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SDN-Based Self-Organizing Energy Efficient Downlink/Uplink
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SUMMARY The increase in network access devices and demand for
high quality of service (QoS) by the users have led to insufficient capacity
for the network operators. Moreover, the existing control equipment and
mechanisms are not flexible and agile enough for the dynamically chang-
ing environment of heterogeneous cellular networks (HetNets). This non-
agile control plane is hard to scale with ever increasing traffic demand and
has become the performance bottleneck. Furthermore, the new HetNet ar-
chitecture requires tight coordination and cooperation for the densely de-
ployed small cell base stations, particularly for interference mitigation and
dynamic frequency reuse and sharing. These issues further complicate the
existing control plane and can cause serious inefficiencies in terms of users’
quality of experience and network performance. This article presents an
SDN control framework for energy efficient downlink/uplink scheduling in
HetNets. The framework decouples the control plane from data plane by
means of a logically centralized controller with distributed agents imple-
mented in separate entities of the network (users and base stations). The
scheduling problem consists of three sub-problems: (i) user association,
(ii) power control, (iii) resource allocation and (iv) interference mitigation.
Moreover, these sub-problems are coupled and must be solved simultane-
ously. We formulate the DL/UL scheduling in HetNet as an optimization
problem and use the Markov approximation framework to propose a dis-
tributed economical algorithm. Then, we divide the algorithm into three
sub-routines for (i) user association, (ii) power control, (iii) resource al-
location and (iv) interference mitigation. These sub-routines are then im-
plemented on different agents of the SDN framework. We run extensive
simulation to validate our proposal and finally, present the performance
analysis.
key words: heterogeneous cellular networks, self-organization, user asso-
ciation, resource allocation, downlink uplink scheduling, Markov approxi-
mation

1. Introduction

The heterogeneous cellular networks (HetNets) with macro-
cell base stations (MBS) and SBSs increase the complexity
in coordination and put constraints on available resources.
Another reason is that Software defined networks (SDNs)
have evolved with the vision to split the control and data
plane and have been very successful among the wired net-
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works. This technology can be used to control cells by hav-
ing a global view of the network, and accordingly, schedule
its operation.

Moreover, the existing control equipment and mecha-
nisms are not flexible and agile enough for the dynamically
changing environment of HetNet. Management of existing
HetNet with this non-agile control plane has become one
of the biggest and crucial challenge in order to fulfill users
demand. The major challenges of HetNet are (i) user as-
sociation, (ii) power control, (iii) resource allocation and
(iv) interference mitigation problems. Moreover, these sub-
problems are coupled and must be solved simultaneously.
In this paper, an architectural vision to address the chal-
lenges imposed on HetNet. Furthermore, we formulate the
DL/UL scheduling in HetNet as an optimization problem
and use the Markov approximation framework to propose a
distributed economical algorithm.

In HetNet research, there are many works with self-
organization algorithm that use game theoretic approaches.
In [1], the authors formulated three joint sub-problems of
user association, resource allocation and interference miti-
gation as the maximization of downlink sum-rate with pric-
ing. They proposed a Markov approximation framework
to study the convergence in probability. In [2], the au-
thors studied a reinforcement-learning based framework for
interference management in small cells networks and pro-
posed self-organizing strategies for interference manage-
ment in closed-access small cell networks with minimum
information required to learn an equilibrium. In [3], the
authors employed a semi-Markov decision process to study
the admission control problem and design a power control
game to reduce energy consumption. The authors in [4]
developed a coalition game approach to tackle interference
mitigation and reached self-organization solutions that can
achieve stable network partitions. The authors in [5] ex-
plored up-link scheduling and power allocation problem and
used an approximation method to arrive at a sub-optimal so-
lution. However, these works [1]–[5] only consider DL or
UL scheduling separately which is real-life must be jointly
considered. Moreover, the management and coordination
of all the network functions between BSs and UEs is a
very challenging issue. Thus, we jointly consider DL/UL
scheduling and propose a self-organizing algorithm for the
network to dynamically adapt to the changing environment.
Next, we employ an SDN controller which decouples the
control and data planes to simplify the network manage-
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ment [6], [7].
The remainder of this paper is organized as follows.

Section 2 presents an overview of the system model. We
formulate the energy efficient scheduling problem in Sect. 3.
Section 4 discusses the Markov approximation framework.
In Sect. 5, the SDN Framework for self-organizing energy
efficient downlink/uplink scheduling is discussed. In Sect. 6,
we present the performance evaluation with numerical and
simulation results and we finally conclude this paper in
Sect. 7.

2. System Model

We consider the downlink and uplink of a HetNet consisting
of a fixed set of base stations (BSs) and a randomly located
set of user equipments (UEs) denoted by B and U, respec-
tively as shown in Fig. 1. The network is represented by the
graphG = (V,E), whereV is the set of nodes (vertices) and
E is the set of links (edges). The set of nodes in the network
consists of the BSs and UEs, i.e., V = B ∪ U. The set of
links contains the downlinks (links from BSs to UEs) and
uplinks (links from UEs to BSs), i.e., E = EDL ∪ EUL. The
set of sub-channels (sCHs) available to the network is de-
noted by S. There are two types of BSs; the macrocell base
station (MBS) and the femtocell base station (FBS), which
is also referred to as the small cell base station (SBS). The
coverage area of MBS and SBSs will overlapping and each
UE is in the range of at least one BS. All BSs are connected
to a high speed backhaul with negligible delay. Let ψDL

i ∈ Ψ
and ψUL

i ∈ Ψ denote the requested downlink and uplink data
rates of UE i ∈ U expressed in bits per second, where Ψ is
the discrete set of QoS levels. Similarly, we also assume that
the set per sub-channel transmit power, Pk

mi, (from transmit-
ter m to receiver i on sub-channel k) is also finite and dis-
crete, i.e., Pk

mi ∈ P = {P1, P2, . . . , P|P|}.

2.1 Fundamentals

Following the log-distance path loss model, and the posi-
tive channel power gain between transmitter m and receiver
i can be calculated as: hmi = 10−μ/10, where μ is the total
path loss between transmitter m and receiver i in decibels
(dB). We assume that each receiver i is capable of measur-
ing hmi for all transmitter m ∈ V. Let Vk ⊆ V denote the
set of transmitters that use sub-channel k. Then, the interfer-
ence to the link (m, i) on sub-channel k is

∑
n∈Vk\{m} hniPk

ni.
Hence, the instantaneous signal-to-interference-plus-noise-
ratio (SINR) for the link (m, i) on sub-channel k is:

Γk
mi =

hmi Pk
mi∑

n∈Vk\{m} hni Pk
ni +W N0

, (1)

where W is the bandwidth of the sub-channel and N0 is the
thermal noise spectral power. Then, the achievable data rate
for the link (m, i) on sub-channel k is given by

Rk
mi = W log2(1 + Γk

mi). (2)

Fig. 1 Network model.

Fig. 2 Receive and interference powers.

Since the available sub-channels for the network is
finite and limited, we adopt the dynamic spectrum reuse
scheme. We use the concept of conflict and reuse link
pairs (analogous to overlay and underlay spectrum access)
to separate the link interference powers into two categories;
high interference link pairs which cannot reuse the same
sub-channels, or low interference link pairs where spectrum
reuse is possible. Consider the two links (m, i) and (n, j) as
shown in Fig. 2. The sets of conflict and reuse link pairs are
given by: ∀k ∈ S, ∀(m, i), (n, j) ∈ Ek ⊆ E
Econflict =

{
(m, i), (n, j) | min{Γk

mi,Γ
k
n j} ≤ Γ̃

}
, (3)

Ereuse =
{
(m, i), (n, j) | min{Γk

mi,Γ
k
n j} > Γ̃

}
, (4)

where Γ̃ is the SINR threshold and min{·} is the commonly
used minimum operator such that min {a, b} = a, if a < b
and min {a, b} = b, if a > b. Note that min{·} is used since
the interfering links may not be symmetric due to disparity
in transmit power. In practice, interference measurement
and estimation for a link must be made at the receiver side.

3. Problem Formulation

3.1 Objective

First, the achieved data rates for downlink and uplink be-
tween BS m and UE i are given by:

Rmi =
∑

m∈B xm
i

∑
k∈Syk

mi Rk
mi, [DL] (5)
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Rim =
∑

m∈B xm
i

∑
k∈Syk

im Rk
im, [UL] (6)

where xm
i ∈ {0, 1} and yk

im ∈ {0, 1} are the binary deci-
sion variables used for user association and sub-channel (re-
source) allocation, respectively. Similarly, the total amounts
of power consumed for respective downlink and uplink be-
tween BS m and UE i are expressed as:

Pmi =
∑

m∈B xm
i

∑
k∈Syk

mi Pk
mi, [DL] (7)

Pim =
∑

m∈B xm
i

∑
k∈Syk

im Pk
im. [UL] (8)

Since our goal is to maximize the energy efficiency of
the network, we define the utility function is the ratio of
achieved data rate to power consumed, which is expressed
in bits per second per watt (bits/s/W). Hence, individual
and global utilities are defined as average energy efficien-
cies given by:

ui(x, y, P) =
Rmi

Pmi
+

Rim

Pim
, [Individual] (9)

U(x, y, P) =
1
|U|
∑
i∈U

ui(x, y, P). [Global] (10)

3.2 Constraints

Unique association: UE i can only associate with at most
one BS at any time slot, i.e.,
∑

m∈B xm
i ≤ 1, ∀i ∈ U. (11)

QoS: A BS must serve its associated UEs with a minimum
QoS requirement, i.e.,

Rmi ≥ ψDL
i , ∀(m, i) ∈ B ×U [DL] (12)

Rim ≥ ψUL
i , ∀(m, i) ∈ B ×U [UL] (13)

To satisfy (12) and (13), BS m must allocate minimum num-
ber of sub-channels to UE i. Assuming that Rk

mi is the same

across all sub-channels, we have
∑

k∈S yk
mi =

⌈
ψDL

i /Rk
mi

⌉
,

where
∑

k∈S yk
mi represents the total number of allocated sub-

channels, and 	·
 denotes the ceiling function. Similarly, we
have

∑
k∈S yk

im =
⌈
ψUL

i /Rk
im

⌉
.

Interference: First, the downlinks and uplinks must be allo-
cated orthogonal resources, i.e.,

yk
mi + y

k
im ≤ 1, ∀(m, i) ∈ B ×U. (14)

Based on (3) and (4), the interference constraints for conflict
and reuse link pairs are given as: ∀(m, i), (n, j) ∈ B ×U

yk
mi + y

k
n j ≤ 1, {(m, i), (n, j)} ∈ Econflict, [DL] (15)

yk
im + y

k
jn ≤ 1, {(m, i), (n, j)} ∈ Econflict, [UL] (16)

Here, the constraints in (15) and (16) are used to determine
whether any link pair can reuse the same sub-channel k or
not. if {(m, i), (n, j)} ∈ Bconflict, the spectrum reuse will not
be possible. Otherwise, the sub-channel k can be reused.

Fig. 3 The joint optimization problem of DL/UL scheduling: user asso-
ciation, resource allocation, power control.

In other words, we identify the highest interference power
links and isolate them by spectrum partitioning.

Resource: The available resource to the network must not
be exceeded, i.e., ∀(m, i) ∈ B ×U
∑

i∈U xm
i

∑
k∈S(yk

mi + y
k
im) ≤ |S|, (17)∑

i∈U Pmi ≤ P̂m. (18)

Furthermore, the constraint in (17) ensures that the number
of sub-channels allocated to UEs by BS m does not exceed
the total number of available sub-channels. Similarly, (18)
ensures that the total downlink power of BS m does not ex-
ceed its maximum power P̂m.

3.3 Optimization Problem

Our goal is to design a self-organization mechanism that can
perform energy efficient scheduling for downlink and uplink
under QoS constraints. The scheduling problem contains
three sub-problems; (i) user association, (ii) resource allo-
cation, and (iii) power control as shown in Fig. 3. Next, we
formulate the joint optimization problem (JOP) as follows:

JOP : maximize:
x,y,P

U(x, y, P)

subject to: (11), (12), (13), (14),

(15), (16), (17), (18).

(19)

Due to the unique association constraint given in (11),
the number of possible downlinks (UE associations) is re-
duced from 2|U|·|B|+1 to 2 · |B||U|. However, the number
of possible resource allocations for each downlink is com-
binatorial, i.e., 2|S|. Hence, the solution space of JOP is
|B||U|·|P| · 2|S|+|P|, and no computationally efficient solution
for JOP exists. Moreover, JOP belongs to a class of assign-
ment problems which are proven to be combinatorial and
NP-hard [8], [9].

4. Markov Approximation Framework

The Markov approximation approach can be used to solve
JOP because of its ability to solve multiple sub-problems
simultaneously without disjoint step-by-step solutions [10],
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[11]. First, log-sum-exp approximation is performed, and
then, a problem-specific Markov chains is designed to allow
distributed implementation.

Let f = {x, y, P} be a network configuration, and F
be the set of all the feasible configurations that satisfy the
constraints in (11), (12), (13), (14), (15), (16), (17), and
(18). For ease of presentation, U f = U(x, y, P), and JOP be
represented by max

f∈F
U f . Hence, the equivalent maximum

weight independent set (MWIS) problem of JOP is [10]:

max
f∈F

U f ⇐⇒
max
π≥0

∑
f∈F π f U f

s.t.
∑

f∈F π f = 1
(20)

where π f is the probability of choosing configuration f , i.e.,
its weight, and π denotes the vector of weights π f . We can
view π f as the fraction of the time that configuration f is
activated.

4.1 Log-Sum-Exp Approximation

The log-sum-exp function, gβ(U f ), is convex and the closed
function [10], [12, p. 93]. Thus, the conjugate of its conju-
gate g∗β(π) is itself, i.e. gβ(U f ) = g∗∗β (U f ) [10], [12, p. 93].
Following the Markov approximation framework, the log-
sum-exp approximation of max

f∈F
U f yields

Umax ≈ 1
β

log
[∑

f∈F exp(βU f )
]
� gβ(U f ), (21)

where β is a positive constant and Umax = max
f∈F

U f . Let

|F | be the size of set F , then the approximation accuracy is
given by [10], [12, p. 72]:

0 ≤ ∣∣∣Umax − gβ(U f )
∣∣∣ ≤ 1

β
log |F |. (22)

As β→ ∞, the approximation gap, 1
β

log |F | → 0, and thus,
the approximation becomes exact.

The log-sum-exp approximation in (21) is equiva-
lent to solving the following optimization problem [10],
[12, p. 93],

max
p≥0

∑
f∈F π f U f︸�������︷︷�������︸

MWIS objective

− 1
β

∑
f∈F π f log π f︸���������������︷︷���������������︸
entropy term

s.t.
∑

f∈F π f = 1.

(23)

By finding the Karush-Kuhn-Tucker (KKT) conditions [12,
p. 243] of the optimization problem given in (23), we obtain
the optimal probability distribution, p∗, which is given by

π∗f (U f ) =
exp(βU f )∑

f ′∈F exp(βU f ′ )
, ∀ f ∈ F . (24)

However, (24) requires completeness, i.e. complete informa-
tion on F which can be difficult to find in a practical small
cell network due to the large solution space.

4.2 Markov Chain and Transition Rate

The next step is to design a problem specific Markov chain.
Each state f represents a configuration with its correspond-
ing stationary distribution π∗f (U f ) given by (24) and the set
of statesF contains all possible configurations. As the prob-
ability distribution of the Markov chain converges, the con-
figurations will be time-shared according to π∗f . There exists
at least one continuous-time time-reversible ergodic Markov
chain whose stationary distribution is π∗f (U f ) [10].

Let configurations f , f ′ ∈ F be the states of a time-
reversible ergodic Markov chain with stationary distribu-
tions π∗f (U f ), ( f ∈ F ) in (24). Let q( f→ f ′) and q( f ′→ f ) be
the non-negative transition rates from f → f ′ and f ′ → f ,
respectively. Then, the two following conditions are suffi-
cient for transition probability design [10]:

• Any two states are reachable from each other,
• (25) is satisfied for all f , f ′ ∈ F ,

π∗f (U f ) q( f→ f ′) = π
∗
f ′ (U f ′ ) q( f ′→ f ),

exp(βU f ) q( f→ f ′) = exp(βU f ′ ) q( f ′→ f ).
(25)

The balance equation in (25) is significant because com-
plete information on all possible configurations, F , is no
longer necessary. Furthermore, the Markov chain is time-
reversible, and hence, it will converge to π∗ with probability
one. For our design, we consider the following condition:

q( f→ f ′) + q( f ′→ f ) = exp(−τ), (26)

where τ is a positive constant. From (25) and (26), we have

q( f→ f ′) =
exp(−τ)

1 + exp[β (U f − U f ′ )]
, (27)

q( f ′→ f ) =
exp(−τ)

1 + exp[β (U f ′ − U f )]
, (28)

which are logistic functions of utility differences. Next,
we substitute the individual utilities given in (9) instead of
global utilities given in (10) for distributed implementation,
i.e.,

q( f→ f ′) =
exp(−τ)

1 + exp[β (ui, fi − ui, f ′i )]
, (29)

q( f ′→ f ) =
exp(−τ)

1 + exp[β (ui, f ′i − ui, fi )]
. (30)

Using (29)–(30), we design the Energy Efficient Self-
organization Algorithm (EESA) given in Alg. 1. First,
EESA builds the conflict and reuse link pairs graph (Line 1–
4). The main part of EESA consist of learning (Line 5–8)
and consolidation (Line 9–18). When UE i has a traffic de-
mand, it starts the learning–consolidation process. In learn-
ing, each UE randomly chooses a new configuration with
exploration probability ωi or stays with previous configu-
ration with probability 1 − ωi. The consolidation follows
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Fig. 4 Block diagram of EESA

each subsequent learning phase where two previous config-
urations are compared probabilistically. The higher utility
configuration is chosen with higher probability. Next, the
BSs allocate resource to each link and the matrices are up-
dated (Line 19–26). UE i repeats this process until ωi = 0.
At this point, the UE i stops the learning–consolidation pro-
cess and chooses the final configuration for the duration of
its request.

4.3 EESA

The block diagram of EESA is given in Fig. 4. Learning in
EESA consists of two parts, exploration and consolidation,
as shown in Fig. 4. In the learning phase, the UE randomly

Fig. 5 Block diagram of exploration function

chooses a configuration for experimentation. The configu-
ration including the associated BS, the power level and the
allocated sub-channels are stored in history. The achieved
data rate and consumed transmit power is also stored in the
memory. EESA keeps track of configurations and utilities
for two previous time slots. In the consolidation phase,
EESA compares the previously stored configurations via the
individual utilities stored in history. It then decides prob-
abilistically in choosing a configuration among the stored
configurations for the current time slot. Note that higher
utility configuration has a higher probability to be chosen.
Furthermore, we explain the individual function blocks of
EESA in the following paragraphs.

The exploration function experiments with new ran-
dom configurations with an exploration probability. In this
case, each UE chooses a configuration randomly with uni-
form probability distribution. The chosen configuration in-
cludes (i) the association control variable, xm

i , which ran-
domly chooses a feasible BS with uniform probability dis-
tribution (Line 7), and (ii) the power level, which is either
increased or decreased by one level with probability 0.5
(Line 8). After every exploration, the exploration proba-
bility is decreased until it reaches zero where the UEs no
longer participates in exploration of a new configuration.

In consolidation function, each UE calculates a transi-
tion probability. Then, UEs choose its configurations for
time-slot t from previously observed history at time slot
(t−2) and (t−1), probabilistically. A random number φ is
generated in every consolidation phase through which a con-
figuration among time slot (t−2) and (t−1) is chosen. Once
the configuration is decided by the UEs, the requests are sent
to the respective BSs. Figure 6 presents a block diagram for
the consolidation function. Furthermore, the transition prob-
ability ensures that the higher utility has a higher probabil-
ity to be chosen. Thus, after a period of time, configuration
chosen at time t yields better utility than all previous times
with a high probability. Due to the properties of the under-
lying Markov chain, this transition probability ensures that
the HetNet converges to a close-to-optimal configuration in
probability.

5. SDN Framework

Software Defined Network (SDN) framework has two defin-
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Fig. 6 Block diagram of consolidation function

Fig. 7 SDN framework for self-organizing energy efficient DL/UL
scheduling

ing characteristics [6]. “First, an SDN separates the control
plane (which decides how to handle the traffic) from the data
plane (which forwards traffic according to decisions that the
control plane makes). Second, an SDN consolidates the con-
trol plane, so that a single software control program con-
trols multiple data-plane elements. The SDN control plane
exercises direct control over the state in the network’s data-
plane elements via a well-defined Application Programming
Interface (API).” Algorithm 1 described in Sect. 4 can be
implemented distributively as SDN agents in BSs and UEs.
However, for ease of management, we employ a SDN con-
troller for logically centralized abstraction and coordination
between the BSs and UEs.

5.1 SDN Controller

Figure 7 shows all the components and function of the con-
troller. This architecture abstracts information from each
base station and provides a global view to the controller
who decides the resources to be allocated. The proposed
framework will provide a network resource optimization
framework and efficient control mechanism based on SDN
for such heterogeneous cellular networks. It provides a
self-organizing mechanism that performs energy efficient
scheduling for downlink and uplink in the network. Further-

Fig. 8 Embedded agent in UE and BS

more, the SDN controller is used to achieve higher through-
put, reliability and energy efficiency.

5.2 Agent Design Embedded in UEs and BSs

The user equipment and the femtocell base station need
some additional components in order to achieve the objec-
tive, i.e. throughput maximization of the system subject to
interference minimization and power control. This section
identifies the agents installed for both the user equipment’s
and the femtocell base stations and the controller with the
help of sequence diagram.

The user equipment is involved in the tasks of EESA as
shown in Fig. 8 (a). The user equipment has the following
functions modules

• EESA main function controls individual functions run-
ning on the UE Agent.
• Monitoring function monitors the utility and consumed

transmit power of the downlink.
• Learning function explores a new configuration with

exploration probability ωi or exploits the previous con-
figuration with probability 1 − ωi.
• Consolidation function compares two previous config-

urations and choose higher utility configuration with
higher probability.

The base station has the following functions modules as
shown in Fig. 8 (b).

• EESA main function controls individual functions run-
ning on the BS Agent.
• Monitoring function monitors the utility and consumed

transmit power of the downlink.
• Learning function explores a new configuration with

exploration probability ωi or exploits the previous con-
figuration with probability 1 − ωi.
• Consolidation function compares two previous config-

urations and choose higher utility configuration with
higher probability.
• Conflict and reuse graph management function builds

the conflict and reuse link pairs graph.
• Resource allocation function allocates sub-channels to

the UE based on the link conflict and reuse graphs.

Now we provide the sequence diagram of EESA. Fig-
ure 9 details the process of EESA. EESA algorithm works
through the interaction of UE Agent, BS Agent and Con-
troller. It is repeated in order to find the optimal solution.
Through the above precess, system utility of HetNet is max-
imized and interference and consumed transmit power are
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Fig. 9 Sequence diagram of EESA

minimized.

6. Performance Evaluation

We perform simulations in MATLAB to evaluate our pro-
posed algorithm. For our experiments, we assume the fol-
lowing: 1) the BSs to are deployed at fixed locations, 2) the
UEs are deployed following a homogeneous Poisson Point
Process (PPP), 3) user demands (i.e., requested data rate)
are discrete and follows a binomial distribution, and 4) SDN
controller is collocated with the MBS and the latency be-
tween MBS and SDN controller is less than 2 ms. To eval-
uate our proposed algorithm, we define the normalized per-
formance gap:

ε(t) = 1 − U(t)/Umax, (31)

where U(t) is the utility at time slot t, and Umax = max
f∈F

U f .

We consider a log-distance path loss model for our sim-
ulation: μ = μ0 + 10 ζ log10

d
d0
+Xg, where μ is the total path

loss in (dB), μ0 is the path loss at reference distance d0 for
the BS, d is the length of transmission path, ζ is the path loss
exponent, and Xg is the attenuation in dB caused by fading.
Moreover, we assume that

• for indoors, d ≤ 20 m, ζ = 3, and Xg is a Gaussian
random variable for shadow fading
• for outdoors, d > 20 m, ζ = 4, and Xg is a Rayleigh

random variable for fast fading.

The reference path loss is calculated using two-ray ground
reflection model as:

μ0 = 40 log10(d0) − 10 log10(Gh2
t h2

r ), (32)

where G is the transmit antenna gain, ht and hr are the
heights of the antenna of transmitter and receiver, respec-
tively. Simulation parameters are given in Table 1.

First, we run an experiment to test the convergence of
EESA where |U| = 100 UEs are randomly generated. The
results of the experiments are shown in Figs. 10 (a)–10 (b).
Figure 10 (a) shows the energy efficiency versus time slot of

Table 1 Default simulation parameters

Quantity Values
Area of region (A) 500 m × 500 m
Static traffic: # of UE (|U|) 100
UE traffic demand (ψDL

i , ψUL
i ) [0.1, 1] Mbps

# of BS (|B| = |Bm ∪ Bf |) 25 = 1 + 24
Total transmit power of BSs {46, 26} dBm
Antenna gain of BSs (G) {12, 6} dBi
Reference distance of BSs (d0) {1000, 20}m
Transmit antenna height of BSs (ht) {30, 3}m
# of sub-channels (|S|) 12 × 100
Bandwidth of each sub-channel (W) 15 kHz
Thermal noise for 1 Hz at 20 ˙C −174 dBm

Fig. 10 Convergence of EESA, ωstep = 0.05, |U| = 100.

Fig. 11 Breakdown of utility, ωstep = 0.05, |U| = 100.

EESA compared to the optimal energy efficiency Umax. The
normalized performance gap calculated by (31) is shown in
Fig. 10 (b). Figures 10 (a)–10 (b) clearly show that EESA
converges to a near-optimal solution. During the early time-
slots, the magnitude of fluctuations is high since the network
has no knowledge and every UE is exploring its possible
configurations. As the time goes on, each UE learns about
its possible configurations and chooses high utility config-
urations with high probabilities. Hence, the magnitude of
fluctuations becomes smaller and EESA finally converges.
This phenomenon is shown in the increasing trend of util-
ity in Fig. 10 (a) and the corresponding decreasing trend of
the performance gap in Fig. 10 (b). Similarly, we can see
the corresponding sum rate achieved in Fig. 11 (a) and the
corresponding total transmit power consumed in Fig. 11 (b).
Next, we run 100 simulations to test the convergence of
EESA and plot the result in Fig. 12. The results show that
EESA converges to a near-optimal solution (ε ≤ 1 − 1/e)
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Fig. 12 CDF of ε(t), ωstep = 0.05, |U| = 100.

with probability one. Note that 1− 1/e is the typical gap for
randomized algorithms.

7. Conclusions

In this paper, we study about SDN-based self-organizing en-
ergy efficient downlink/uplink scheduling in heterogeneous
cellular network using the Markov approximation. We con-
sider four joint sub-problems (i) interference mitigation, (ii)
user association, (iii) power allocation, and (iv) resource al-
location in our problem formulation. Then we apply Markov
approximation to solve the formulated problem in Sect. 4.
We then propose Energy Efficient Self-Organization Algo-
rithm (EESA) and SDN framework for self-organizing en-
ergy efficient downlink/uplink scheduling. Our proposed al-
gorithm is structured into SDN architecture with agents run-
ning on MBS, FBSs and UEs. By applying SDN, network
information collection and processing become scalable and
fast. We then perform simulations to verify our proposal.
The simulation results verify that EESA converges to a near-
optimal solution.
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