, such as smartphones, smart watches,
and smart glasses, have powerful embedded sensors such as
accelerometers, magnetometers, gyroscopes, ambient light
sensors, and heart rate monitors. While these sensors are
used to provide new user experiences, they also bring the
new line of side-channel attacks [2]–[9].

Let us consider a new side-channel attack called SPS
(sensor-based positioning system), which also exploits sen-
sors of smart devices. The ultimate goal of an SPS attack
is to estimate the location of a user by reading sensors but
without using conventional geolocation methodologies such
as GPS, cell tower signals, or WiFi. Clearly, achieving the
goal is difficult, primarily due to the high degree of freedom
of user mobility.

The goal of this work is to make the SPS attack feasi-
ble. To this end, we exploit the spatio-temporal regularity
of human mobility patterns [10]; e.g., a person may use a

Manuscript received September 8, 2016.
Manuscript revised February 1, 2017.
Manuscript publicized May 18, 2017.
†The authors are with NTT Secure Platform Laboratories,

Musashino-shi, 180–8585 Japan.
††The author is with Waseda University, Tokyo, 169–8555

Japan.
∗Early version of this paper was presented at USENIX

WOOT [1]. The authors will clear the copyright transfer issues
before the publication in case the paper is accepted for publication.

a) E-mail: watanabe.takuya@lab.ntt.co.jp
b) E-mail: akiyamam@acm.org
c) E-mail: mori@nsl.cs.waseda.ac.jp

DOI: 10.1587/transinf.2016ICP0022

fixed route on a transportation system for her/his commut-
ing. Also, vehicles of transportation systems are generally
expected to exhibit a temporal regularity unless they en-
counter operation problems such as natural disasters or rail
accidents. We expect that exploiting the regularity enables
us to reduce the degree of freedom of human mobility.

With this approach in mind, we develop a novel proof-
of-concept attack framework called RouteDetector, which
targets the location of passengers of transport service. It
aims to identify the route of your train trip (i.e., the sequence
of train stations) by simply reading three hardware sensors
– accelerometer, magnetometer, and gyroscope – which are
all accessible from any apps without requiring any permis-
sions. A unique technical concept of RouteDetector is that it
makes use of not only data collected from multiple sensors
embedded in a smart device, but it also leverages external
data that can extract privacy information by correlating with
collected sensor data.

The key technical components of RouteDetector can
be summarized as follows: First, by applying a machine-
learning technique to the data collected from sensors, Rout-
eDetector classifies the activity of a user, e.g., walking, rid-
ing on a moving vehicle, or other status such as still. Next,
using the sequences of the detected activities, RouteDetector
extracts departure/arrival times of vehicle(s). Finally, Rout-
eDetector correlates the extracted departure/arrival times of
vehicle(s) with timetables/route maps of all vehicles and
searches the potential mobility paths.

The key findings of this work are summarized as fol-
lows:

• Our field experiments using smart devices demonstrate
that the RouteDetector framework can detect depar-
ture/arrival times of vehicles with errors smaller than
six seconds on average.
• Our extensive simulation experiments using timeta-

bles and route maps for 9,090 railway stations of 172
railway companies demonstrate that given a sequence
of departure/arrival times, RouteDetector can identify
routes used for a trip by train, and the average number
of identified routes becomes close to one if the number
of stations used on a trip is more than six.

These findings support that the attack is feasible.
The rest of this paper is organized as follows. Section 2

describes the threat models we assume for RouteDetector In
Sect. 3, we present the details of the RouteDetector frame-
work. Section 4 shows the results of performance evalua-

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

WATANABE et al.: TRACKING THE HUMAN MOBILITY USING MOBILE DEVICE SENSORS
1681

tion. Section 6 discusses the limitations of RouteDetector
and future research directions. We also discuss the possible
counter measures against RouteDetector. Section 7 summa-
rizes the related work. We conclude our work in Sect. 8.

2. Threat Models

The phase of side-channel attacks on mobile devices usu-
ally consists of three steps [11]. (1) A malicious applica-
tion is spread through popular app markets. After instal-
lation, (2) it observes the leaking side-channel information.
Based on the gathered information, (3) it uses the previously
established model or templates to infer secret information.
Similarly, our threat model assumes that a malicious soft-
ware, which requires only a permission of Internet connec-
tion, is installed on the victim’s device. We note that the
malicious software does not require any other permissions,
e.g. ACCESS ∗ LOCATION, ACCESS WIFI STATE, and
ACTIVITY RECOGNITION.

Namely, the application does not access location data
resources such as GPS, identity of cellular base stations,
and SSID of WiFi networks. The software keeps collect-
ing sensor values and estimating the activities of the owner
of the device; i.e., walking (running), moving on a vehi-
cle, or other. Sequences of detected activities are period-
ically sent to the adversary’s computer. The adversary’s
computer estimates the route of transportation by analyz-
ing the sequences. Note that it is also possible that the user
device computes the estimation of routes and sends the es-
timated results to the adversary. It is easy for an adversary
to know the hardware model of the smart device; for in-
stance, in the Android platform, by accessing the fields of
Android.os.Build class, he/she can obtain the hardware
information, such as brand, manufacturer, and/or model.
He/she can also know whether a smart device is being held
in someone’s hand or is inside a bag by reading the ambient
light sensor or proximity sensor. Because the threat model
targets passengers on public transportation systems, it is not
useful where no public transportation system is available.
We also assume that the adversary knows the list of public
transportation systems that would likely be used by the vic-
tim. For instance, if a victim lives in a particular country, the
adversary assumes that the victim may use any of railways
available in that country. We also need to assume that the
transportation system operates punctually; otherwise, Rout-
eDetector’s estimation may be inaccurate. We will study
the issue in Sect. 4. Other limitations will be discussed in
Sect. 6.

3. RouteDetector Framework

In this section, we present an overview of the RouteDetec-
tor framework (Sect. 3.1). Then, we describe the sensors we
used for our analysis (Sect. 3.2). We then describe the key
technical components of the RouteDetector framework; the
detection of user activities in Sect. 3.3, detection of depar-
ture/arrive time sequences of vehicles in Sect. 3.4, and the

Fig. 1 High-level overview of the RouteDetector framework.

extraction of candidate routes in Sect. 3.5.

3.1 Goal and Overview

The goal of the RouteDetector framework is to identify the
route of a vehicle used by an owner of a smart device by
reading the device’s sensors. If a vehicle is a passenger train,
a route is defined as a set of stations along a path. Figure 1
depicts the high-level overview that achieves the goal, to-
gether with the number of corresponding subsections that
describe the technical details.

First, it reads values from sensors. As sensors, we
picked up accelerometer, linear acceleration, magnetometer,
and rotation vector. Details of data collection are described
in Sect. 3.2. Next, we extract user activities from the col-
lected sensor data. The user activities are defined as a set
of three classes, walking, riding on a moving vehicle (vehi-
cle in short), and others, which includes various activities
such as standing, sitting, or sleeping. To this end, we pre-
process raw sensor data so that we can apply a supervised
machine-learning (ML) approach. As a supervised ML al-
gorithm, we adopt random forest, which is known to achieve
robust and good performance for multi-class classification
tasks. Details of data pre-processing and ML application
are described in Sect. 3.3. From the extracted user activi-
ties, we can identify sequences of vehicle departure/arrival
times. For instance, if we find a consecutive pairs of ve-
hicle and others, it is likely that a user was on a vehicle.
We can also consider cases in which a user made a transit.
Details of detecting vehicle departure/arrival time sequence

1682
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 1 Summary of sensors.

Sensor Type unit Permission Description

accelerometer physical m/s2 Not required Acceleration applied to a device including the gravity.
linear acceleration virtual m/s2 Not required Acceleration applied to a device excluding the gravity.
magnetometer physical μT Not required Strength of geomagnetic field.
gyroscope physical rad/s Not required A device’s rate of rotation.

Fig. 2 Overview of data pre-processing.

are described in Sect. 3.4. Finally, from an extracted ve-
hicle departure/arrival time sequence, we search candidate
routes, using timetables and railway route maps that cover
the potential residential area of the victim, e.g., a country.
We develop a fast algorithm that works in a breadth-first
search manner. Details of extracting departure/arrival time
sequence are described in Sect. 3.4.

3.2 Sensor Data

Of the available sensors embedded into a smart device, we
adopt four sensors; accelerometer, linear acceleration, mag-
netometer, and rotation vector. Table 1 summarizes the sen-
sors we used. Although we tested other sensors, such as an
ambient light sensor, the data was not effective in detecting
user activities. Note that the four sensors can be divided into
two classes: physical sensors and virtual sensors. While the
accelerometer, magnetometer, and gyroscope are physical
sensors that read raw values, the remaining sensor, linear
acceleration, is a virtual sensor whose values are computed
based on physical sensors.

We developed an Android app that collects the sensor
data. All the values are collected at a rate of 10 Hz, i.e.,
read 10 values per second. The app also has a function to
generate labels that are used for supervised ML.

3.3 Detection of User Activities

Using the collected sensor data, we classify user activities
into three distinct classes, walk, vehicle, and others. Note
that vehicle refers to the status when a user is on a moving
vehicle. If n user is standing on a vehicle, which is stopping
at a station, his/her status is likely classified as others. We
first pre-process raw sensor data in Sect. 3.3.1. Next, we
apply a supervised machine-learning (ML) approach to the
pre-processed data to detect user activities in Sect. 3.3.2.

3.3.1 Data Pre-Processing

We apply several data pre-processing techniques to the raw
sensor data. Figure 2 summarizes the data pre-processing
scheme. First, to eliminate the effect of differences in the
directions in 3D space, we compute a norm for each 3D

vector; i.e., a =
√

a2
x + a2

y + a2
z . Figures 3 (a) and (b) are

Fig. 3 (a): pre-processed sensor data, (b) magnification of (a) in Y-axis,
(c) predicted user activities, (d) smoothened user activities, and (e) cor-
rected user activities and departure/arrival times. In panels (a) and (b), A,
L, M, and G represents accelerometer, linear acceleration, magnetometer,
and gyroscope, respectively. In panel (e), circles/squares are detected de-
parture/arrival times, respectively.

examples of scalarized data. We then divide time series data
into a set of blocks. A block consists of N samples for each
sensor data; i.e., for each sensor data, a block bi has data:
D(i)(a) = {a(i)

1 , a
(i)
2 , . . . , a

(i)
N }. We experimentally set N as

N = 20, which corresponds to 2 seconds length with the
10-Hz rate of sensor data sampling. For each block, we ex-
tract features that can be used to characterize the patterns
of temporal variability for the three classes. To this end,
we adopted simple metrics; i.e., mean, standard deviation,
minimum, and maximum. Finally, we normalize the data

WATANABE et al.: TRACKING THE HUMAN MOBILITY USING MOBILE DEVICE SENSORS
1683

by subtracting means and dividing by standard deviations.
In summary, the time series data is divided into blocks, and
each block consists of four features for four sensors, result-
ing in feature vectors with 4 × 4 = 16 dimensions.

3.3.2 Classifying User Activities

Using the pre-processed sensor data, we classify activities
into three classes; walk, vehicle, and others. Walk represents
the activity that of a person moving on foot; e.g., walking
and running. Vehicle represents the activity that of a per-
son riding in a moving vehicle; e.g., train and car. Oth-
ers includes any other activities; e.g., standing, sitting, and
sleeping. Although others can be further classified into sub-
classes, we did not need to do that because using these three
classes are sufficient to achieve our attack.

As a classification scheme, we adopt the Random for-
est algorithm, which is an ensemble learning algorithm used
for classification or regression. In the training phase, the
Random forest algorithm constructs multiple decision trees
using randomly sampled data. In the classification phase, it
predicts the most plausible class by taking the majority votes
of the multiple decision trees. The good feature of Random
forest is that it naturally achieves multi-class classification
with a measure of score. We note that we also tested other
supervised machine learning algorithms, such as SVM or
logistic regression. It turned out that the differences in per-
formance among the algorithms were not significant, but the
Random forest algorithm worked best.

3.4 Detection of Departure/Arrival Time Sequences of Ve-
hicles

Using the detected user activities, we extract sequences
of vehicle departure/arrival times. Among the user activ-
ities, we are most interested in vehicle activity because
the start/end of the activity corresponds with the depar-
ture/arrival, respectively. However, as shown in Fig. 3 (c),
the predicted activities include some noise due to the in-
evitable classification errors. To reduce the effect of clas-
sification errors, we leverage the temporal correlation of the
activities; i.e., once a user gets on a vehicle, it is likely that
he/she stays on the vehicle for several minutes. Namely, we
use the exponentially weighted moving average (EWMA) to
account for temporal correlation of data.

Let An be the classified activity at block n, andW,V,
andO be the set of blocks that are classified as walk, vehicle,
and others, respectively. We define Wn, Vn, and On as

Wn = 1W(An)

Vn = 1V(An)

On = 1O(An),

where 1Y (x) is an indicator function that is defined as

1Y (x) =

⎧⎪⎪⎨⎪⎪⎩1 if x ∈ Y

0 if x � Y.

First, we compute the EWMA of Vn; i.e.,

Vn = λVn + (1 − λ)Vn−1,

where Vn is EWMA and 0 ≤ λ ≤ 1 is a constant param-
eter that determines the smoothing factor. If λ is close to
one/zero, the EWMA has a larger weight on the last ob-
servation/past observations. The parameter λ is empirically
configured, as we will show later. Although the EWMA in-
troduces a certain time lag to the original data, the size of the
lag was negligible, as we will show later. Using the EWMA,
the classified activities are corrected, as

V̂n =

⎧⎪⎪⎨⎪⎪⎩1 if Vn ≥ 0.5

0 if Vn < 0.5.

Figure 3 (d) shows smoothened user activities with the
EWMA.

Next, using the corrected activities V̂n, we extract de-
parture/arrival time sequences using the following algo-
rithm, where τ is a threshold that determines the minimum
length of time for a trip between two stations. In this calcu-
lation, we set τ = 60 (seconds).

Algorithm 1 Vehicle DEP./ARR. time sequences detection
algorithm.
1: D =false � Initial state
2: for all n = 1, 2, . . . do
3: if V̂n = 0 AND V̂n+1 = 1 then
4: Td = tn+1 � tn is time at block n.
5: D =true � A vehicle has been departured.

6: if V̂n = 1 AND V̂n+1 = 0 AND D = 1 then
7: Ta = tn+1

8: D =false
9: if Ta − Td > τ then

10: return Ta,Td

We note that using blocks that were not classified as
vehicles, i.e., {n; V̂n = 0}, Wn and On can be corrected using
the similar procedure. Tracking Wn and On is useful for de-
tecting transferring lines; i.e., if we observe a sequence of
classified activities such as vehicle (3 mins), walk (2 mins),
others (4 mins), and vehicle (5 mins), it is likely that a per-
son changed lines. Figure 3 (e) shows such an example. The
victim first got on a train and got off the train after three
stations. He/she then changed lines (see the area “transfer”
shown in the graph of Ŵn), and got on the next train.

As we shall see later, the activity of riding an escalator
could be misclassified as being on a vehicle, although a per-
son may be using it for transferring lines. Such a misclassifi-
cation can be safely removed with this heuristic. Figure 3 (d)
and (e) show such an example where all the ground-truth
escalator points, which were misclassified as “vehicle” by
random forest, are successfully eliminated in the corrected
user activities. The heuristics are also useful for eliminating
other errors regarding activity detection.

3.5 Extracting Candidate Routes

Finally, using the extracted sequences of departure/arrival

1684
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

times, we estimate candidate routes. We formulate the esti-
mation task as follows. Using railway route maps, we first
create a single graph that consists of nodes (stations) con-
nected by links (railroads). Next, using timetables corre-
sponding to the railway route maps, we extend the graph
so that it expresses temporal structure. Let us call the
extended graph a “train graph.” In a train graph, a link
l(A, B,Td,Ta, L) expresses a vehicle that departures station
A at time Td and arrives at station B at time Ta; A and B
are adjacent stations on line L. Note that we do not need
to build/keep an entire train graph beforehand. Instead, we
compile a set of all links and dynamically build subgraphs
by applying our search algorithm to the set of links.

We use Fig. 4 to demonstrate how the algorithm
of searching candidate routes works. In the example,
we have the input departure/arrival time sequence of
{Td j,Ta j} (j = 1, 2, 3). Given the input, we first extract
a set of links that satisfies l(∗, ∗,Td1,Ta1, ∗) (Q1: query 1).
In the example, we found four links; (S 1, S 4,Td1,Ta1, L1),
(S 1, S 5,Td1,Ta1, L2), (S 2, S 6,Td1,Ta1, L3), and (S 3, S 7,
Td1,Ta1, L4). For each link above, we recursively search
the succeeding links. For instance, to find a link (vehicle)
that departs station S 4 at time Td2 and arrives at station
X at time Ta2 on line L1, we search a link that satisfies
l(S 4, ∗,Td1,Ta1, L1) (see Q2) and found S 8 is the destina-
tion station. If we do not find any links that satisfy the given
condition, we remove the paths from the search (see Q5,
Q6). By continuing the above procedure, we can enumerate
paths that satisfy the input departure/arrival time sequences;
i.e., routes {S 1, S 4, S 8, S 11} and {S 3, S 7, S 10, S 12} in the
example.

Finally, when we get multiple routes for a given time
sequence, it is useful that we can sort them according to
some metrics. To this end, we compute the popularity of

Fig. 4 Diagram of the route detection algorithm.

routes, as follows: For each link consisting of a route, we
compute the number of other links that share the same pair
of origin/destination stations with that link. We then sum up
the numbers along the links of a route and define the result
as a score. If a route has a larger score, it means that a larger
number of trains run on that route. We adopt this score as a
metric that expresses the popularity of a route.

4. Evaluation

In this section, we evaluate the performance of the Rout-
eDetector framework. We first summarize the datasets we
used for our analysis. Second, we evaluate the accuracy of
the user activities detection scheme. We then evaluate the
accuracy of departure/arrival time sequence detection. Fi-
nally, we evaluate the effectiveness of the candidate routes
detection scheme.

4.1 Data

The data we collected for evaluation is broadly classified
into two datasets. The first set consists of sensor data used
for detecting departure/arrival time sequences. The second
set consists of timetables and railway route maps that are
used for building a train map, which is then used to search
candidate routes for a given time sequence.

4.1.1 Sensor Data

Table 2 presents the two smart devices used for our analysis.
As we shall see later, different hardware sensors generally
exhibit different values when given the same input. There-
fore, we need to train each classification model for each de-
vice. Details regarding to the differences in device hardware
will be discussed in Sect. 6.

Table 3 summarizes the sensor data we collected.
These data were measured across seven lines, operated by
two railway companies. Four lines, Yamanote Line, Chuo
Line, Keihin-Tohoku Line, and Saikyo Line, are operated
by East Japan railway company. Three subway lines, Fuku-
toshin Line, Marunouchi Line, and Nanboku Line are oper-
ated by Tokyo Metro. Of these lines, Yamanote Line is one
of the busiest and most important lines that connect major
stations in Tokyo. As shown in the table, we distinguish be-
tween two measurement types: a device held by hand (H)

Table 2 Smart devices used for our analysis.

Device name (abbreviation) Type OS

HTC J Butterfly (HTC) Smartphone Android 4.1.1
Nexus 7 (Nexus) Smart Tablet Android 4.4.4

Table 3 Sensor data collected for our analysis.

Data name Device Type # stations # lines # blocks

HTC H HTC H 57 5 12,007
HTC B HTC B 29 1 2,561
Nexus H Nexus H 29 1 2,543
Nexus B Nexus B 54 5 8,576

WATANABE et al.: TRACKING THE HUMAN MOBILITY USING MOBILE DEVICE SENSORS
1685

Table 4 Statistics of the train map built from railway route maps and
timetables. Number of links is taken from timetables for weekdays.

railway companies # lines # stations # links

172 597 9,090 2,277,397

Table 5 Numbers of labeled blocks used for evaluating performance of
activity detection. All the labeled blocks are collected at the stations of
Yamanote Line.

Data vehicle walk others

HTC H 609 1,327 510
HTC B 691 1,360 510
Nexus H 686 1,352 505
Nexus B 602 1,304 505

Table 6 Performance of detecting vehicle activity. ACC, FNR, and FPR
are accuracy, false negative rate, and false positive rate, respectively.

Data ACC (mean/std) FNR (mean/std) FPR (mean/std)

HTC H 0.941/0.011 0.042/0.022 0.078/0.013
HTC B 0.965/0.009 0.024/0.012 0.047/0.014
Nexus H 0.943/0.013 0.041/0.014 0.074/0.021
Nexus B 0.969/0.009 0.023/0.012 0.041/0.016

or located inside a still bag (B), which could be placed on
the knee or on a rack. As we mentioned in Sect. 2, an ad-
versary can distinguish the hardware of devices. He/she can
also know whether a smart device is being held in someone’s
hand or is inside a bag by reading the ambient light sensor
or proximity sensor.

4.1.2 Railway Route Maps and Timetables

While the coverage of collected sensor data is limited to
a certain location, we use entire train services operated in
Japan for building a train map. Table 4 summarizes the data
we collected. Note that a link l(A, B,Td,Ta, L) is defined in
Sect. 3.5. We also note that if we can further specify the res-
idential location of a victime, e.g., Kyoto area, the amount
of data and candidate routes can be further reduced.

4.2 User Activities Detection

We applied our user activities detection scheme to the data
shown in Table 5. The parameters of random forest were
empirically optimized as n = 50 and m = 4, where n is the
number of trees and m is the number of features used for
each tree. To assess the generalization of the result, we em-
ployed 10-times, 10-fold cross-validation tests. We focused
on the accuracy of detecting vehicles because it plays a cru-
cial role in determining the departure/arrival time sequence.
If a block of vehicle was incorrectly classified as walk or
others, we defined it as a false negative. If a block of walk
or others was classified as vehicle, we define it was false
positive.

Table 6 summarizes the results. We noticed that clas-
sification accuracies are generally good in all the cases. We
also noticed that measurement types of H, i.e., a device was
inside a still bag, gave better accuracies. The result is intu-

Table 7 Absolute errors between detected times and observed (ground
truth) times; departure (top) and arrival (bottom). m and σ are mean and
standard deviation, respectively.

absolute errors of detected departure times.
Data min (sec) max (sec) m (sec) σ

HTC H 1.97 3.54 2.79 0.46
HTC B 2.04 3.06 2.53 0.23
Nexus H 2.33 7.94 4.60 1.84
Nexus B 1.55 2.76 2.17 0.24

absolute errors of detected arrival times.
Data min (sec) max (sec) m (sec) σ

HTC H 2.52 6.75 4.13 1.18
HTC B 1.71 4.63 3.21 0.77
Nexus H 3.07 10.78 6.03 2.22
Nexus B 2.22 5.16 3.43 0.80

Fig. 5 Distributions of difference between observed and scheduled
times. Departure times (top) and arrival times (bottom).

itively natural because holding a smart device by hand may
introduce motion noise.

4.3 Departure/Arrival Time Sequences Detection

Next, we applied our departure/arrival time sequence de-
tection algorithm to the extracted user activities. For each
dataset, we picked up departure/arrival time sequences of 30
stations. The 30 samples are divided into a training set and a
test set. Using the training set, the parameter of EWMA, λ,
was optimized so that the difference between the detected
departure/arrival time and observed departure/arrival time
is minimized. Note that “detected” times are derived from
sensors, “observed” times are manually labeled ones, and
“scheduled” times are derived from a timetable correspond-
ing to a train. To evaluate the performance, we employed
10-times, 3-fold cross-validation tests; i.e., 30 samples are
randomly divided into 20 samples for a training set and 10
samples for a testing set, using different random seeds. Ta-
ble 7 summarizes the absolute errors between detected and
observed departure/arrival times. Note that observed depar-
ture/arrival times are not necessarily the scheduled times
listed in timetables. The difference between the observed
and scheduled times is shown in Fig. 5.

As we see, the detected departure/arrival times are
close to the observed departure/arrival times. Maximal time
differences are less than 3-11 seconds. On average, time dif-
ferences are roughly smaller than 6 seconds. This amount
of error has little impact on the overall estimation accu-

1686
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

racy because our route detection, which makes use of train
timetable, can allow up to 30 seconds of difference between
the detected time and scheduled time.

In addition, the observed departure/arrival times are
also close to the scheduled times. Roughly 85% of trains de-
part within 60 seconds after the scheduled time has passed.
Roughly 75% of trains arrived within 30 seconds around the
scheduled time.

In summary, the detected departure/arrival times by the
RouteDetector framework are close to the observed depar-
ture/arrival times, which are close to the scheduled times. In
the next subsection, we show how we search routes given the
detected departure/arrival time sequences. We also present
several case studies in Sect. 5.

4.4 Candidate Routes Detection

While the evaluation of departure/arrival time detection
scheme required empirical data, the evaluation of the can-
didate routes detection algorithm can be generalized by ex-

Fig. 6 Number of links vs. number of candidate routes.

ploring paths on a train graph†. Using the train graph con-
structed from the data shown in Table 4, we study the rela-
tionship between the number of links and the number of cor-
responding candidate routes. Figure 6 shows the results. (a)
includes no line change, (b) includes one line change, and
(c) includes two line changes, respectively. In (a), we can
see that average number of identified routes becomes close
to one if the number of stations used on a trip is more than
six; i.e., if we observe more stations, the sequence of depar-
ture/arrival times become more unique. Even if the number
of links is one, roughly 50% of time sequences Td,Ta have
less than four candidate routes. In addition, as shown in the
panels (b) and (c), the RouteDetector can cope with a train
trip with multiple line changes. We also see that if a train
trip includes line change(s), the number of candidate routes
becomes smaller, indicating line changes allows us to fur-
ther narrow down the number of candidate routes.

Next, we study how quickly the search algorithm
works. From the entire train graph, we first enumerate the
routes whose lengths are less than 15 links, where we al-
lowed, at most, two line changes. The number of enumer-
ated routes was 6, 404, 455, 757. Using the C++ implemen-
tation of the algorithm that runs on a commodity PC, all
these routes were searched within 74 mins. On average,
a route was searched within 7.1 microseconds. Thus, the
candidate routes detection worked quickly even though the
scale of the train graph was huge.

5. Case Study

In this section, we demonstrate the feasibility of the Rout-
eDetector framework through the field experiments. Using
sensor data collected from smartphone or tablet, we try to
identify a route used for a trip. For brevity, we present three
typical cases below. Figure 7 presents a map of lines used
for the case study.

Fig. 7 Map of lines used for case study analysis.

†Because enumerating all the possible paths on a train graph
could cause an explosion of states, we limit our search to the paths
with lengths less than 15 stations.

WATANABE et al.: TRACKING THE HUMAN MOBILITY USING MOBILE DEVICE SENSORS
1687

Table 8 Detected/observed/scheduled times for case 1. Detected and
observed times are rounded.

activities detected observed scheduled

walking etc. –
departure 10:56 10:56 10:56
arrival 10:58 10:58 10:58
departure 10:58 10:58 10:58
arrival 11:00 11:00 11:00
departure 11:00 11:00 11:00
arrival 11:03 11:03 11:03
walking etc. –
departure 11:10 11:10 11:10
arrival 11:12 11:12 11:12
departure 11:12 11:12 11:12
arrival 11:14 11:14 11:14
walking etc. –

Table 9 Two identified routes for case 1.

No. ground truth route #1 route #2

1 Kokkai-gijido-mae Kokkai-gijido Edogawabashi
2 Kasumigaseki Kasumigaseki Gokokuji
3 Ginza Ginza Higashi Ikebukuro
4 Tokyo Tokyo Ikebukuro

transfer
4 Tokyo Tokyo Ikebukuro
5 Kanda Kanda Kanamecho
6 Akihabara Akihabara Sengawa

score – 2,664 2,277

Fig. 8 Detected activities of the case 2.

(1) Case 1

In this case, the train trip involved two lines, Yamanote line
and Marunouchi line as shown in Fig. 7. Figure 3 presents
the measured/derived data for the case 1. From Fig. 3 (e),
we detected departure/arrival time sequence. The results are
summarized in Table 8. As we see, all the detected depar-
ture/arrival times were correctly detected. Next, given this
time sequence, we search the corresponding routes. The re-
sult is shown in Table 9, which shows two routes are iden-
tified. Of the identified two routes, the route #1 had higher
score and was identical to the ground truth. Thus, the Rout-
eDetector successfully detected a route used for a train trip
from sensor data.

(2) Case 2

The case 2 was measured at Yamanote line. There was
no transferring lines. The origin/destination stations were
Tabata station and Kanda station, respectively. The trip
involved 8 stations. Figure 8 presents the detected ac-
tivities and departure/arrival time sequence. In this case,
the detected departure/arrival times were correctly detected.

Fig. 9 Detected activities of the case 3.

Table 10 Detected/observed/scheduled times for case 3.

activities detected observed scheduled

walking etc. –
departure 21:27 21:27 21:26
arrival 21:29 21:29 21:28
departure 21:30 21:30 21:28
arrival 21:32 21:32 21:32
departure 21:33 21:33 21:32
arrival 21:35 21:35 21:35
departure 21:35 21:35 21:35
arrival 21:37 21:37 21:37
departure 21:37 21:37 21:37
arrival 21:39 21:39 21:39
walking etc. –

Given the time sequence, a unique route was identified. The
identified route was identical to the ground truth.

(3) Case 3

The case 3 was measured at Fukutoshin Line. Again, there
was no transferring lines. The origin/destination stations
were Nishi Waseda station and Shibuya station, respectively.
In this case, while the detected departure/arrival times were
identical to the observed times, they were slightly different
from the scheduled time; i.e., the train was delayed at the
time of measurement. We will discuss the issue of train
operation in the next section. Given the detected time se-
quence, no train route was identified from the train graph.

6. Discussion

In this section, we discuss several limitations of the Rout-
eDetector framework. We also discuss countermeasures
against the new threat brought by the RouteDetector frame-
work.

6.1 Limitations

(1) Types of Vehicles

While the target of this work was passenger trains, there are
other types of transportation services, such as monorails or
airplanes. If we can assume that vehicles are operated ac-
curately according to timetable schedules, we may have a
good chance to detect a route used for a trip.

We conjecture that the RouteDetector will not work
well for automobile transport services such as public bus
transportation because an automobile makes a stop irregu-
larly on the street, e.g., a traffic light. Figure 10 shows the
vehicle activity which we detected with the field experiment

1688
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Fig. 10 Detected vehicle activities for a bus trip. The intervals marked
with diamonds represent the waiting time for a red traffic light; the intervals
marked with circles represent the waiting time at a bus stop.

of the bus trip. We also marked the times waiting for traffic
lights and stopping at bus stops. Hence we could not find a
difference between them from their interval times, the Rout-
eDetector failed to detect accurate times which the bus made
a stop at bus stops. It may become distinguishable by using
other hints such as the audio announcement for passengers.
We leave the issue for future work.

(2) Train Operation

Clearly, the success of the RouteDetector framework relies
on the accuracy of the train operation. The detection accu-
racy may be limited in an environment where many trains
tend to be delayed. For such a case, we need to study up
to what amount of delay the attack works. To this end, we
could artificially add a random delay and see how the frame-
work reacts. We leave the analysis for our future work. We
note that even in case of delay, some transportation systems
provide information in real-time. Such information could be
used to make the system more tolerant to delay.

We also note that by continuously targeting a victim, an
adversary can obtain multiple observations, which likely in-
clude the correct estimations; e.g., commuting routes. Thus,
by collecting many candidate routes used by a target, an ad-
versary can figure out locations frequently visited by the tar-
get in a statistical way.

(3) Cross-Device Differences

Our thread model assumes that an adversary knows the type
of hardware to be attacked; i.e., he/she needs to have train-
ing data for detecting user activities for each device. In fact,
we found that a random forest classifier trained to work with
smartphone data did not work well for detecting the activ-
ities of tablet users. This observation suggests that a dif-
ference in hardware sensors is sensitive to the user activity
detection scheme. One approach to this problem is to pre-
pare training models for various devices. Another possible
approach is to apply some data-processing techniques that
can absorb the differences in the measurements of sensor
values. We leave the issue for our future work.

6.2 Countermeasures

Let us discuss some ways to mitigate or eliminate the risk
caused by the attacks using the RouteDetector framework.
Michalevsky et al., presented Gyrophone [7], which is an
attack that recognizes speech by reading gyroscope. They
mentioned countermeasures in their paper that apply low-
pass filtering to the raw samples provided by sensors. If
certain pass frequencies are enough for most of the appli-

cations, the filtering can be done without negative effects.
In addition, they mentioned that it should be controlled by
permission mechanisms or certain explicit authorization by
the user when certain applications require an unusually high
sampling rate. In the same way, restricting access to raw
sensor data and building some filtration mechanism that can
remove sensitive information without sacrificing other func-
tions would be promising approaches as countermeasures
against the attack with RouteDetector. For instance, to build
a pedometer app, a developer can use a specific API that can
retrieve step counts, instead of reading row sensor values
of accelerometer. Thus, building wrapper APIs that provide
many useful functions, while hiding raw data, is a promising
approach to thwart sensor-based side-channel attacks.

7. Related Work

Techniques of sensor data analysis on mobile devices are
mainly used for extending the range of application of mo-
bile services, e.g., activity recognition and location-based
services. On the contrary, attackers can expose user’s pri-
vacy by using above similar techniques analyzing sensor
data. We introduce techniques for both benign and mali-
cious uses.

(1) Location inference and route tracing techniques

There exist some studies which aim to identify user’s po-
sition without GPS. An indoor positioning system (IPS) is
presented as a solution to detect/navigate objects or people
inside a building [12]. Instead of using GPS, IPS techniques
make use of other information sources such as radio wave,
acoustic signals, and optical signals. As an example of ma-
licious use of the positioning technique, Michalevsky et al.
demonstrated that their developed PowerSpy application en-
ables the attacker to infer the target device’s location over
those routes or areas by simply analyzing the target device’s
power consumption [9].

Also, a few works have focused on location identifi-
cation by using the hardware-based sensors on mobile de-
vices. Hua et al. demonstrate that user’s location in subway
systems can be tracked by using an accelerometer and in-
formation of interval of stations [13]. They use an ensemble
interval classier built from supervised learning to infer the
riding intervals of the user. On the other hand, the RouteDe-
tector does not require training data for each station interval.
Note that building the training data requires time-consuming
manual effort because it requires collecting data along all
possible paths. Our approach requires only railway route
maps and timetables, which are both accessible open data.
Thus, our approach can cover nation-wide locations with-
out requiring large effort in building training data. Narain
et al. showed that Android app can infer routes of automo-
bile travel without any permissions [14]. They modeled this
problem as a maximum likelihood route identification on a
graph which is generated from a street map. What is com-
mon in these studies is that the accuracy of location identi-
fication may decrease when the targeted area is expanded.

WATANABE et al.: TRACKING THE HUMAN MOBILITY USING MOBILE DEVICE SENSORS
1689

To demonstrate the feasibility in large scale, we evaluated
a candidate route detection algorithm with a large railway
map. Using timetables and route maps for 9,090 stations,
we showed that the number of candidate routes greatly de-
creases.

In addition, there is a work that aims to extract more
privacy sensitive information from GPS data. Tsoukaneri et
al. developed Comber [15], which estimate user paths from
anonymized mobility data. Comber is a system that iden-
tifies users and their corresponding paths given the com-
pletely anonymized GPS data as input.

(2) Device fingerprinting

A device fingerprinting is other positive usage of sensors
to identify and authenticate physical devices. Many stud-
ies reported that various IDs on a smartphone, e.g., IMEI
(device ID), are easily stolen by malicious apps. To thwart
ID-theft, Dey presented AccelPrint, which is a system that
fingerprints based on the accelerometer, in order to iden-
tify devices without any specific ID or cookie [6]. Das et
al. also discussed the feasibility of using sensors embedded
in smartphones, i.e., microphones and speakers, to uniquely
identify individual devices [8].

(3) Activity Recognition

The CenceMe system developed by Miluzzo et al. [16] com-
bines the inference of individuals’ activity using sensors’
information with sharing of it through social networking
services. To classify activities (sitting, standing, walking,
running) of individuals, the preprocessor of CenceMe cal-
culates the mean, standard deviation, and number of peaks
of the accelerometer readings along the three axes of the
accelerometer. RouteDetector’s activity detection scheme is
similar to this one, but it is extended to capture the motion of
vehicles. RouteDetector also uses other hardware sensors,
such as a magnetometer and gyroscope, which also play a
key role in improving detection accuracy.

The accelerometer sensor provides an attacker with
other opportunities to build new attacks. Many attacks tar-
geting motion sensors, i.e., accelerometers and gyroscopes,
that are embedded in smartphones are inferring user inputs,
e.g., passwords on touch-screens by monitoring readings
collected from motion sensors [2]–[5].

(4) Sensor Access Control

Although various kinds of sensor information contribute to
extend and improve mobile computing and services, pri-
vacy issues have already been exposed as mentioned above.
One of the most practical defenses is access control to
sensor data. Unnecessary access by apps to sensor data
should be controlled by OS or middleware on a device.
FlaskDroid [17] and ipShield [18] are implemented as mid-
dleware on Android OS and provide fine-grain access con-
trol mechanism to resources including sensor information.

8. Conclusion

A novel, proof-of-concept side-channel attack framework
called RouteDetector was introduced. The key idea behind
the framework is to leverage spatio-temporal regularity of
human mobility; i.e., we targeted passengers of train sys-
tems. Our field experiments demonstrated that the Rout-
eDetector framework detected departure/arrival times of ve-
hicles with errors less than 6 seconds on average. Our ex-
tensive simulation experiments using timetables and route
maps for 9,090 railway stations of 172 railway companies
demonstrated that the RouteDetector successfully identified
routes used for a trip by train, and the average number of
identified routes became close to one if the number of sta-
tions used on a trip was more than six. These results quanti-
tatively support that the attack is feasible.

Acknowledgments

A part of this work was supported by JSPS Grant-in-Aid
for Challenging Exploratory Research (KAKENHI), Grant
number 15K12038

References

[1] T. Watanabe, M. Akiyama, and T. Mori, “Routedetector: Sensor-
based positioning system that exploits spatio-temporal regularity of
human mobility,” 9th USENIX Workshop on Offensive Technolo-
gies (WOOT 15), Washington, D.C., USENIX Association, Aug.
2015.

[2] L. Cai and H. Chen, “TouchLogger: Inferring Keystrokes On Touch
Screen From Smartphone Motion,” The 6th USENIX Workshop on
Hot Topics in Security (HotSec), 2011.

[3] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Password Inference using Accelerometers on Smartphones,” The
Twelfth Workshop on Mobile Computing Systems and Applications
(HotMobile), 2012.

[4] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring User Inputs on
Smartphone Touchscreens Using On-board Motion Sensors,” The
fifth ACM conference on Security and Privacy in Wireless and Mo-
bile Networks, pp.113–124, 2012.

[5] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R.R. Choudhury,
“TapPrints: Your Finger Taps Have Fingerprints,” The 10th Inter-
national Conference on Mobile Systems, Applications, and Services
(MobiSys), pp.323–336, 2012.

[6] S. Dey, N. Roy, W. Xu, R.R. Choudhury, and S. Nelakuditi, “Accel-
Print: Imperfections of Accelerometers Make Smartphones Track-
able,” The 2014 Network and Distributed System Security (NDSS)
Symposium, 2014.

[7] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recogniz-
ing Speech from Gyroscope Signals,” The 23rd USENIX Security
Symposium, 2014.

[8] A. Das, N. Borisov, and M. Caesar, “Do You Hear What I Hear?:
Fingerprinting Smart Devices Through Embedded Acoustic Com-
ponents,” The 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp.441–452, 2014.

[9] Y. Michalevsky, G. Nakibly, A. Schulman, and D. Boneh, “Power-
spy: Location tracking using mobile device power analysis,” CoRR,
vol.abs/1502.03182, 2015.

[10] M.C. González, C.A. Hidalgo, and A.L. Barabási, “Understand-
ing individual human mobility patterns,” Nature, vol.453, no.7196,
pp.779–782, June 2008.

http://dx.doi.org/10.1145/2162081.2162095
http://dx.doi.org/10.1145/2185448.2185465
http://dx.doi.org/10.1145/2307636.2307666
http://dx.doi.org/10.14722/ndss.2014.23059
http://dx.doi.org/10.1145/2660267.2660325
https://arxiv.org/abs/1502.03182
http://dx.doi.org/10.1038/nature06958

1690
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

[11] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Sok: Sys-
tematic classification of side-channel attacks on mobile devices,”
arXiv preprint arXiv:1611.03748, 2016.

[12] Y. Gu, A. Lo, and I. Niemegeers, “A Survey of Indoor Positioning
Systems for Wireless Personal Networks,” IEEE Communications
Surveys & Tutorials, pp.13–32, 2009.

[13] J. Hua, Z. Shen, and S. Zhong, “We can track you if you take the
metro: Tracking metro riders using accelerometers on smartphones,”
CoRR, vol.abs/1505.05958, 2015.

[14] S. Narain, T.D. Vo-Huu, K. Block, and G. Noubir, “Inferring user
routes and locations using zero-permission mobile sensors,” 2016.

[15] G. Tsoukaneri, G. Theodorakopoulos, H. Leather, and M.K. Marina,
“On the inference of user paths from anonymized mobility data,”
2016 IEEE European Symposium on Security and Privacy (Eu-
roS&P), pp.199–213, IEEE, 2016.

[16] E. Miluzzo, N.D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi,
S.B. Eisenman, X. Zheng, and A.T. Campbell, “Sensing Meets Mo-
bile Social Networks: The Design, Implementation and Evaluation
of the CenceMe Application,” The 6th ACM conference on Embed-
ded network sensor systems (SenSys), pp.337–350, 2008.

[17] S. Bugiel, S. Heuser, and A.R. Sadeghi, “Flexible and Fine-Grained
Mandatory Access Control on Android for Diverse Security and Pri-
vacy Policies,” The 22nd USENIX Security Symposium, 2013.

[18] S. Chakraborty, C. Shen, K.R. Raghavan, Y. Shoukry, M. Millar,
and M. Srivastava, “ipShield: A Framework For Enforcing Context-
Aware Privacy,” The 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2014.

Takuya Watanabe recieved M.E. degree in
computer science and engineering from Waseda
University, Japan in 2016. Since joining Nippon
Telegraph and Telephone Corporation (NTT) in
2016, he has been engaged in research and de-
velopment of mobile security. He is now with
the Cyber Security Project of NTT Secure Plat-
form Laboratories.

Mitsuaki Akiyama received the M.E. de-
gree and Ph.D. degree in Information Science
from Nara Institute of Science and Technology,
Japan in 2007 and 2013, respectively. Since
joining Nippon Telegraph and Telephone Cor-
poration NTT in 2007, he has been engaged in
research and development of network security,
especially honeypot and malware analysis. He
is now with the Cyber Security Project of NTT
Secure Platform Laboratories.

Tatsuya Mori is currently an associate
professor at Waseda University, Tokyo, Japan.
He received B.E. and M.E. degrees in applied
physics, and Ph.D. degree in information sci-
ence from the Waseda University, in 1997, 1999
and 2005, respectively. He joined NTT lab in
1999. Since then, he has been engaged in the re-
search of measurement and analysis of networks
and cyber security. From Mar 2007 to Mar 2008,
he was a visiting researcher at the University of
Wisconsin-Madison. He received Telecom Sys-

tem Technology Award from TAF in 2010 and Best Paper Awards from
IEICE and IEEE/ACM COMSNETS in 2009 and 2010, respectively. Dr.
Mori is a member of ACM, IEEE, IEICE, IPSJ, and USENIX.

https://arxiv.org/abs/1611.03748
http://dx.doi.org/10.1109/SURV.2009.090103
https://arxiv.org/abs/1505.05958
http://dx.doi.org/10.1109/SP.2016.31
http://dx.doi.org/10.1109/EuroSP.2016.25
http://dx.doi.org/10.1145/1460412.1460445

