
2368
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

PAPER Special Section on Security, Privacy and Anonymity in Computation, Communication and Storage Systems

Multi-Dimensional Bloom Filter: Design and Evaluation

Fei XU†a), Member, Pinxin LIU†b), Jing XU††, Jianfeng YANG†, and S.M. YIU†††, Nonmembers

SUMMARY Bloom Filter is a bit array (a one-dimensional storage
structure) that provides a compact representation for a set of data, which
can be used to answer the membership query in an efficient manner with
a small number of false positives. It has a lot of applications in many ar-
eas. In this paper, we extend the design of Bloom Filter by using a multi-
dimensional matrix to replace the one-dimensional structure with three dif-
ferent implementations, namely OFFF, WOFF, FFF. We refer the extended
Bloom Filter as Feng Filter. We show the false positive rates of our method.
We compare the false positive rate of OFFF with that of the traditional one-
dimensional Bloom Filter and show that under certain condition, OFFF has
a lower false positive rate. Traditional Bloom Filter can be regarded as a
special case of our Feng Filter.
key words: Bloom Filter, multi-dimensional matrix, false positive rates

1. Introduction

In many applications, storing a set of data in a data structure
for efficient membership query (whether a particular item
is in the dataset or not) is a common and critical problem.
Bloom Filter, proposed by Burton Howard Bloom in 1970,
is a simple space-efficient randomized data structure for rep-
resenting a set of data that supports membership query [1].
Bloom Filter (BF) is a popular choice for the applications if
a small number of false positives (i.e., an item which is not
in the dataset, but incorrectly identified as in the dataset)
is tolerable. For many applications, space and searching
time are more important and outweight this drawback if the
probability of having false positives can be made sufficiently
small.

Initially, BF was applied to database applications, spell
checkers and file operations (e.g. [2]–[4]). In recent years,
BFs have received a lot of attention in networking appli-
cations, such as peer-to-peer applications, resource routing,
security, and web caching [5]–[17]. A survey on the appli-
cations of Bloom Filters in distributed systems can be found
in [18]. BFs are also being used in practice. For instance,
Google Chrome uses a Bloom Filter to represent a black-
list of dangerous URLs. The followings show a few con-
crete examples in network applications. String matching:
The core operation of deep packet inspection is to search
for predefined signatures in the packet payload. A major

Manuscript received January 18, 2017.
Manuscript revised May 25, 2017.
Manuscript publicized July 21, 2017.
†The authors are with Law School, Renmin University, China.
††The author is with Tsinghua University, China.
†††The author is with The University of Hong Kong, Hong Kong.
a) E-mail: xufei@iie.ac.cn
b) E-mail: liupinxin@263.net (Corresponding author)

DOI: 10.1587/transinf.2016INP0022

step used for this application is string matching. BFs and
their variants have been utilized to improve the efficiency
of string matching algorithms. Message authentication: In
large-scale WSNs, BF is applied in communication-efficient
message authentication protocol to authenticate messages.
Each sensor node is preloaded with a symmetric key and k
hash functions. The sink also maintains k hash functions
and n keys (n is the number of sensors). The sink con-
structs n message authentication codes (MACs) using the
keys. These MACs are then inserted into the BF. Subse-
quently, BF can be used to check if a given MAC is valid or
not. Presence of mobile users in WWAN: In instant messag-
ing (IM) services, one needs to know quickly which mobile
users are online. To reduce power consumption and wire-
less wide area network (WWAN) access costs, BF can be
applied to store all mobiles user that are present in order to
answer the query.

1.1 Bloom Filter

A traditional BF is a vector A of m bits, initially all set to 0,
for representing a dataset S = x1, x2, . . . , xn of n elements.
The BF uses k independent hash functions h1, h2, . . . , hk,
each with range of {0, . . . ,m − 1}. A BF is constructed as
follows. Each element x in S is hashed by the k hash func-
tions. All bits at positions hi(x) in A are set to 1. A particular
position in the vector A may be set to 1 multiple times, but it
does not matter, i.e., it is set to 1 anyway. In the query phase,
to check if an element y is in S or not, we check the bits at
position hi(y) for all i = 1, 2, . . . , k. If any of these bits are 0,
the element is definitely not in the set. Otherwise, either the
element is in the set, or the bits have by chance been set to
1 during the insertion of other elements, resulting in a false
positive.

1.2 False Positive Rate

False positive rate is an important issue for Bloom Filter.
Intuitively, the more elements added to the set, the larger
the probability of having false positives, on the other hand,
the larger the array A, the lower the chance of having false
positives. Thus, the false positive rate is determined by the
following parameters:

1. Number of elements (n) added to the Bloom Filter: In
most cases, this parameter is defined by the application
and, thus, cannot be controlled.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

XU et al.: MULTI-DIMENSIONAL BLOOM FILTER: DESIGN AND EVALUATION
2369

2. Number of bits used in a Bloom Filter (m): We can set
m to be larger in order to decrease the probability of
having false positives but a large m may imply more
storage.

3. Number of hash functions (k) used to create the Bloom
Filter: The larger the value of k, the higher the process-
ing overhead (CPU usage) especially when the hash
functions need to perform complex operations.

1.3 Contributions

The contributions of this paper can be summarized as fol-
lows:

• Multi-Dimensional Storage Filter: we propose to use
a multi-dimensional storage Filter to extend the tradi-
tional one-dimensional Bloom Filter.
• Four different mappings: we propose three differ-

ent kinds of implementations for our proposed multi-
dimensional bloom Filter (we refer it as Feng Filter):
One First Feng Filter (OFFF), Whole One Feng Filter
(WOFF), and Function Feng Filter (FFF). We provide
the design and details of the implementations. Users
can choose one of the three Filters to fit their own ap-
plication(s).
• Analysis of false Positive rates: We formally analyzed

the false positive rates of Feng Filter with respect to
the three implementations. We use OFFF as an exam-
ple and compare its false positive rate with that of the
traditional Bloom Filter. We show that under certain
condition, OFFF has a lower false positive rate.

The rest of the paper is organized as follows. Section 2
presents the basic idea, operation and design of Feng Fil-
ter. Section 3 describes three different implementations of
Feng Filter. Section 4 analyzes the positive rates of differ-
ent implementations of the Feng Filter. Section 5 compares
the false positive rate of OFFF (the basic implementation of
the Feng Filter) with the traditional Bloom Filter. Section 6
concludes the paper.

2. Basics of Feng Filter

We first discuss the basic idea behind the multi-dimensional
bloom Filter and the preconditions. Then, we provide the
details of the basic operations.

2.1 Basic Idea

Assume that we have n elements in the dataset. In Feng Fil-
ter, using k hash functions, the n elements are mapped to
a storage matrix M with N dimensions of a total size of m
bits (i.e., the number of entries in one dimension is m1/N .
The mapping is based on the followings: k hash functions,
N-dimensional storage matrix, a perfect hash location ad-
just function L and the given mapping relation. There are
four different mapping methods, which we will discuss in

Fig. 1 Basic idea of the Feng Filter.

the next section. In each dimension, the position being se-
lected is based on the perfect hash location adjust function
L (described below), and the k hash functions. When there
is a position in M that meets the required mapping function,
then this position will be set to 1 from 0. Nothing will be
done otherwise. Figure 1 shows the basic idea of the Feng
Filter.

There are several requirements that we need to make
them clear about the relation between original data set and
the data in set S .

1. The relation between original data set and the data in
set S . Elements are given based on the actual appli-
cation and can be transformed into the domain for the
hash functions.

2. Independence of the k hash functions. All given k hash
functions are independent. For each of them, they are
equally likely to map a given element to any value in
the range [0..m − 1)] with equal probability.

3. Bits in the multi-dimensional storage matrix M can

2370
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

only be set to 0 or 1. Before the elements in s are in-
serted, all bits in M are set to 1.

4. Multi-dimensional storage matrix M. In real imple-
mentation, one can determine N, the dimensions of the
matrix M. In our illustration, we use a fix N, say 2.

5. Perfect hash location adjust function L. For k hash re-
sults (assuming k ≤ N), they are divided into N groups
(dimensions). For each group (dimension), there are
k/N values (mapped to positions using L). The range of
the results of function k, L is restricted to [0, (m1/N−1)]
(by performing an mod m1/N operation after dividing
into N groups). For example, if k = 6 and N = 3, we
will divide the hash values into 3 groups with 2 ele-
ments in each group as follows. We sort the k hash val-
ues. The smallest is allocated to the first group, which
represents the first position in the first dimension, la-
belled as L1,1. The second smallest is allocated to the
second group (representing the first position of the sec-
ond dimension, labelled as L2,1). The N-th smallest is
allocated to the N-th group as the first position of the
N-th dimension, labelled as LN,1. The N + 1 smallest
will then be allocated to the first group again (repre-
senting the second position of the first dimension), and
so on. Totally there will be k/N elements in each group.
Note that all values will be made to fall in the range
[0,m1/N − 1].

6. Other basic assumptions. The dimension N, hash func-
tion number k, storage matrix M with the number of
entries m in each dimension, and original dataset S and
element number should follow the basic requirements:
(i) N, k, m, n are all positive integers; and (ii) k is a
multiple of N.

2.2 Basic Operations

There are two basic operations in Feng Filter: Insert and
Query. When you need to insert element x into the Feng Fil-
ter matrix M of Feng Filter, we follow the following steps.

1. Apply k hash functions on x, and get k hash results.
2. For the k hash results, use the perfect hash location ad-

just function L to get k values to be mapped into the
positions in N dimensions.

3. Put k/N positions of the N dimensions as input, and
based on the mapping function, we obtain the positions
in the N dimensions.

4. Set each selected bit position of matrix M to 1 based
on the results of the related function.

Query is to decide if a given element y is in the original
data set or not. We can do that by checking the bit values
of the corresponding positions after applying the mapping
function to y in our Feng Filter. The steps are as follow.

1. Apply k hash functions on y to get k hash results.
2. For the k hash results, use the perfect hash location

adjust function L to get k positions, and then divide
the k positions into N groups, and each group will be

mapped to the first dimension, second dimension, and
so on. There are k/N values in each group, which
means k/N positions in each dimension.

3. Put k/N positions of the N dimensions as input, and
based on the mapping function, we will get the posi-
tions of the N dimensions. Check the related position
in the matrix M to see if all bits in these positions are 1,
if the answer is no, that means element y is definitely
not in the dataset S . If the answer if yes, that means
under the reasonable false positive rate, this element is
in S .

3. Detailed Mapping of Feng Filter

Recall that for each element x in S , we apply k hash
functions to obtain k values, then we divide these val-
ues into N groups using the function L (the smallest one
is allocated to the first group etc., see the above de-
scription): {L1,1, L1,2, . . . , L1,k/N}, {L2,1, L2,2, . . . , L2,k/N}, . . . ,
{LN,1, LN,2, . . . , LN,k/N}. Feng Filter has three different im-
plementations based on three different mapping algorithms,
which are described below.

3.1 One First Feng Filter, OFFF

From the hash values, we set the bit at (L1, j, L2, j, . . . , LN, j)
in M as 1 for all j = 1, . . . , k/N, i.e., we set k/N bits as 1. If
N = 1, this is the traditional Bloom Filter.

3.2 Whole One Feng Filter, WOFF

In this version, we cross over the hash values and set all the
following positions into 1:
M(L1,1, L2,1, . . . , LN,1),M(L1,2, L2,1, . . . , LN,1), . . . ,
M(L1,N , L2,1, . . . , LN,1)
M(L1,1, L2,2, . . . , LN,1),M(L1,2, L2,2, . . . , LN,1), . . . ,
M(L1,N , L2,2, . . . , LN,1)
. . .
M(L1,1, L2,N , . . . , LN,N),M(L1,2, L2,N , . . . , LN,N), . . . ,
M(L1,N , L2,N , . . . , LN,N)

In this mapping, we set more bits to be 1. We name
this type of Feng Filter as Whole One Feng Filter (WOFF).
Note that in N-dimension structure, the number of bits to be
set is fewer than the traditional Bloom Filter (for example, if
N = 2, OFFF only sets k/2 bits while the traditional Bloom
Filter will set k bits, intuitively, we have rooms to set more
bits, thus we have WOFF.

3.3 Functional Feng Filter, FFF

This can be a generic scheme for N-dimensional Bloom Fil-
ter. The mapping relation of Functional Feng Filter is based
on any specific function, decided by the designer or user. All
the three Feng Filters we discussed above can be regarded
as specific cases of FFF. We recommend the mapping re-
lation of FFF to be a strong relation too. In this mapping

XU et al.: MULTI-DIMENSIONAL BLOOM FILTER: DESIGN AND EVALUATION
2371

relation, Because during the setting process of setting the N
dimensional storage matrix M as 0 or 1, the mapping rela-
tion is based on the specific function, So we name this type
of Feng Filter as Function Feng Filter (FFF).

4. False Positive Rates

In this section, we analyze the false positive rates of the pro-
posed Feng Filter. Take One First Feng Filter (OFFF) as
an example, we will present the calculation of false posi-
tive rate. And we will give out the results of the other three
implementations of Feng Filter.

4.1 OFFF

The probability for one bit in the N-dimensional matrix M
to be set is 1/m. The probability of it being 0 is 1−1/m. For
each element, we will set k/N bits. Thus, for each element
inserted, the probability of a bit being 0 is (1 − 1/m)k/N . If
we have inserted n elements, then the probability of a bit
being 0 is (1 − 1/m)nk/N . Thus, the probability that this bit
is set to 1 randomly is 1 − (1 − 1/m)nk/N . Finally, if all k/N
bits corresponding to an element y to be all set is:

fOFFF(m, n, k,N) =

(
1 −

(
1 − 1

m

) nk
N
) k

N

4.2 Other Implementations

The following probabilities are stated without derivations.

fWFFF(m, n, k,N) =

(
1 −

(
1 − 1

m

)n
(

k
N

)N)(k
N

)N

fFFF(m, n, k,N) =

(
1 −

(
1 − 1

m

)nt
)t

,

where t is the number of bits to be set.

5. Comparison of Feng Filter with Bloom Filter

We will use One First Feng Filter as an example to compare
the false positive rate of Feng Filter with that of the one-
dimensional traditional Bloom Filter. For One First Feng
Filter, we claim that the false positive rate is smaller than
that of Bloom Filter provided

0 <
(
1 − 1

m

)nk

<
1
2
.

Recall that the false positive rate of OFFF is

fOFFF(m, n, kN) =

(
1 −

(
1 − 1

m

) nk
N
) k

N

When N ∈ [1, k], we want to make sure that
fOFFF(m, n, k,N) is monotonic. Here, we set t = k/N (the

number of bits to be set per element) and b =
(
1− 1

m

)n

. Note

that t ∈ [1, k] and b ∈ (0, 1). Then, we have:

fOFFF(m, n, k,N) = (1 − bt)t and

f ′OFFF(m, n, k,N) |N= f ′OFFF(b, t) |t × dt
dN

And dt
N = − k

N2 . Differentiating fOFFF to get

f ′OFFF = et ln(1−bt)

(
ln

(
ln(1 − bt)

)
− tbt ln b

1 − bt

)

Because, et ln(1−bt) > 0, we set

u(b, t) = ln(1 − bt) − tbt ln b
1 − bt

u′(b, t) |t= bt ln b × (2bt − 2 − t ln b)
(1 − bt)2

Now, put t = k into u(b, t), we have:

u(b, k) = ln(1 − bk) − kbk ln b

1 − bk

Finally, it is clear that:

u(b, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
> 0, bk ∈ (

0, 1
2

)
= 0, bk = 1

2

< 0, bk ∈ (1
2 , 1

)
We can see that, if bk ∈ (

0, 1
2

)
, then fOFFF(m, n, k,N)

is decreasing when t = k, N = 1. That is, under this condi-
tion, the false positive rate of OFFF is lower than that of the
traditional bloom Filter.

6. Conclusions

In this paper, based on the basic idea of Bloom Filter, we ex-
tend it to use multi-dimensional matrix instead of using only
one-dimensional array. We call our Filter the Feng Filter.
From the perspective of the storage structure, the Bloom Fil-
ter can be regarded as a special case of the Feng Filter with
only one dimension. Our paper gives the definitions and de-
tails of this proposed multi-dimensional Filter. Depending
on the mapping relationship, we propose three kinds of im-
plementations for Feng Filter, namely OFFF, WOFF, FFF.
We also compared the false positive rates of OFFF with that
of the traditional Bloom Filter and show that under certain
conditions, OFFF is better than the traditional Bloom Fil-
ter. We believe that our three variations can provide more
flexibility to users depending on the applications.

Acknowledgments

This work is supported by Beijing Natural Science Foun-
dation (4164089) and the Major Project of Key Research
Base for Humanities and Social Sciences, Education Min-
istry of China, “Criminal Rule of Law in Internet Security”
(15JJD820011).

2372
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

References

[1] J.K. Mullin, “Optimal semijoins for distributed database systems,”
IEEE Trans. Softw. Eng., vol.16, no.5, pp.558–560, 1990.

[2] J.K. Mullin, “Estimating the size of a relational join,” Information
Systems, vol.18, no.3, pp.189–196, 1993.

[3] U. Manber and S. Wu, “An algorithm for approximate membership
checking with application to password security,” Information Pro-
cessing Letters, vol.50, no.44, pp.191–197, 1994.

[4] D. Sarang, K. Praveen, and E.T. David, “Longest prefix matching
using bloom filters,” Proc. ACM SIGCOMM, pp.201–212, 2003.

[5] L.L. Gremilion, “Designing a bloom filter for differential file ac-
cess,” Commun. ACM, vol.25, no.9, pp.600–604, 1982.

[6] F. Bonomi, M. Mitzenmacher, R. Panigraphy, S. Singh, and G.
Varghese, “Beyond bloom filters: From approximate membership
checks to approximate state machines,” Proc. ACM SIGCOMM,
pp.315–326, 2006.

[7] J. Ledlie, J.M. Taylor, L. Serban, and M. Seltzer, “Self-organization
in peer-to-peer systems,” Proc. 10th European SIGOPS Workshop,
pp.125–132, 2002.

[8] F.M. Cuenca-Acuna, C. Peery, R.P. Martin, and T.D. Nguyen,
“PlanetP: Using gossiping to build content addressable peer-
to-peer information sharing communities,” Proc. 12th IEEE Inter-
national Symposium on High Performance Distributed Computing,
pp.236–246, 2003.

[9] S.C. Rhea and J. Kubiatowicz, “Probabilistic location and routing,”
Proc. INFOCOM 2002, pp.1248–1257, 2002.

[10] A. Whitaker and D. Wetherall, “Forwarding without loops in Icarus,”
Proc. Open Architectures and Network Programming, pp.63–75,
2002.

[11] C. Estan and G. Varghese, “New directions in trace measurement
and accounting,” Proc. ACM SIGCOMM, pp.323–336, 2002.

[12] D.C. Suresh, Z. Guo, B. Buyukkurt, and W.A. Najjar, “Automatic
compilation framework for bloom filter based intrusion detection,”
Proc. ARC, pp.413–418 2006.

[13] P. Gross, J. Parekh, and G. Kaiser, “Secure “selecticast” for collabo-
rative intrusion detection systems,” Proc. International Workshop on
Distributed Event-based Systems, pp.50–55, 2004.

[14] M.E. Locasto, J.J. Parekh, A.D. Keromytis, and S.J. Stolfo, “To-
wards collaborative security and P2P intrusion detection,” Proc. In-
formation Assurance Workshop 2005, pp.30–36, 2005.

[15] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route filtering
of injected false data in sensor networks,” IEEE J. Sel. Areas Com-
mun., vol.23, no.4, pp.839–850, 2005.

[16] W.B. Jaballah, A. Meddeb, and H. Youssef, “An efficient source au-
thentication scheme in wireless sensor network,” Proc. IEEE/ACS
International Conference on Computer Systems and Applications,
pp.1–7, 2010.

[17] Y.-S. Chen and C.-L. Lei, “Filtering false messages en-route in wire-
less multi-hop networks,” Proc. IEEE Wireless Communications and
Networking Conference, pp.1–6, 2010.

[18] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet Mathematics, vol.1, no.4, pp.485–509,
2005.

Fei Xu received her Ph.D. degree in Network
and Information Security at Beijing Institute of
Technology in 2012. She has been working as
an Assistant Professor at Institute of Informa-
tion Engineering, Chinese Academy of Sciences
since then. She is also with Law School, Ren-
min University of China.

Pinxin Liu received his Ph.D. degree in
Law at Renmin University of China in 2003. He
is currently a Professor at the School of Law,
and a Researcher at Research Center of Criminal
Jurisprudence, Renmin University of China.

Jing Xu received her Ph.D. degree in Net-
work and Information Security at Beijing Insti-
tute of Technology in 2016. She is currently a
postdoc in Tsinghua University.

Jianfeng Yang received his master degree in
Network and Information Security from Peking
University in 2015.

S.M. Yiu received his Ph.D. degree in Com-
puter Science at the University of Hong Kong
in 1997. He is currently an Associate Professor
in the Department of Computer Science of the
same university.

http://dx.doi.org/10.1109/32.52778
http://dx.doi.org/10.1016/0306-4379(93)90037-2
http://dx.doi.org/10.1016/0020-0190(94)00032-8
http://dx.doi.org/10.1145/358628.358632
http://dx.doi.org/10.1145/1151659.1159950
http://dx.doi.org/10.1145/1133373.1133397
http://dx.doi.org/10.1109/hpdc.2003.1210033
http://dx.doi.org/10.1109/infcom.2002.1019375
http://dx.doi.org/10.1109/opnarc.2002.1019229
http://dx.doi.org/10.1145/964725.633056
http://dx.doi.org/10.1007/11802839_49
http://dx.doi.org/10.1049/ic:20040382
http://dx.doi.org/10.1109/iaw.2005.1495971
http://dx.doi.org/10.1109/jsac.2005.843561
http://dx.doi.org/10.1109/aiccsa.2010.5586993
http://dx.doi.org/10.1109/wcnc.2010.5506127
http://dx.doi.org/10.1080/15427951.2004.10129096

