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SUMMARY  Recently, the join processing of large-scale datasets in
MapReduce environments has become an important issue. However, the
existing MapReduce-based join algorithms suffer from too much overhead
for constructing and updating the data index. Moreover, the similarity com-
putation cost is high because the existing algorithms partition data without
considering the data distribution. In this paper, we propose two grid-based
join algorithms for MapReduce. First, we propose a similarity join algo-
rithm that evenly distributes join candidates using a dynamic grid index,
which partitions data considering data density and similarity threshold. We
use a bottom-up approach by merging initial grid cells into partitions and
assigning them to MapReduce jobs. Second, we propose a k-NN join query
processing algorithm for MapReduce. To reduce the data transmission cost,
we determine an optimal grid cell size by considering the data distribution
of randomly selected samples. Then, we perform kNN join by assigning the
only related join data to a reducer. From performance analysis, we show
that our similarity join query processing algorithm and our k-NN join algo-
rithm outperform existing algorithms by up to 10 times, in terms of query
processing time.

key words: MapReduce based join query processing, similarity join algo-
rithm, k-NN join algorithm, grid partitioning method

1. Introduction

Recently, the amount of public data has been rapidly in-
creasing due to the popularity of Social Networking Ser-
vices (SNS) and the development of mobile technology.
The increasing volume of data has triggered new challenges
about how to efficiently analyze big data. Enterprises and
governments analyze this data and leverage them to support
effective decision making and marketing. Analytical join
queries have become important issues due to their applica-
bility to decision making applications [1]—[3].

For such data-intensive applications, the MapReduce
framework [4], [5] has attracted much interest as a new data
processing framework. The MapReduce [5] application in-
troduced by Google is used to perform large-scale data pro-
cessing in a distributed manner. Consequently, there has
been substantial research on analytical join query processing
in MapReduce for large datasets. However, because some
applications need to handle a vast amount of data, there are
three key challenges to be addressed. First, because the size
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of the data set is huge, the data must be partitioned and pro-
cessed in a distributed manner. Hence, workload-aware data
partitioning techniques are required. These ensure the bal-
ance of not only the input data but also the output of each
machine. Second, a sophisticated filtering technique is re-
quired because the number of comparisons grows dramat-
ically as dataset size and dimensions increase. Finally, a
main issue in processing a join query on MapReduce is how
to support join operations efficiently over multiple datasets.
Thus, it is necessary to design both data partitioning and job
assignment in a sophisticated manner to perform join oper-
ations on multi-dimensional datasets efficiently.

Among join query processing algorithms, similarity
join and k-NN join are widely studied as primitive opera-
tions for data analysis. There has been intense research that
attempts to process the similarity and k-NN join queries on
MapReduce [6]-[15]. In order to reduce the size of join can-
didates, the existing work utilizes a data partitioning scheme
for proximity search. However, the existing approach has
two main problems. First, the existing data partitioning
schemes may cause skewing of data in some partitions, re-
sulting in high data duplication among clusters. Second,
they require high computation cost for constructing and up-
dating the data index. In particular, Voronoi diagram-based
and tree-based data partitioning schemes are not suitable for
the MapReduce environment.

In this paper, we propose novel MapReduce-based join
query processing algorithms that efficiently find a set of join
results in a large dataset by reducing the number of candi-
dates prior to the join computation. For this, we make use of
a grid index that divides data into partitions and filters out
unnecessary join candidates. We propose two algorithms
for join operations on MapReduce. First, we propose a grid-
based similarity join query processing algorithm. To deter-
mine a grid partitioning threshold, we compute distances
among data samples. For this, the data space is primarily
divided into equal-sized regions for each dimension and the
number of data is counted for the regions. We finally per-
form data partitioning such that the difference between the
number of data in a partition and the number of data in an-
other partition is the minimum. Moreover, to guarantee the
correctness of the similarity join result, we allow overlap
between partitions. Each partition stores the data in an area
that can be expanded by a similarity threshold. Thus, all the
data within the similarity threshold for each partition can be
assigned to the same reducer. Second, we propose a grid-
based k-NN join query processing algorithm on MapRe-
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duce. In the first MapReduce phase, our algorithm parti-
tions the data in R and S into grid cells. To reduce the data
transmission cost, we determine an optimal grid cell size by
considering the data distribution of randomly selected sam-
ples. In the second MapReduce phase, the mapper retrieves
the neighboring grid cell §; in § for each R; in R. All ob-
jects in a set of R; and their neighboring objects in S ; are
assigned to the same reducer. The reducer performs kNN
joins for a set of R; and a set of S ;, thus reducing the data
transmission and computation overheads.

The rest of the paper is organized as follows. Section 2
presents related work on similarity joins and k-NN joins.
In Sect. 3, we propose our grid-based join query process-
ing algorithms. Section 4 provides the performance analysis
of the proposed algorithms with experimental results. The
conclusions and anticipated future work are given in Sect. 5.

2. Related Work
2.1 Similarity Join Algorithms on MapReduce

The goal of similarity join is to find all pairs of records that
have scores greater than a predefined similarity threshold (6)
under a given similarity function. The similarity join [S]—
[11] is an essential operation in a variety of applications, in-
cluding record linkage, near duplicate detection, document
clustering, marketing, analysis, and data cleaning and inte-
gration. Definition 1 shows the definitions of similarity join.

Definition 1. Similarity join

Given two datasets R and S, a similarity function sim,
and a similarity threshold (6), the similarity join algorithm
retrieves all pairs of records (r, s) where their similarities are
no smaller than the given threshold.

RS ={(r,s)|Vr e R, Vs €S, sim(r,s) > 6}

A similarity join using a MapReduce job was first stud-
ied by Okcan and Riedewald [10]. The proposed algorithm
(1-Bucket-Theta) uses a matrix to map regions for the as-
signment of balanced reduce tasks. The algorithm follows
a randomized process to assign incoming tuples from S/R
to a random row/column. The approximate equi-depth his-
tograms of the inputs are constructed using two MapReduce
jobs and are exploited to identify empty regions in the ma-
trix. Turning a matrix-to-reducer mapping into a MapRe-
duce algorithm is conceptually straightforward. For an in-
coming S-tuple, the map function finds all regions intersect-
ing the row corresponding to the tuple in the matrix. For
each region, it creates an output pair consisting of the re-
gion key and the tuple.

Recently, A.D. Sarma et al. [11] proposed a ClusterJoin
to compute similarity joins based on metric distance func-
tions in MapReduce. It can perform a similarity join along
with various similarity measures including Euclidean dis-
tance, cosine similarity and Hamming distance. The Clus-
terJoin algorithm makes two key contributions. First, it de-
signs a general filter that can prune away candidate pairs
without actually computing their similarities. Second, the
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ClusterJoin algorithm proposes a dynamic load balancing
scheme that is adaptive to data distribution with good load
balancing. However, there is a high probability that the
ClusterJoin data skewness is not fully solved when the data
density is high. Furthermore, a bisector-based clustering al-
gorithm using randomly sampled data may cause high data
duplication among clusters.

2.2 k-NN Join Algorithms on MapReduce

The kNN join algorithm finds k closest pairs of data based
on the distances [12], [13], [13]-[15]. For example, a pair
(r, s) is returned such that s is the k-closest neighbor of r. In
general, Euclidean distance and vector distance are widely
used for the distance computation. Definition 2 shows the
concept of a k-NN join.

Definition 2. k-nearest neighbor(k-NN) join

Given two datasets R and S and a constant k, the k-NN
join algorithm integrates each r and its k-NN(r, S).

RS ={(r,s)[¥r € R, Vs € kNN(r, S)}

where kKNN(r, §) is a set of data to satisfy the following
condition. Here, |r, s| refers to the distance between objects
rands.

Yo € kKNN(r, S), ¥s € S — kKNN(r, S), |o,1] < |s, 1]

Here, we introduce the existing k-NN join algorithms
processing large-scale data on MapReduce. First, C. Zhang
et al. recently proposed a k-NN join algorithm using a block
nested loop join (H-BNLJ) on MapReduce [15]. The algo-
rithm partitions two datasets R and S into blocks of equiva-
lent size of {Ri, Sj} (Ri CR, §;cC S), every possible pair is
assigned to a bucket at the end of the map phase. Then, each
reducer reads data in a bucket and performs a kNN join be-
tween R; and S ;. Second, C. Zhang et al. also proposed the
H-zkNNIJ algorithm [15] that utilizes one-dimensional map-
ping (i.e., z-order). The H-zkNNJ works in three MapRe-
duce phases. In the first phase, the random copies of tuples
inRand § are shifted and the partitions R; and § ; are gener-
ated. In the second phase, a pair of R; and § ; is assigned to
a block such that the algorithm finds a candidate k nearest-
neighbor set from S ; for each object r € R;. In the third
phase, the real k nearest neighbors are simply derived from
the candidate set.

Finally, W. Lu et al.[13] proposed a kNN join algo-
rithm called Partitioned and Block based Join (PGBJ). The
PGBJ algorithm requires a preprocessing phase and two
rounds of MapReduce phases to complete a join query. In
the preprocessing phase, it randomly selects a set of pivot
objects from the input dataset R to create Voronoi-based
data partitions. The cell information table is then generated
to store Voronoi cell information, including the border and
neighboring cell information. In the first MapReduce job,
a map function takes the selected pivot objects and assigns
dataset R (or §) to their nearest pivots. The mappers com-
pute statistical information about each partition R; and store
it in the HDFS. In the second MapReduce job, a map func-
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tion finds the subset of S; from S for the partitions R; in
R. Each reducer performs the kNN join between a pair of R;
and S ;. For computing a kNN join, the PGBJ algorithm read
only data in neighboring Voronoi cells from a query, instead
of reading the whole dataset. However, VKNN-join requires
high computational cost for constructing and updating the
Voronoi cells. Moreover, VKNN-join suffers from too much
overhead because it utilizes an R-tree index that is not suit-
able for the MapReduce environment.

2.3 Analysis of Join Algorithms for MapReduce

Generally, the cost of communication between map and re-
duce phases is the most dominant cost of a map-reduce join
algorithm. Notice that in an instance of the join problem,
not all the inputs will be present. That is, the relations R and
S will be subsets of all the possible tuples, and the output
will be those triples (a, b, ¢) such that both R(a, b) and S(b,
c) are actually present in the input data. To retrieve genuine
join results, all possible subsets of R and S should be sent
to mappers/reducers. Hence, some data will be duplicated
and sent to multiple mappers/reducers. Consequently, it is
crucial to find the minimum subsets of R and S for a join
operation to reduce the data replication [19]. The data repli-
cation indicates the average number of key-value pairs that
the mappers create from each input. In this paper, we focus
on sophisticated grid-based data partitioning schemes that
can reduce the data replication for join candidates. In the
following, analysis of the join algorithms on MapReduce
is provided based on five important factors that influence
the query processing performance. First, pre-processing can
provide a fast overview of the underlying data distribution or
input statistics. Pre-processing may require one or multiple
MapReduce jobs, which entails extra costs. Second, pre-
filtering is employed to early discard input records that can-
not be in the final join result. Third, partitioning is one of the
most important factors because input tuples are assigned to

Table1  Comparison of join algorithms
. Pre- | Pre- . .| Load-
Algozlthm proces | filterin |Partitioning Re;:)l:lcatl balanci
sing g ng
1-Bucket- Cover join
theta [10] No No matrix Yes Bounds
ClusterJoin | Sampli| 2D Anchor- Yes 2D
Similari|[11] ng |hashing based hashing
-ty join Dimensi
Our on- Variable- Density-
algorithm i compre | sized grid L based
ssion
H-BNLJ Shifted 16 antite
No No bucket copies of
[15] -based
RS
Shifted .
KNN H-zkNNJ No No Z-value copies of Quantile
L. [15] based -based
join R, S
PGBJ [13] Indexi No Vf)ronm— Adjacent No
ng diagram cells
Our Sampli . Adjacent | Density-
algorithm ng O Gy data based
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partitions being distributed to Reduce tasks for join process-
ing. Fourth, the replication (or duplication), of input tuples
over multiple Reduce tasks is required to produce the correct
join result in a parallel fashion. Finally, the load balancing
of Reduce tasks is an important one because the overall job
completion time depends on the slowest Reduce task. The
comparison of join algorithms is provided in Table 1.

3. Grid-Based Join Algorithms for MapReduce
3.1 Motivations

The problem of choosing the optimal grid size for join pro-
cessing is very important for achieving good performance in
parallel grid-based algorithms. To tackle the problem of un-
balanced computational and communicational workload in
a MapReduce framework, dense data regions must be cov-
ered by a higher number of cells to contain fewer objects in
a cell. For join processing, multi-dimensional equi-height
histograms lead to the almost uniform distribution of ob-
jects for grid cells. Because the construction of equi-height
histograms is, however, computationally expensive, we pro-
pose a heuristic solution for MapReduce. In Table 2, we
summarize the symbols used in this paper.

3.2 Grid-Based Similarity Join Algorithm for MapReduce
3.2.1 Opverall Processing Flow

Our similarity join algorithm contains a preprocessing step
and a MapReduce job. First, in the preprocessing step, our
algorithm generates a histogram by selecting sample data.
For this, we divide data R and S into equal-sized regions
for each dimension and count the number of data in each
region. Then, we perform data partitioning such that the
difference between the number of data in a partition and the
number of data in another partition is the minimum. For
this, we merge the small grid into join partitions. Moreover,
to guarantee the correctness of the join result, we allow over-

Table 2 Symbols used in join algorithms

Symbols Meaning

Database relation

d Dimensionality of the complete dataset
n Number of grid sections in a dimension
n Number of grid cells for all dimension d

Set of dimensions in similarity join

D . .
= dimension group
k Number of a dimension group
£k & range in a dimension group k
dist An L,,-norm based distance function
.. A group of data located in a set of cells to be
partition .
joined
PID Partition ID
k-NN Number of nearest neighbor points to retrieve
RS A similarity join of dataset R and S with
&

similarity threshold &
A KNN-join of dataset R and S

R ™y yy S
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Fig.1  Splitting of d-dimensional space into dimension groups

lap between partitions and expand a partition based on the
similarity threshold. Thus, all the data within the similar-
ity threshold can be assigned to the same reducer. Finally,
mappers receive pairs of similar data partitions for joins and
generate intermediate results by converting those into <key,
value> pairs. In the reduce phase, a pair of similar data par-
titions are joined and the final result is sent to users.

3.2.2  Similarity Join Algorithm Using Variable-Length
Grid

To efficiently perform similarity joinfor mult-dimensional
datasets, the d-dimensional space is projected to multiple
subspaces of different size. Our grid-based similarity join
algorithm (GSJ-MR) calculates the candidate sets of objects
in each subspace. Duplicate pairs are removed while merg-
ing the join results from subspaces. The union of the candi-
date sets guarantees the correct similarity join result because
our algorithm can retrieve all neighboring cells of the query
cell.

Instead of performing the similarity join between
datasets R and S with d-dimensional space, we split the di-
mensions into k dimension groups such that 2k < d < 3%k
(Definition 3, and then join objects in each dimension group.
The concept of dimension group is shown in Fig. 1.

Definition 3: (Dimension groups) Let R be the do-
main and D = {Dy,..., Dy} a set of disjoint subsets with

le D; ={1,...,d}. We call D; a dimension group.

In the first step, a d-dimensional space is divided into
multiple different-sized subspaces. In order to reduce the
high computational complexity, we combine at most 3-
dimensions into the joining subspaces. In each dimension
group, data is further partitioned into grid space of vari-
able size by considering data distribution. The main idea
of our partitioning method is that it divides the dimensional
space into sub-dimensional partitions using the underlying
data distribution and then computes the intersections among
partitions in each dimension. Hence, the intersection points
become the border points of a partition. Because the sub-
space has at most 3-dimensionality, our approach provides
both a cost-efficient computation of border area and better
load-balancing when compared to an equal-sized grid. As
a result, it is possible to suppress the enlargement of border
areas quickly under high-dimension data. For the given d-
dimensional data, when we generate subspace by grouping
3-dimensions, d/3 number of subgroups will be composed.
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In order to easily decide a border area, we divide each
dimensional space with a sufficiently-small bin size (e.g.,
1/10 of the similarity threshold), and calculate the number
of objects in each bin. According to the number of grid par-
titions (n) per dimension, we calculate the expected number
of objects per partition and then compute the near-optimal
partition size in a greedy way. That is, we start with the first
bin and contain the next bins in the partition until the num-
ber of objects in the partition reaches the expected thresh-
old. After the first partition is generated, we make the sec-
ond partition by including the following bins in the partition.
This procedure is terminated when the last bin is included in
a partition. The partitions so generated are expected to have
nearly equal numbers of objects per dimension. Because
the dimensional group has at most three dimensions, it is
possible to easily decide border areas by the combination of
partitions contained in a dimensional group. In the second
step, our similarity join algorithm calculates the candidate
sets of similar pairs in each subspace. The final refinement
step removes potential duplicate pairs. Our similarity join
algorithm obtains the similarity join result by merging the
candidate sets. All the steps are implemented as a single
MapReduce job.

Splitting the d-dimensional space into k subsets leads
to much smaller data replication (i.e., k - 21 , instead of 2d),
which enables the processing of high-dimensional spaces.
In the following, we assume that distsc(1,._4(p, q) is an Ly,-
norm based distance, which is generally used in the simi-
larity join for multi-dimensional data. For m > 1 in a sub-
space S, the distsc(1...a4(p,q) is computed as dists(p,q) =
V2ies Ipi — qil”

In the Map phase, we group data objects into join par-
titions using variable-length grids. Thus, for an object p in a
cell, all the objects in its e-neighborhood are located either
in the same cell or in one of the neighboring cells. Each
reducer R; is responsible for the home cell, ¢;. All objects
lying in a cell ¢; are sent to both the reducer R; and the re-
ducers of all adjacent cells, i.e., R; for ¢c; € NC(c;). Each
reducer computes not only the distances between the objects
in its home cell, but also the distances between the objects
in the home cell and the objects in neighboring cells. To
reduce data replication, each reducer considers the neigh-
boring cells with a smaller or equal ID in every dimension
because the other cells will be computed in different reduc-
ers. Because the number of neighboring cells having smaller
or equal ID in each dimension is equivalent to 2¢, our algo-
rithm can replicate data objects 2¢ times, instead of 3¢ times
when considering all neighboring cells.

When two objects p and g from neighboring cells are
processed in two separate reducers, our approach still suf-
fers from duplicated distance computation. To avoid this,
a reducer is required to differentiate between objects from
different neighboring cells. For this, we adopt bit code [16]
to identify the relative position of the object’s cell from
the home cell. The bit code consists of d bits for a d-
dimensional grid where each bit corresponds to one di-
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Algorithm 1. Similarity join algorithm

<Map phase>
Input : Query R, RealData S, N
Output : <RCell id, SCell id, pid, x, y>

1: for each tuple in R( or S)

2: insert data into Grid

3: return <Cid, pid, x, y>

4: Retrieve Neighboring Cell ids in a greedy way

<Reduce phase>
Input : cell group CGi of S, grid index of R
Output : similarity join result

For all

If bitcode <= maxFlag

If dist(p,q) <= €
Add p to the result candidate set
10: Aggregate all result candidate sets
11: Delete duplicate
12: Return Final Result

5
6
7: Compute dist(p, q)
8
9

mension. The home cell is represented as the bit code
‘Od’= 00...0 (d times). For the other cells, each bit indi-
cates whether the position of this cell deviates from that of
the home cell in the corresponding dimension. Using the bit
codes, a reducer can decide which cells can be skipped. For
example, when bit codes are depicted as red numbers in the
cells (Fig. 2), the upper-right green cell represents the home
cell with bit code 00. The thick bordered rectangles repre-
sent the sets of cells with the bit codes 01, 10 and 11. The bit
codes differ from the home cells’ for the dimensions where
the cells lie in different partitions. The arrows between the
cells indicate their distance calculation in the reducer of the
home cell.

Algorithm 1 shows the pseudo code of the MapReduce
phase. The map function computes a cluster for the cor-
responding dataset. The result of map phase is sent to the
reducer in the form of <cluster id, (PID, x, y)> (line 1-4).
Each datum in a cluster is compared with similar objects in
a reduce function (line 5-11). The result of the similarity
join is the union of the outputs of all reducers (line 12).

3.3 Grid-Based k-NN Join Algorithm for MapReduce
3.3.1 Overall Processing Flow

The main objective of our k-NN join is to process large-scale
data on MapReduce. The overall architecture of our k-NN
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Fig.3  Overall architecture of our k-NN join algorithm

join query processing algorithm is illustrated in Fig. 3. First,
in the preprocessing phase (Fig.3®), our algorithm ran-
domly selects pivots. For this, we divide data R and S into
chunks and send them to mappers for selecting pivots. In
the reduce step, our algorithm inserts the whole dataset into
the grid index and calculates the densities of all the cells.
Based on the cell density and the previous query history, we
decide an optimal grid size to perform a k-NN join. To find
the cells to be visited for a query, our algorithm stores the
ids of neighboring cells of each grid cell. Second, in the
first MapReduce phase (Fig. 3 @), our algorithm assigns the
data in the grid index and generates a summary table that
represents the data partitions (Fig.3®). Third, in the sec-
ond MapReduce phase (Fig. 3 @), the algorithm searches k
number of nearest neighbors from § for all data in R. Fi-
nally, the join result is sent to a query issuer (Fig. 3 ®).

3.3.2 Data Partitioning for Multi-Dimensional Data

In the preprocessing phase, we employ the Grid Order [17]
based on a Principal Components Analysis (PCA) technique
that transforms the union space of the two input datasets R
and S into a single principal component space. The reason
why we use the Grid Order is that it can provide high scal-
ability for multi-dimensional data because it can support ef-
ficient k-NN join processing on MapReduce by filtering out
unpromising data partitions. The Grid Order divides a grid
into / rectangular cells, where [ is the number of partitions
per dimension. The transformed datasets being uniformly
distributed are assigned to grids such that objects with close
proximity always lie in the same grid. That is, when data are
ordered based on the Grid Order, objects within the same
cell are grouped together. Therefore, given a partition B
containing m objects (i.e., p1, p2, ..., Pm), We can calculate
a bounding box covering all objects in the partition by ex-
amining both the first object p; and the last object p,, of the
ordered data. The bounding box of B can be represented
as the low-left point E = (e, es,...,¢,) and the high-right
point T = (#1,1,...,t;). Thus, we can measure the simi-
larity of two partitions of G-ordered data as the distance be-
tween their bounding boxes. For this, we use the L, distance
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metric, where

d L/p
dist(p,q) = {Z lp.xi — q-xil"] , 1<p<oo
i=1

Even though we use L, (the Euclidean distance) as
an example, the proposed technique can be directly ap-
plied to L, metrics, such as the Manhattan distance (L)
and the maximum distance (L.). To determine the simi-
larity between two bounding boxes BR and BS, we com-
pute their minimum distance, i.e., MinDist(BR, BS). If the
MinDist(BR, BS) is smaller than the pruning distance, BR
is considered the join candidate of BS.

Definition 4. (MinDist of G-ordered Data) The mini-
mum distance of two bounding boxes BR and BS is defined
as

MinDist BR,BS) = » d; such that

d
k=1
dr = max (b — ug, 0) where

by = max (BR.ey, BS.e;), uy = min(BR.ty, BS.ty).

Finally, the BNL (Block Nested Loops) join algorithm
is executed in the second MapReduce phase, as described in
the following subsection, for solving the KNN join query of
G-ordered partitions in datasets R and S.

3.3.3 k-NN Join Algorithm

Our k-NN join query processing consists of two main
MapReduce phases. The first MapReduce phase generates
a summary table for join dataset R and S. Using this infor-
mation, the second MapReduce phase performs a k-NN join
while avoiding unnecessary data processing overhead.

(1) 1% MapReduce for summary table construction

In the first MapReduce phase, a mapper inserts in-
put datasets into grid partitions. The mapper outputs each
record along with its grid partition ID (G-order) and data
origin (R or ). For R datasets, the neighboring cell infor-
mation in G-order is stored. Next, a reduce function aggre-
gates statistical information for each grid partition. A datum
in partition R; of R is represented as <R;, (data ID, coord)>
where coord represents the coordination of data. To per-
form a join between R and S, a data from a partition S ; of
S is represented as <R, (S ;, data ID, coord)> because it is
required to have its neighboring partition R; in R. For every
partition of R, a summary table (ST) maintains the partition
ID, neighboring s data ID where s € S, and the number of
objects in the partition. Using ST, our algorithm can find the
neighboring § ; for R;, thus reducing overhead to compute a
candidate set by minimizing the size of the candidate set.
Therefore, the performance of our k-NN join algorithm can
be improved.

Algorithm 2 shows the pseudo code of the first MapRe-
duce phase of our algorithm. The map function inserts data
into grid cells (partitions) and computes the cell id of each
tuple (lines 1-5). The result of mapper is sent to the reducer,
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Algorithm 2. 1st MapReduce phase

<Map phase>
Input : original data R, S, initial gird parameter (Np)
Output : <Cell_ID, POI ID, v(data)>

1 calculate Cell_ID of all data in sub Group(R or S)
2 If data in R

3 Return <R_Cell_ID, { POL ID, v(data)}>
4 Else (data in S)

5 Return <S_Cell_ID, POI ID, v(data)}>
<Shuffle phase>

6 Aggregate map results based on the key(R_ Cell ID)
7 Group the Cell _IDs based on the # of reducers

<Reduce phase>
Input : <Cell ID, POI_ID, v(data)>
Output : SummaryTable S

8 Generate a grid index of S by aggregating data division results

in the form of <Cell_ID, (POI_ID, v(data))> where POI_ID
means the original data ID. The data value is transformed
into a vector and is represented as v(data). The reduce func-
tion generates the summary table for R and S by merging
the grid cell information (lines 6-8).

(2) 2" MapReduce for k-NN join processing

Algorithm 3 shows the pseudo code of the second
MapReduce phase of our algorithm. Based on statistics
from the ST, the Mappers in the second MapReduce phase
find the neighboring subset S ; for each subset R; (lines 1-
10). Each reducer performs the kNN join between a pair of
R; and § ;. To guarantee the accuracy of a query result, we
perform a cell expansion from a cell including a query to its
neighboring cells. To reduce the cost of distance computa-
tions, we create a priority queue PQ with size k and store
the current k-NN result in PQ in ascending order. When a
new grid cell Cyy, is included in a query region, we com-
pute distances between all the data in Cpe,, and the query.
By comparing the sorted distances with the current k-NN
results stored in PQ, we can reduce the computation cost.
To determine whether or not a cell is included in a query re-
gion, the maximum distance stored in PQ (max_dist) should
be set as a distance threshold (lines 11-12).

For a given query g where q € R; a reducer computes
the distances between q and the edges of the cell including q.
If the distance to the closest edge (CE) of the cell is smaller
than max_dist, we expand the query cell toward CE (line 13).
Then, we update the PQ with all the data in the expanded cell
(lines 14-18). This algorithm stops when the distance to the
remaining edges exceeds max_dist. Finally, the aggregated
join result for all tuples in R is returned to the user (lines
19-20).

3.3.4 Cost Analysis for k-NN Join

By grouping the k nearest neighbors for all objects in a par-
tition Pf, we assign Vs € §; to P; when |s, Pfl > dist(h).
Intuitively, by selecting a larger number of grid-cells, the
bound of the kNN distance for all objects in each partition
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Algorithm 3. 2nd MapReduce phase

<Map phase>

Input: Query R, SummaryTableS, RealData S, Grid parameter Np,
NN_Cell Info Table

Output: <R _Cell_ID, S Cell _ID, PID, v(data)>

For each tuple in R and S

If data = R,

Insert R into Grid

Return <R_Cell_ID, PID, v(data)>

Else if data =S,

Retrieve NN R_Cell IDs of S_Cell_ID in NN_Cell_Info

For the Number of NN R_Cells

Return <R_Cell_ID, S_Cell_ID, PID, v(data)>

1
2
3
4
5
6: Insert S into Grid and compute S_Cell_ID
7
8
9
1

0:  End for(line 1)

<Reduce phase>
Input: Map results, NN_Cell Info Table
Output: k-NN Join results

11:  Check the number of POIs (P,) in each cell

Retrieve k-NN POI py from q and calculate distance Dy

12: between (px, q)

13:  Expand condition check(q, NN_Cell Info Table, py)

14:  IfP, <k
15: For each NN cells in G-order of R
16: Retrieve all POIs in the expanded area and add them

to the candidate list

17:  Elseif P, >k

18: Retrieve all POIs within Dy and add them to the result list

19 Aggregate k-NN results for all tuples in R

20:  Return result to the user

of R will become tighter because we can split the dataset
into a set of grid partitions with finer granularity. By en-
larging the number of grid cells, each object from R U S is
able to be assigned to a grid cell with a smaller distance,
which reduces both [s, P¥| and the upper bound U(PF) for
each partition PZR . Hence, in order to minimize the repli-
cas of objects in S, it is required to select a larger number
of grid cells. However, in this way, it might be impractical
to provide a single reducer to handle each partition PlR. A
simple way to cope with this problem is to divide the par-
titions of R into disjoint groups and take each group as R;.
In this way, S; needs to be refined accordingly. By default,
let R = J <<y Gi, where G; is a group consisting of a set of
partitions for R and G; N G; = 0 where i # j.

Theorem 1. Given partition Pf and group G;, Vs € P; ,
the necessary condition that s is assigned to G; is:

dist(kNN, PRy > mindist(s, PX) (1)
where dist(k) is the k-NN distance between a query Yq € Pf
and s € Pf .

Proof. A data s in Pf is assigned to G; as long as there
exists two partitions Pf and PP such that dist(kNN, P¥) >

mindist(s, PY). If dist(kNN, PR) > mindist(s, PX) and a pair
of Pf and Pf are disjoint, the data s is a k-NN candidate for
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aquery Yq € PF. Consequently, Vs € P$ should be included
in G; for further join processing.

Apparently, the average number of replicas of objects
in a dataset S is reduced because duplicates in S are elim-
inated. According to Theorem 1, we can easily derive the
number of all replicas (denoted as RP(S)) as follows.

Theorem 2. The number of replicas of objects in a
dataset S that are distributed to reducers is:

RP(S) = Z Z |{s|s€P‘; A dist(k) > mindist(s, Pf)}‘

VGi VP

Proof. From Theorem 1, a data s is assigned to G;
as long as there exists two partitions P} and P such that
dist(kNN, PR) > mindist(s, PY). Because each G; for a
dataset R is distributed and computed on data nodes, a da-
tum s where Vs € Pf is duplicated as many times as the

number of Pf that satisfies the distance threshold Eq. (1).
4. Performance Analysis

In this section, we compare the performance of the proposed
join algorithms with those of the state-of-the-art join algo-
rithms in terms of query processing time. Because both the
proposed algorithms and the existing algorithms are proven
to provide 100% accuracy in a query result, we exclude
the performance evaluation of our algorithms in term of the
query result accuracy.

4.1 Dataset Description

To prove the efficiency of the proposed join algorithms, we
carried out some experiments with two kinds of datasets:
synthetic and real datasets. The detailed description of the
datasets is as follows.

Synthetic data The synthetic dataset was generated
by using Generate Spatio Temporal Data (GSTD) with
three different data distribution in a square Euclidean
space [20]: UNIFORM, GAUSSIAN, SKEWED dataset.
The SKEWED datasets were generated by following the
Zipf distribution where the skewness parameter 6 was varied
from 0.0 to 0.9. The size of the synthetic dataset was var-
ied from 10 to 200 M tuples. We consider that all data sets
should be distributed in an area 1 X 1. Figure 4 (a-c) shows
the distribution of the synthetic dataset.

Real data We used two different kinds of real datasets
obtained from different sources. First, we utilized the REAL
dataset containing 119,898 points that have real postal ad-

(a) Uniform  (b) Gaussian  (c) Skewed (d) NE dataset (e) MODIS

Aqua data

Fig.4  Data distribution of the synthetic dataset
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Table3  Experimental environment

Performance
CPU 2.9GHz Quad-Core Intel Core i5
Memory 8GB
(6N Ubuntu 12.04
Hadoop Hadoop 2.6.0
Network Transfer 83.8GBytes, Bandwidth 71.9 Gbits/sec

Table 4  Parameter settings

Parameters Settings

Similarity threshold 0.02, 0.04, 0.06(default), 0.08, 0.1

#of data partitions 10, 20, 50, 100, 150(default), 200

# of data tuples 2.5M, 5M, 7.5M, 10M(default)

Data dimensionality 2,4, 6, 8(default)

dresses in the northeastern America (New York, Philadel-
phia, and Boston, called NE dataset). Second, we obtained
MODIS level 2 data from a NASA website [21] that includes
daily records, such as sea surface temperature, a pair of
<altitude, latitude> and chlorophyll. The size of the dataset
is varied from 250MB (n = 70) to 1,000MB (n = 140)
where 7 is the number of records. The distributions of two
real datasets are plotted in Fig. 4 (d) and 4 (e).

4.2 Performance Analysis of Our Similarity Join Algo-
rithm

In this section, we compare the performance of our simi-
larity join algorithm with that of the existing ClusterJoin
proposed by Sarma et al.[11]. For this, we measure the
query processing time of two algorithms using both syn-
thetic datasets and real datasets under different settings, such
as data size, similarity threshold and the number of data par-
titions. For our experiment, we use a Hadoop cluster that
consists of one master node and four data nodes. The ex-
perimental setup of the nodes is described in Table 3. The
parameter settings of similarity algorithms are also summa-
rized in Table 4.

4.2.1 Performance
Datasets

Comparison with 2-Dimensional

For similarity join processing on MapReduce, it is impor-
tant to reduce the size of join candidates by grouping rele-
vant join partitions. Figure 5 shows the computation time
of each processing step for similarity join algorithms. Due
to the page limitation, we include only the experimental re-
sults with default settings and the results with other settings
would show patterns similar to that in Fig. 10. As shown
in the figure, the most important step is the 2" MapReduce
(i.e., join phase), which consumes at least 70% of the overall
processing time for all algorithms.

Figure 6 shows the query processing time of the simi-
larity join algorithms with varying data size. When the num-
ber of tuple was 10M, the query processing time of our al-
gorithm was 2,181s, whereas ClusterJoin required 2,913s.
From the result, it is seen that our algorithm achieved up
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to 2-times better performance than ClusterJoin because our
sophisticated algorithm performs data partition based on the
data distribution. In the case of ClusterJoin, the number of
candidate clusters is greatly increased as the number of data
increases. This is because hash-based clustering does not
guarantee optimal data distribution among the clusters.
Figure 7 shows the query processing time of the sim-
ilarity join algorithms with varying similarity threshold.
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When the similarity threshold was 0.08, the query process-
ing time of our algorithm was 9,953s whereas ClusterJoin
required 20,535s. From the result, it is seen that our algo-
rithm achieved up to 2.5-times better performance than with
ClusterJoin. As the similarity threshold increases, the num-
ber of duplicated data among clusters is greatly increased.
Thus, ClusterJoin suffers from radical performance deterio-
ration because hash-based partitioning shows worse perfor-
mance with densely populated data. On the other hand, our
grid-based partitioning algorithm generates clusters based
on the data distribution of the sample dataset.

Figure 8 shows the query processing time of the simi-
larity join algorithms with varying number of data partitions.
The number of partition indicates the number of clusters
used to assign data into the MapReduce. Hence, it is impor-
tant to find an appropriate number of partitions to process
a query in a distributed manner. Our algorithm shows the
best performance when the number of partitions is less than
100, whereas ClusterJoin shows the best performance when
the number of partitions is 10. This means that ClusterJoin
suffers from data skewness and high duplication among par-
titions when the number of partitions increases. On the other
hand, our algorithm can perform better data partitioning by
considering data distribution.

To provide a distributed computation efficiently in
MapReduce, it is important to partition data evenly. Hence,
a workload-aware data partitioning technique is vital be-
cause it can ensure the balance of both input data and output
data for each machine. The processing time of MapReduce
is generally dominated by the node that finishes last. There-
fore, we measured the balance ratio by dividing the average
number of data by the desired number of data in a partition.

. AVG num of data in real partitions
balance_ratio =

Desired num of data in a partition

Figure 9 and Fig. 10 plot the balance ratio of our algo-
rithm and ClusterJoin for the syntactic data with uniform
distribution and the real NE data, respectively. Here the
value close to ‘1’ means the even distribution of data among
partitions. In both syntactic and real datasets, our algorithm
showed a smaller balance ratio than that of ClusterJoin when
the number of partitions varied from 10 to 200. It is seen that
our algorithm provides more even data distribution among
partitions than the existing ClusterJoin. From the result, we
selected 150 partitions as the default, which shows tolerable
performance yet support efficient parallel computation for
all algorithms.

4.2.2 Performance Analysis with Multi-Dimensional
Datasets

To evaluate the effect of data dimensionality on the join
performance, we use both a syntactic dataset and a real
MODIS dataset with multi-dimensional data. Because we
have already shown in the previous section that our simi-
larity join algorithm is much better that the existing Clus-
terJoin, we exclude ClusterJoin from a performance anal-
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ysis with multi-dimensional data. Moreover, as the num-
ber of data dimensions increases, ClusterJoin is worse than
our similarity join algorithm because our algorithm can pro-
vide more uniform data distribution among partitions than
the ClusterJoin.

First, we did the performance analysis of our similarity
join algorithm by varying the number of dimensions from
4 to 8, as shown in Fig. 11. We can see that the efficiency
of our algorithm deteriorated with increased dimensionality.
In the case of the real MODIS dataset, our algorithm re-
quired 13,045s with 4-dimensional data, whereas it required
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30,508s to process 8-dimensional data. The similarity com-
putation cost increases linearly with the data dimensionality.
However, because we transform high-dimensional data into
lower dimensionality using subspace, performance degrada-
tion due to increased dimensionality is not much greater.

Second, we present the effect of data size by vary-
ing the number of tuples in datasets from 2.5 to 10 M
(Fig. 12). In the case of the real MODIS dataset, our algo-
rithm required 2,357s with 2.5M data, whereas it required
32,284s to process 10M data. Because our algorithm em-
ploys a variable-sized grid partitioning technique, it can
greatly reduce the distance computation overhead for multi-
dimensional data. Therefore, our algorithm provides scal-
able performance even for large datasets.

Finally, we investigate the influence of the similarity
threshold on the query processing time as shown in Fig. 13.
In case of the real MODIS data, the query processing time
was increased by almost 3-times as the similarity threshold
increased from 0.02% to 0.1%. From the results we see
that the elapsed time of our algorithm increased moderately
with increase of the similarity threshold. This is because our
similarity join algorithm employs a variable-sized grid par-
titioning technique that can evenly distribute data into par-
titions. It is very important to minimize the job completion
time in MapReduce by balancing the overall workload.

4.3 Performance Analysis of Our k-NN Join Algorithm

We compare the performance of our k-NN query process-
ing algorithm with that of the PGBIJ algorithm proposed by
W. Lu et al.[13]. The H-zkNNIJ algorithm was excluded
from our experiments because it supports only an approx-
imate k-NN join on MapReduce. We did two experiments
as follows. First, we evaluated the performance of k-NN
joins (k = 100) for the synthetic dataset using a Hadoop
cluster consisting of one master node and seven data nodes.
The size of the synthetic dataset is varied from 2.6 to 250
M. The experimental setup for the synthetic dataset is de-
scribed in Table 5. Second, we evaluated the performance
of k-NN joins for the real MODIS level 2 dataset[21] us-
ing a Hadoop cluster consisting of one master node and five
data nodes. The experimental setup for the real dataset is
described in Table 5. The parameter settings of k-NN join
algorithms are also summarized in Table 6.

First of all, we measured the pre-processing time of
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Table 5  Experimental environments

Syntactic dataset MODIS dataset
CPU 2.9GHz Quad-Core Intel AMD Opteron Processor

Core i5 4180
Memory 8GB 32GB
oS Ubuntu 12.04
Hadoop Hadoop 2.6.0
Network Transfer 83.8GBytes, Bandwidth 71.9 Gbits/sec
Table 6  Parameter settings
Parameters Settings
Number of nearest | 20(default), 40, 60, 80, 100
neighbors(k)

Dataset size (# of tuples)
# of data partitions n (n*n)

2.5M, 5M, 7.5M, 10M(defaulr)
10, 20, 50, 70(default for k<60),
100 (default for k>60)

2,4, 6, 8(default)

Data dimensionality

SOMSD < 330 #7070 @ 100100
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Fig.14  Query processing time with varying k and grid sizes

our algorithm and the existing PGBJ. The pre-processing
time consists of both sample data extraction time and index
generation time. For 250M tuples, the pre-processing time
of PGBJ was 24.84s whereas our algorithm required 12.57s.
The PGBJ algorithm required almost twice as much time
than our algorithm because it performs data partitions using
Voronoi diagrams and stores the partitions in R-tree.

The proper number of grids » is highly dependent on
the actual dataset. If data points in a dataset are highly pop-
ulated, we choose a small value of n. On the other hand, if
the data points are sparse, we set a large value of n to par-
tition data. In Fig. 14, we measured the query processing
time with varying number of grid partitions. When « is less
than or equal to 60, the medium-sized partitions with 70*70
grid cells show the best performance. When k was greater
than 60, the small-sized partitions having 100*100 grid cells
show the best performance. According to the results, we set
the number of grid cells to show the best performance.

Figure 15 shows the computation time of each process-
ing step for k-NN join algorithms. Due to the page limita-
tion, we include only the experimental results with default
settings using the real datasets. The 2"¢ MapReduce phase
of our algorithm consumed 72% of overall processing time
whereas that of PGBJ required 87% of the overall query pro-
cessing time. This indicates the importance of filtering effi-
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ciency when processing a join operation on MapReduce.

4.3.1 Performance
Datasets

Comparison with 2-Dimensional

Figure 16 (a) shows the query processing time of the k-
NN join algorithms using one million data for the syntac-
tic dataset with uniform distribution. When k was 20, the
query processing time of our algorithm was 207s whereas
PGB required 2,189s. Figure 16 (b) shows the query pro-
cessing time of two algorithms by using 2.5 million data of
MODIS AQUA Level 2. When k was 100, the query pro-
cessing time of our algorithm was 778s whereas the existing
PGBJ required 4,059s. From the result, it is shown that our
algorithm achieved up to 5-times better performance than
the existing PGBJ, because our algorithm can reduce the
cost of expanding a query range. In the case of PGBJ, the
number of candidate Voronoi cells is greatly increased as k
increases.

Figure 17 (a) shows the query processing time of the
algorithms with varying data size, in the case of the uniform
syntactic dataset. When the number of data was two mil-
lion, the query processing time of our algorithm was 382s
whereas the existing PGBJ required 6,865s. Figure 17 (b)
shows the query processing times of two algorithms with
the real dataset, of which the size ranged from 2.5 to 10
million tuples. When the number of data was 7.5M, the
query processing time of our algorithm was 4,046s whereas
the existing PGBJ required 19,575s. From the result, it is
shown that our algorithm achieved up to 7-times better per-
formance than PGBJ. This is because our algorithm dramat-
ically reduces the number of candidate data transmitted to,
by greatly pruning out unnecessary candidate cells.
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4.3.2 Performance Analysis with Multi-Dimensional
Datasets

In this experiment, it is certain that PGBJ shows the worse
performance than our algorithm for high dimensional data,
due to the rapid increase in the number of candidate Voronoi
cells; hence, we excluded PGBJ. First, we evaluate the effect
of data dimensionality on the join performance by varying
the number of dimensions (4-8). In Fig. 18, we can see that
the efficiency of our algorithm deteriorated with increase of
dimensionality. In the case of the real MODIS dataset, the
query processing time with 4-dimensional data was 24,848s,
whereas the query processing time with 8-dimensional data
required 58,537s. This is mainly because the cost of sim-
ilarity computation increases linearly with the data dimen-
sionality. However, performance degradation due to the in-
crease of dimensionality is not as high as before because we
use the G-order to transform high-dimensional data to lower
dimensionality. Second, we presented the effect of data size
by varying the number of tuples in datasets from 2.5 to 10
M, as shown in Fig. 19. For this, we performed the 20-NN
join by using the real 8-dimensional MODIS datasets. When
the data size was 2.5M, the elapsed time of our k-NN join
algorithms was 3,437s, whereas it was 22,594s with 10M
data. Because our algorithm employs a distance computa-
tion reduction technique that alleviates the distance compu-
tation cost for high dimensional data, it provides scalable
performance for large datasets. Finally, we evaluate the ef-
fect of the number of nearest neighbors (i.e., k) by varying
k from 20 to 100, as shown in Fig. 20. In the case of the real
MODIS data, the query processing time increased by 10%,
as k increased from 20 to 100. We can see from the results
that the elapsed time of our algorithm increased moderately
with the increase of k. This is because our algorithm can re-
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duce distance computation using a subset of dimensions for
similarity computation.

5. Conclusions

In this paper, we proposed two grid-based join algorithms
for processing big data on MapReduce. First, we proposed
a grid-based similarity join algorithm to evenly distribute
data into partitions and to perform a join in a parallel way.
To this end, we designed a dynamic grid index considering
data distribution. Our algorithm reduced data computation
and communication costs by sending only relevant data to
the same reducer when performing a join operation. Sec-
ond, we proposed a grid-based k-NN join query processing
algorithm. We devised a candidate cell searching technique
based on grid-cell information. Thus, our k-NN join algo-
rithm can gain access only to the neighboring cells from
a query cell and sends them as the input of a MapReduce
job. This can reduce the data transmission and computa-
tion costs. We show from our performance analysis that our
algorithm outperforms the existing algorithm up to seven
times in terms of query processing time, while our algorithm
achieves 100% query result accuracy.

In future work, we plan to extend our algorithms to
support various types of join queries, such as skyline and
reverse skyline queries.
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