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Private Similarity Searchable Encryption for Euclidean Distance∗
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SUMMARY In this paper, we propose a similarity searchable encryp-
tion in the symmetric key setting for the weighted Euclidean distance, by
extending the functional encryption scheme for inner product proposed by
Bishop et al. [4]. Our scheme performs predetermined encoding indepen-
dently of vectors x and y, and it obtains the weighted Euclidean distance
between the two vectors while they remain encrypted.
key words: searchable encryption, inner product encryption, the weighted
Euclidean distance

1. Introduction

Searchable encryption is a new paradigm, which allows sim-
ilar data to be searched within an encrypted database. Most
prior studies on searchable encryption [6], [8] have focused
on searching exactly-matching data. We are, however, inter-
ested in searching the similar data of a certain distance.

Bishop et al. [4] recently proposed a new functional en-
cryption (FE) scheme for inner product in the symmetric
key setting. Their scheme uses asymmetric bilinear maps,
and is secure against unbounded collusion under a simple
assumption. They focused on function privacy in FE for in-
ner product. Intuitively speaking, function privacy requires
that given a decryption key Kf for a function f , one should
not be able to learn any unnecessary information about f .

Besides inner product, the Euclidean distance is very
commonly used to measure the distance. Oosawa et al. [17]
proposed a system called a SYNAPSE Case Matching
which is a content-based image retrieval system that sup-
ports lung cancer image diagnosis. In their system, Eu-
clidean distance is used to measure the distance between
a patient’s lung image and each data in the medical case
database, wherein the image has multiple parameters, such
as color, figure, and size.
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One scenario we consider is that a user searches sim-
ilar symptom data of a certain Euclidean distance from an
encrypted medical case database, providing his/her own en-
crypted user’s information as a query to the Cloud. Using
similar symptom data, he/she can receive useful advice for
improving health. Another scenario is to analyze users’ be-
havior using GPS information from their smartphone. In
these scenarios, not only the user’s information and the GPS
information, it is necessary to protect but also the database
for user’s privacy.

1.1 Our Results

In this paper, we define the notion of similarity searchable
encryption for the weighted Euclidean distance, where the
weighted Euclidean distance is a slight extension of the Eu-
clidean distance. In similarity searchable encryption for
the weighted Euclidean distance, we consider two objects:
queries and encrypted data. Our notion is considered in the
symmetric key setting in the sense that both of queries and
encrypted database cannot be generated without a master se-
cret key. Using queries, we can search on the encrypted
database for similar data. Here, we adopt the weighted Eu-
clidean distance as an index of similarity. In our security
notion, we require that both queries and encrypted database
do not reveal any information more than necessary.

To obtain a scheme satisfying our requirements, we
show a generic construction of similarity searchable encryp-
tion for the weighted Euclidean distance from any functional
encryption for inner product (with function privacy). By
starting from the functional encryption schemes for inner
product in the literature [4], [9], we can obtain similarity
searchable encryption schemes for the weighted Euclidean
distance.

In Table 1, we compare our approach with existing
approaches of securely computing the Euclidean distance.
As shown in Table 1, general Fully Homomorphic Encryp-
tion [12] and Garbled Circuit [19] are known as being inef-
ficient. Our proposal does not require the interaction for the

Table 1 Comparison of the secure Euclidean distance computation.

Efficiency Interaction Input

D01 [10], LL04 [15] High Necessary Revealed
G09 [12] Low Necessary Revealed
Y86 [19] Low Necessary Revealed
Our Scheme High Unnecessary Encrypted

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



2320
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

weighted Euclidean distance calculation. Additionally, it is
a cyphertext for the input of the weighted Euclidean distance
calculation in our proposal. On the other hand, against other
works which leak no information, our proposal leak only the
value of the weighted Euclidean distance.

1.2 Related Works

A similar line of study is searchable encryption, which al-
lows one to search on encrypted database. Most prior stud-
ies on searchable encryption [6], [8] have focused mainly on
searching the database to find an exact match to the query.

Subsequent works [3], [7] enabled searching on en-
crypted data with more complicated conditions. In our
work, we focus on rather different form of queries. That is,
we search on encrypted data to find data that is within cer-
tain distance from the query. Another difference from these
works is that we consider the privacy of the queries.

In our conversion, we require certain form of functional
encryption. The notion of functional encryption was pro-
posed in the work of [5]. Later, Garg et al. proposed a con-
struction of functional encryption based on indistinguisha-
bility obfuscation [11]. Since the current candidate con-
structions for indistinguishability obfuscation are extremely
inefficient, their scheme is not practical. Subsequently, func-
tional encryption for inner product, which is a special case
of the more general notion of functional encryption, was
proposed by Abdalla et al. [2]. Their construction is con-
sidered in the public key setting and they do not consider
function privacy, which means that an attribute associated to
a key can be leaked. Later, functional encryption for inner
product in the symmetric key setting with function privacy
was proposed [4]. Very recently, in the subsequent work [9],
a scheme satisfying a stronger security notion was proposed.

Prior studies [10], [15] took a similar approach to our
scheme, which uses inner product encryption to compute the
Euclidean distances. However, their schemes require multi-
round transactions, which is not needed in our scheme.

We note that essentially the same encoding as ours was
used in the work of Guo et al. [13] who constructed predi-
cate encryption that can deal with the Euclidean distances by
incorporating a predicate encryption for inner product with
the encoding. A crucial difference from their work is that in
our work, we deal with secret key functional encryption with
anonymity and function privacy, whereas they consider pub-
lic key predicate encryption without them. Function privacy
is necessary for our application to searchable encryption.

2. Preliminaries

2.1 Inner Product Encryption

Inner product encryption, which is also called functional en-
cryption for inner product, is a special case of functional en-
cryption [11]. In inner product encryption, secret keys and
ciphertexts are associated with vectors. When one decrypts

a ciphertext using a secret key, one obtains the inner prod-
uct of these vectors. Inner product encryption is defined as
follows.

Definition: Inner product Encryption
Let p and n be integers that depend on the security param-
eter. We note that p and n corresponds to the modulus and
the dimension of the vector space on which we consider the
computation of the inner product. Let x and y be vectors in
Z

n
p:

x = (x0, . . . , xn−1) ∈ Zn
p, y = (y0, . . . , yn−1) ∈ Zn

p

Inner product encryption consists of the following four
algorithms: IPE.Setup, IPE.Encrypt, IPE.KeyGen, and
IPE.Decrypt. We note that the length of the bit represen-
tation of p is bounded by some polynomial of the security
parameter λ.

IPE.Setup(1λ, 1n)→ (pp,msk)
The setup algorithm takes the security parameter λ and the
length of vectors n as input, and outputs a public parameters
pp and a master secret key msk.

IPE.Encrypt(x,msk, pp)→ Cx

The encryption algorithm takes a vector x ∈ Zn
p, the master

secret key msk, and the public parameters pp as input, and
outputs a ciphertext Cx.

IPE.KeyGen(y,msk, pp)→ Ky

The key generation algorithm takes the vector y ∈ Zn
p, the

master secret key msk, and the public parameters pp as in-
put, and outputs a decryption key Ky.

IPE.Decrypt(Cx,Ky, pp)→ m
The decryption algorithm takes a ciphertext Cx, the decryp-
tion key Ky, and the public parameters pp as input, and out-
puts m.

For Correctness, we require the following.

Correctness: We assume that (pp,msk) is the output of
IPE.Setup(1λ, 1n), Cx is the output of IPE.Encrypt(x,msk,
pp), and Ky is the output of IPE.KeyGen(y,msk, pp). We
require the output m of IPE.Decrypt(Cx,Ky, pp) be the in-
ner product of x and y. Namely, we require m = 〈x, y〉 =∑n−1

i=0 xiyi.

Security Definition: We present here a summary of the se-
curity definition of inner product encryption. The definition
of security states that a decryption key Ky and a ciphertext
Cx do not reveal any information about x, y. We define se-
curity using the following game between a challenger C and
an adversaryA.

Setup game IPE:
C runs IPE.Setup to generate msk and pp. It gives pp toA.
C also picks a random bit b ∈ {0, 1}.
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Challenge1 IPE:
A sends C two vectors x0, x1 on which it wishes to be chal-
lenged. C picks xb based on b selected in S etup game IPE.
C runs IPE.Encrypt(xb,msk, pp) to generate Cxb . It gives
Cxb toA.

Challenge2 IPE:
A sends C two vectors y0, y1 on which it wishes to
be challenged. C picks yb based on the b selected in
S etup game IPE. C runs IPE.KeyGen(yb,msk, pp) algo-
rithm to generate Kyb . It gives Kyb toA.

A can adaptively ask the challenger for above queries
in arbitrary many times and an arbitrarily order. However,
we require that 〈x(i)

0 , y
j
0〉 = 〈x(i)

1 , y
( j)
1 〉 for all i and j, where

where x(i)
0 , x(i)

1 (resp. y( j)
0 , y( j)

1 ) are the vectors corresponding
to the i-th (resp. j-th) query in the Challenge1 IPE phase
(resp. Challenge2 IPE phase).

Guess IPE:
A outputs b′ and wins the game if b = b′. We define A’s
advantage in breaking the inner product encryption scheme
as

Adv =
∣∣∣∣∣Pr(b′ = b) − 1

2

∣∣∣∣∣ .

We say that the inner product encryption scheme satisfies
full privacy if the advantage of the adversaryA is negligible
in the security parameter λ.

Intuitively, the above security definition ensures that
the information of the vectors corresponding to the cipher-
texts and secret keys do not leak more than necessary. In this
sense, the above definition captures both anonymity (i.e. the
vectors xs do not leak from the ciphertexts) and the function
privacy (i.e. the vectors ys do not leak from the decryption
keys) at the same time.

Weaker Security Notion. We can consider a weaker secu-
rity notion in which the queries of an adversary are restricted
to satisfy

〈x(i)
0 , y

( j)
0 〉 = 〈x(i)

0 , y
( j)
1 〉 = 〈x(i)

1 , y
( j)
1 〉 = 〈x(i)

1 , y
( j)
0 〉

for all i and j. If the advantage of any adversaryA is negligi-
ble in this (modified) game, we say that the scheme satisfies
weak privacy.

2.2 Weighted Euclidean Distance

The weighted Euclidean distance is a generalization of the
ordinary Euclidian distance and parametrized by {wi}ni=1.
The weighted Euclidean distance between the vector x ∈ Zn

p
and y ∈ Zn

p is defined as the the square root of dist, which is
defined as follows.

dist(x, y) =
n−1∑

i=0

wi(xi − yi)
2

3. Private Similarity Searchable Encryption Specifica-
tions and Security Definitions

3.1 Model

Let us consider the following scenario, which is a use case of
our scheme proposed in this paper. We will consider a sys-
tem that consists of a user, a server, and a database owner.
The user generates a query and encrypts the query. The
database owner encrypts a reference record in the database
and sends the encrypted reference record to the server.
The server extracts the similar data from the encrypted
database using the encrypted query and the encrypted ref-
erence record. We adopt the weighted Euclidean distance as
an index of similarity. The server obtains the weighted Eu-
clidean distance between the query and the reference record
while the query and the reference record remain encrypted.
It is necessary to ensure the confidentiality of both of the
query and of the reference record in the server. To capture
this scenario, we propose the notion of similarity searchable
encryption, which is defined as follows.

Definition: Private Similarity Searchable Encryption
The query x and the reference record y are n-length vectors
over a finite field Zp. We note that the length of the bit
representation of p is bounded by some polynomial of the
security parameter λ.

x = (x0, . . . , xn−1) ∈ Zn
p, y = (y0, . . . , yn−1) ∈ Zn

p

Let a vector w = (w1, . . . , wn) ∈ Zn be the weight of
the Euclidean distance. A similarity searchable encryption
scheme consists of the following four algorithms, Setup,
Query, EncDB, and Dist. In the following, we implicitly
assume that all these algorithms take w as an additional in-
put.

Setup(1λ, 1n)→ (pp,msk)
The setup algorithm takes the security parameter λ, and the
length of vectors n as input, and outputs public parameters
pp and a master secret key msk.

Query(x,msk, pp)→ Qx

The query algorithm takes a vector x ∈ Zn
p, the master secret

key msk, and the public parameters pp as input, and outputs
a query Qx.

EncDB(y,msk, pp)→ Dy

The database encryption algorithm takes a vector y ∈ Zn
p,

the master secret key msk, and the public parameters pp as
input, and outputs an encrypted record Dy.

Dist(Qx,Dy, pp)→ Z
The distance measurement algorithm takes the query Qx, the
encrypted record Dy, and the public parameters pp as input,
and outputs the weighted Euclidean distance Z.

For correctness, we require the following.
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Correctness: We assume that (pp,msk) is the output of
Setup(1λ, 1n), and Qx and Dy are the output of Query(x,
msk, pp) and EncDB(y,msk, pp), respectively. We require
the output Z of Dist(Qx,Dy, pp) be dist(x, y).

3.2 Security Definitions

Here we define security for similarity searchable encryp-
tion. We need to guarantee that queries {Qx} and encrypted
records {Dy} do not reveal any information beyond their
weighted Euclidian distances. We define the security using
the following game between a challenger C and an adversary
A.

Weight selection:
At the outset of the game, A is given 1λ and 1n as input. A
then chooses a weight vector w = (w1, . . . , wn) at his will
and gives it to C. The vector w specifies the Euclidean dis-
tance and fixed throughout the game. In the following, the
function Dist refers to the weighted Euclidean distance with
respect to the weight.

Setup game:
C runs Setup to generate msk and pp. Note that as men-
tioned above, C has to use the fixed w that was chosen by
A. C gives pp toA. C also picks a random b ∈ {0, 1}.

Challenge1:
A sends C two vectors x0, x1 ∈ Zn

p on which it wishes to
be challenged. C picks xb based on the challenge bit b se-
lected in the S etup game. Then C runs Query(xb,msk, pp)
to generate Qxb . C gives Qxb to A. Notice that A’s query
only contains x0 and x1, but not w since w was already sent
byA in the Weight selection phase.

Challenge2:
A sends C two vectors y0, y1 on which it wishes to be
challenged. C picks yb based on the b selected in the
S etup game. C runs EncDB(yb,msk, pp) to generate Dyb .
C gives Dyb toA.

A can adaptively ask C for the above queries with the
following constraint:

dist(x(i)
0 , y

( j)
0 ) = dist(x(i)

1 , y
( j)
1 ),

for all i and j, where x(i)
0 , x(i)

1 (resp. y( j)
0 , y( j)

1 ) are the vectors
corresponding to the i-th (resp. j-th) query in the Challenge1
phase (resp. Challenge2 phase).

Guess:
A outputs b′ and wins the game if b = b′. We defineA’s ad-
vantage in breaking the security of the similarity searchable
encryption scheme as

Adv =
∣∣∣∣∣Pr(b′ = b) − 1

2

∣∣∣∣∣ .

We say that the similarity searchable encryption scheme
achieves full privacy if the advantage of the adversary A
is negligible in the security parameter λ.

Weaker Security Notion. We can consider a weaker se-
curity notion in which the queries of the adversary are re-
stricted to satisfy

dist(x(i)
0 , y

( j)
0 ) = dist(x(i)

0 , y
( j)
1 )

= dist(x(i)
1 , y

( j)
1 ) = dist(x(i)

1 , y
( j)
0 )

for all i and j. If the advantage of the adversary is negligible
in this (modified) game, we say that the scheme satisfies
weak privacy.

4. Construction

4.1 Construction Using Inner Product Encryption

In this section, we show a generic construction of a sim-
ilarity searchable encryption scheme for the weighted Eu-
clidean distance (Setup, Query, EncDB, Dist) from an in-
ner product encryption scheme (IPE.Setup, IPE.KeyGen,
IPE.Encrypt, IPE.Decrypt). The conversion is completely
generic and based on the idea of encoding vectors so that
their inner product corresponds to the (square of) distance
between them. In the following, let w = (w1, . . . , wn) be the
weight vector.

Setup(1λ, 1n) :
The setup algorithm takes the security parameter λ and the
length of vectors n as input, and runs IPE.Setup(1λ, 1n+2)
to obtain (pp,msk). It outputs public parameters pp and a
master secret key msk.

Query(x,msk, pp) :
The query algorithm takes a vector x ∈ Zn

p, the master secret
key msk, and the public parameters pp as input. It first ap-
plies the encoding algorithm Encode1, which is defined in
the following, to x.

Encode1 : x = (x0, . . . , xn−1) 	→ x′ = (x′0, . . . , x
′
n+1), where

x′0 =
n−1∑

i=0

wi x
2
i ,

x′1 = 1,

x′2 = −2w0x0,

...

x′n+1 = −2wn−1xn−1.

Then, it runs IPE.KeyGen(x′,msk, pp) → Qx and outputs
Qx.

EncDB(y,msk, pp) :
The database encryption algorithm takes a vector y ∈ Zn

p,
the master secret key msk, and the public parameters pp
as input. It first applies the encoding algorithm Encode2,
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which is defined in the following, to the vector y.

Encode2 : y = (y0, . . . , yn−1) 	→ y′ = (y′0, . . . , y
′
n+1), where

y′0 = 1,

y′1 =
n−1∑

i=0

wiy
2
i

y′2 = y0,

. . .

y′n+1 = yn−1.

Then it runs IPE.Encrypt(y′,msk, pp) → Dy and outputs
Dy.

Dist(Qx,Dy, pp) :
The distance measurement algorithm takes Qx,Dy, and pp
as input. It runs IPE.Decrypt(Cx,Ky, pp) = Z and outputs
Z.

Correctness: The correctness of the resulting scheme (i.e.,
the similarity searchable encryption scheme) follows from
the following claim and that of the underlying inner product
encryption scheme.

Claim 1. For any vectors x, y ∈ Zn
p, the following holds:

dist(x, y) = 〈Encode1(x),Encode2(y)〉.
Proof.

dist(x, y) =
n−1∑

i=0

wi(xi − yi)
2

=

n−1∑

i=0

wi x
2
i +

n−1∑

i=0

wiy
2
i − 2

n−1∑

i=0

wi xiyi

= 〈Encode1(x),Encode2(y)〉.

4.2 Security Proof

In this section, we prove the following theorem, which ad-
dresses the security of our construction.

Theorem 1. If the inner product encryption scheme
(IPE.Setup, IPE.KeyGen, IPE.Encrypt, IPE.Decrypt) sat-
isfies full privacy, so does the private similarity searchable
encryption scheme constructed above. Similarly, if the inner
product encryption scheme satisfies weak privacy, so does
the private similarity searchable encryption scheme con-
structed above.

Proof. We prove the former part of the theorem. The latter
part can be proven similarly. Toward a contradiction, we
assume an adversary A who breaks the full privacy of the
private similarity searchable encryption scheme. From the
adversary A, we construct another adversary B against the
underlying inner product encryption scheme.

Adversary B:

1. Given (1λ, 1n), A first chooses the weight vector w =
(w1, . . . , wn) and gives it to B. The vector specifies the
encoding functions Encode1 and Encode2.

2. B receives pp from its challenger C that has run
IPE.Setup. It gives pp toA.

3. During the game,A chooses a query (x0, x1) ∈ Zn
p×Zn

p.
Then, B runs Encode1 as follows and gives (x′0, x

′
1) to

the challenger C.

x′0 = Encode1(x0), x′1 = Encode1(x1).

C runs IPE.Encrypt on input x′b to generate Cx′b and
gives it to B. Then B gives Cx′b toA as Qxb .

4. A may choose (y0, y1) ∈ Zn
p × Zn

p as a query to the ad-
versary B. Then B runs Encode2 as follows and gives
(y′0, y

′
1) to C.

y′0 = Encode2(y0), y′1 = Encode2(y1).

Then C runs IPE.KeyGen on input y′b to generate Ky′b
and gives it to B. Then B passes Ky′b to A as Dyb .
It should be noted that it must be true that 〈x′0, y′0〉 =〈x′1, y′1〉.

5. At the end of the game,A outputs b′, which is the guess
for b. B outputs the same bit b′ as its guess.

Due to the constraints in the query made by A,
dist(x0, y0) = dist(x1, y1) holds for all queried (x0, x1) and
(y0, y1). Therefore, for all (x′0, x

′
1) and (y′0, y

′
1) defined

above, it holds that

〈x′0, y′0〉 = dist(x0, y0) = dist(x1, y1) = 〈x′1, y′1〉.
Therefore, B only makes valid queries in the game. Further-
more, it can be easily seen that the advantage of B is the
same as that of A. By our assumption that the advantage
of A is non-negligible, B’s advantage is non-negligible as
well. We conclude the proof of the theorem.

5. Instantiations

5.1 Instantiation Based on [4]

Bishop et al. [4] constructed a (function private) inner
product encryption scheme using Dual Pairing Vector
Spaces [16]. The scheme satisfies weak privacy under the
SXDH assumption. By applying our conversion in Sect. 4.1
to the scheme, we obtain a private similarity searchable en-
cryption scheme with weak privacy. We write down the re-
sulting scheme in the following. We note that there is a re-
striction on the scheme that the output of Dist be polynomial
size in the security parameter. This restriction is inherited
from [4].

In the scheme, we will use asymmetric bilinear groups
consisting of G1, G2, GT , all with prime order p. The
groups are equipped with an efficiently computable map
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e : G1 × G2 → GT that satisfies the following two proper-
ties: (1) e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2, a, b ∈ Z.
(2) e(u, v) � 1 for all u, v � 1. In the following, for any vec-
tor w = (w1, . . . , wn) ∈ Zn

p and a group element gi ∈ Gi, we
write gw

i ∈ Gn
i to denote (gw1

i , . . . , g
wn
i ) ∈ Gn

i where i ∈ {1, 2}.

Setup(1λ, 1n) :
The setup algorithm takes the security parameter λ and pos-
itive integer n as input. It chooses an asymmetric bilinear
groups (G1,G2,GT ) with prime order p > 2Θ(n) equipped
with bilinear map e : G1 × G2 → GT . It fixes generators
g1, g2 of G1, G2 respectively. It generates dual orthonormal
bases B = {bi}, B∗ = {b∗i } (i = 0, . . . , 2n + 7) of Z2(n+4)

p and
dual orthonormal bases D = {di}, D∗ = {d∗i } (i = 0, . . . , 3) of
Z

2
p. It defines the master secret key as msk = (B,B∗,D,D∗)

and the public parameters pp = (G1,G2,GT , g1, g2, p).

Query(x,msk, pp) :
The query algorithm takes a vector x = (x0, . . . , xn−1) ∈ Zn

p,
the master secret key msk, and the public parameters pp as
input. It first computes x′ = (x′0, . . . , x

′
n+1) = Encode1(x)

(as in Sect. 4.1). Then, it defines x′′ = (0, 1, x′0, . . . , x
′
n+1) =

(x′′0 , . . . , x
′′
n+3)† and computes the encrypted query Qx =

(Qx,1,Qx,2) as follows.

Qx,1 = g
β(x′′0 b0+···+x′′n+3bn+3)+β∗(x′′0 bn+4+···+x′′n+3b2n+7)
2 ,

Qx,2 = g
β(d0+d1)+β∗(d2+d3)
2

EncDB(y,msk, pp) :
The database encryption algorithm takes a vector y =

(y0, . . . , yn−1) ∈ Zn
p, the master secret key msk, and the

public parameters pp as input. It first computes y′ =
(y′0, . . . , y

′
n+1) = Encode2(y) (as in Sect. 4.1). Then, it de-

fines y′′ = (1, 0, y′0, . . . , y
′
n+1) = (y′′0 , . . . , y

′′
n+3). It then

picks random α, α∗ ∈ Zp and outputs the encrypted record
Dy = (Dy,1,Dy,2) computed as follows.

Dy,1 = g
α(y′′0 b∗0+···+y′′n+3b∗n+3)+α∗(y′′0 b∗n+4+···+y′′n+3b∗2n+7)
1 ,

Dy,2 = g
α(d∗0+d∗1)+α∗(d∗2+d∗3)
1

Dist(Qx,Dy, pp) :
The distance measurement algorithm takes Qx = (Qx,1,
Qx,2), Dy = (Dy,1,Dy,2), and the public parameters pp as
input. Then it computes Z = dist(x, y) as follows. It first
computes

D1 = e(Qx,1,Dy,1), D2 = e(Qx,2,Dy,2).

It then computes a Z ∈ Zp such that DZ
2 = D1, and outputs Z.

†Although not mentioned explicitly in the paper, the security
proof of Bishop et al. [4] implicitly assumes that an adversary is not
allowed to query the zero vector in the security game. (In fact, if an
adversary can query the zero vectors, there exists a simple attack
to the scheme.) We can use simple padding technique to remove
this restriction. Namely, we encode x and y as x → (1, 0, x), and
y→ (0, 1, y). Our scheme presented here is based on this modified
version of the Bishop et al. scheme.

We note that we can guarantee that the Dist algorithm will
run in polynomial time when the value of 〈x, y〉 is bounded
by some fixed polynomial. It can be easily seen that Z is the
weighted Euclidean distance between x and y.

5.2 Instantiation Based on [9]

As we have seen, since the inner product encryption by
[4] only achieves weak privacy, so does the resulting pri-
vate similarity searchable encryption scheme obtained by
the conversion in Sect. 4.1. Very recently, Datta et al. [9]
proposed an inner product encryption scheme with full pri-
vacy (rather than weak privacy). Their scheme is similar to
that of [4], but slightly more inefficient. By starting from
their scheme, we obtain a private similarity searchable en-
cryption scheme with full privacy.

Here, we estimate the efficiency of the resulting
scheme. To estimate the efficiency, we count the number of
scalar multiplications and the paring operations of our pro-
posal based and use the implementation result of [20] to cal-
culate the computational cost. In this evaluation, the num-
ber of dimensions of x and y were both 10. We calculated
the 32 scalar multiplications of the query algorithm and the
database encryption algorithm, and the execution times of
these calculation were 1.84 seconds and 3.33 seconds re-
spectively. And, we calculated the 32 paring operations of
the distance measurement algorithm, and the execution time
of this calculation was 10.94 seconds. From these results, it
was shown that this instantiation is feasible by this evalua-
tion.
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