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A Replication Protocol Supporting Multiple Consistency Models
without Single Point of Failure
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SUMMARY Many distributed systems use a replication mechanism for
reliability and availability. On the other hand, application developers have
to consider minimum consistency requirement for each application. There-
fore, a replication protocol that supports multiple consistency models is
required. Multi-Consistency Data Replication (McRep) is a proxy-based
replication protocol and can support multiple consistency models. How-
ever, McRep has a potential problem in that a replicator relaying all request
and reply messages between clients and replicas can be a performance bot-
tleneck and a Single-Point-of-Failure (SPoF). In this paper, we introduce
the multi-consistency support mechanism of McRep to a combined state-
machine and deferred-update replication protocol to eliminate the perfor-
mance bottleneck and SPoF. The state-machine and deferred-update pro-
tocols are well-established approaches for fault-tolerant data management
systems. But each method can ensure only a specific consistency model.
Thus, we adaptively select a replication method from the two replication
bases. In our protocol, the functionality of the McRep’s replicator is real-
ized by clients and replicas. Each replica has new roles in serialization of
all transactions and managing all views of the database, and each client has
a new role in managing status of its transactions. We have implemented and
evaluated the proposed protocol and compared to McRep. The evaluation
results show that the proposed protocol achieved comparable throughput
of transactions to McRep. Especially the proposed protocol improved the
throughput up to 16% at a read-heavy workload in One-Copy Serializabil-
ity. Finally, we demonstrated the proposed failover mechanism. As a result,
a failure of a leader replica did not affect continuity of the entire replication
system unlike McRep.
key words: distributed database, data replication, consistency model

1. Introduction

In recent years, variant web services provided by Google,
Amazon and Facebook have been popularized. Thereby,
such large-scale services need to improve their availabil-
ity and reliability for increasing demands of clients. The
traditional single storage server cannot meet their demands,
and therefore, a replication is widely used in distributed sys-
tems for reliability and availability. On the other hand, ap-
plication developers have to consider minimum consistency
requirement for each application. If the replication system
provides only a short range of consistency models, an appli-
cation suffers higher overheads of guaranteeing a stronger
consistency than required. Therefore, a replication protocol
that supports multiple consistency models is required.
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Multi-Consistency Data Replication (McRep) [1] is a
proxy-based replication protocol and can support six consis-
tency models [2]–[8]. In McRep protocol, a replicator node
relays all request and reply messages between clients and
replicas. The replicator serializes transactions and resolves
concurrency conflictions among transactions by managing
all view differences of the database. Even though McRep
provides a wide range of consistency guarantees, McRep
has a problem in that the replicator becomes a performance
bottleneck and a Single-Point-of-Failure (SPoF).

A state-machine replication [9] and a deferred-update
replication [10] are well-established approaches for fault-
tolerant data management systems. In both methods, repli-
cas order requests by atomic broadcast [11] and process each
request independently. The state-machine replication adopts
a pessimistic approach, where each request is first ordered
and all requests are executed in the same order (sequen-
tially) on all replicas. The deferred-update replication re-
lies on optimistic concurrency control [12]. Replicas atom-
ically broadcast data items only when commit requests are
issued. Therefore, performance can be improved in read-
heavy workload. However, these two replication protocols
only support single consistency model respectively.

We have proposed two types of replication protocols
so far. The first work [13] improves performance of read-
only transactions by placing the replicator to backend of
replicas. But the SPoF still remains. The other work [14]
introduces the multi-consistency support feature of McRep
into the deferred-update protocol to avoid the SPoF. But this
protocol cannot support Linearizability consistency model.
In addition, the paper does not provide a concrete recovery
mechanism.

In this paper, we propose an extended version of the
work [14] to support the same consistency models of McRep
and provide a concrete failure recovery protocol. In the priv-
ious paper, Linearizability was not implemented (and eval-
uated). In addition, the previous paper did not include the
concrete recovery mechanism and its evaluation result. In
the proposed protocol, any central proxy node is not used
to prevent the SPoF, and the role of McRep’s replicator is
played by clients and replicas together. In addition, the
state-machine and the deferred-update based replications are
adaptively used to support the same consistency models as
McRep. Each replica additionally serializes all transactions
and manages all views of the database. Likewise, each client
additionally manages status of its transactions. The pro-
posed protocol can support multiple consistency models be-

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



3014
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

cause each replica knows which view of the database can en-
sure the required consistency model based on the deferred-
update protocol. Furthermore, the state-machine protocol
that provides a global view of the database is newly incor-
porated to support Linearizability. This paper also provides
a concrete recovery mechanism and a result of a proof-of-
concept evaluation of the mechanism.

The rest of this paper is organized as follows. In
the next section, we explain the consistency models. An
overview of McRep is given in Sect. 3. The proposed pro-
tocol is presented in Sect. 4. Section 5 shows the evaluation
results. Finally, we summarize the conclusion and give fu-
ture work in Sect. 6.

2. Consistency Models

The notion of consistency is a key factor to replication sys-
tems. In general, application developers have to consider
minimum consistency requirement for each application to
avoid unnecessary overheads. Followings are some specific
consistency models of the most popular class of correctness
criteria [1].

• Linearizability [2], [3] requires a total ordering on the
transactions among the replicas even if a transaction
does not access the conflicting data items. Lineariz-
ability preserves the real-time order for non-concurrent
transactions, but a concurrent transactions can be exe-
cuted in any total order between them.
• Sequential Consistency [4] requires a total ordering on

the transactions among the replicas with a real-time or-
dering only on the non-concurrent transactions from
the same clients. Hence, the same clients always ob-
serve a linearized view of the system.
• One-Copy Serializability [5] allows any total ordering

in the transactions among the replicas. Real-time or-
dering is not needed in transactions. Hence, the clients
can observe inconsistent responses from their consecu-
tive requests due to stale data.

The stronger the consistency model, the more conve-
nient to use. For example, Linearizability is even for for-
mal verification because it preserves real-time ordering op-
erations [15]. However, the stronger consistency models are
not suitable for applications that require low latency because
they need more costs of synchronization. Thereby, if a repli-
cation system supports multiple consistency models, the ap-
plications can choose an appropriate model without paying
excess overhead.

3. The McRep Protocol

This section outlines characteristics of McRep, such as a
proxy-based replication protocol and multi-consistency sup-
port feature, and discusses its problems.

3.1 Synopsis

McRep can support six consistency models (Linearizabil-

Fig. 1 Components of McRep

ity, Sequential Consistency, One-Copy Serializability, Ses-
sion Snapshot Isolation [7], Generalized Snapshot Isola-
tion [8], and Causal Consistency [6]). Fundamental struc-
ture of McRep is based on Simple Replica Control Algo-
rithm (SRCA) [16]. SRCA has a centralized server which
forwards each transaction request to one of the replicas for
execution. The centralized server also retrieves a writeset (a
set of added, deleted and modified data items) of the trans-
action from reply messages to resolve every conflict among
concurrent transactions. As shown in Fig. 1, McRep also has
a centralized server (replicator) that relays both request and
reply messages of transactions and resolves every conflict
among concurrent transactions.

In practice, the replicator accumulates writesets with a
sequential number that denotes a version of the system state
in its queue. With these sequential numbers, the replicator
manages following four types of version numbers that are
represented indices into the queue to control consistency of
replicas. Global Version Number (GVN) denotes the current
version of the whole system state. Session Version Num-
ber (SVN) used for each client denotes a highest version of
observed completed transactions. The replicator does not
know the exact value of a Replica Version Number (RVN)
which gives a latest system version at each replica due to
asynchronous communications among replicas. Instead, the
replicator manages both lower and upper bounds of RVN
(RVNlo and RVNhi). The replicator computes the reQuired
Version Number (QVN) as shown in Table 1 and tags the
transaction request with the value. The version numbers are
used for selecting an appropriate replica that can ensure a
required consistency model. For example, if the required
consistency model is sequential consistency, the QVN must
be equal to SVN and the replicator forwards a transaction
request to a replica whose RVNhi is greater than the QVN.

Each replica maintains a priority queue which contains



OHTA et al.: A REPLICATION PROTOCOL SUPPORTING MULTIPLE CONSISTENCY MODELS WITHOUT SINGLE POINT OF FAILURE
3015

Table 1 Each QVN corresponding to a consistency model

Consistency model QVN
Linearizability GVN
Sequential consistency SVN
One-Copy Serializability 0
Session Snapshot Isolation SVN
Generalized Snapshot Isolation 0
Causal Consistency SVN

Fig. 2 A processing flow of the McRep

transaction requests sorted by their QVN order to exactly
execute transactions at updated database. In precisely, a
replica has to wait execution of a transaction until the RVN
of the replica becomes greater than or equal to the QVN of
the transaction request.

3.2 Processing Flow

A processing flow of McRep is shown in Fig. 2. The repli-
cator must handle every transaction request because only
the replicator maintains version numbers. When the repli-
cator receives a transaction request, it computes the QVN
of the request to select a replica whose RVNhi is greater
than or equal to the QVN. If an appropriate replica is found,
the replicator forwards the transaction request to the replica.
Otherwise, the replicator needs to propagate the writesets to
another replica, and the replicator forwards the transaction
request to the replica.

A replica that has received writesets increments its own
RVN such that RVN = GVN. Even though the replica is ex-
ecuting the forwarded transaction, the replica does not com-
mit the transaction and the database itself is not changed
at this point. In case of read-only transactions, the repli-

Table 2 Updating version numbers in McRep

Replicator

Version Timing Updated value
RVNhi Propagating writesets GVN
RVNlo Receiving a reply of a propagation RVN

GVN Storing a writeset to the queue ++GVN

SVN

Sending reply of a read-only
transaction

max (SVN, RVN)

Sending reply of an update trans-
action

GVN

Replica

Version Timing Updated value
RVN Committing a writeset RVN++

cator simply relays reply messages from the replica to the
client. Otherwise, the replicator accumulates the writeset of
the transaction and replies to the client after resolving every
conflict.

During the described processing, version numbers are
updated as shown in Table 2.

• RVNhi is updated when the replicator propagates
writesets. The replicator updates RVNhi to GVN be-
cause the replicator propagates writesets that corre-
spond to versions from RVNhi to GVN.
• RVN is updated when a replica commits the writesets.

The replica increments RVN the same number of times
as the number of received writesets.
• RVNlo is updated when the replicator receives a re-

ply message of a propagation. The replicator updates
RVNlo to RVN by the propagation.
• GVN is updated when the replicator stores a new write-

set of a transaction because the new writeset indicates
the latest global view of the database.
• Each SVN is updated when each client observes a new

version. A client of a transaction observes the version
of a replica that executes the transaction when the client
receives a reply message. Therefore, the replicator up-
dates SVN of the clients to RVN of the replica or cur-
rent SVN. In the case of an update transaction, SVN is
updated to GVN.

3.3 Problem

McRep is an asynchronous replication protocol and the
transaction can be concurrently executed at each replica.
In the McRep protocol, the replicator manages all impor-
tant data for replication. Therefore, McRep has a potential
problem in that the replicator becomes a performance bot-
tleneck and a SPoF. Therefore, if the replicator downs, the
entire system becomes unavailable until the replicator re-
covers from the halting state.

4. Proposed Replication Protocol without Single Point
of Failure

This section presents details of the proposed replication
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protocol that can support multiple consistency models and
avoid a SPoF.

4.1 Synopsis

We propose an extended replication protocol of work [14]
by incorporating the state-machine protocol. In practice, the
multi-consistency support mechanism of McRep is intro-
duced into a combined state-machine and deferred-update
replication protocols. Our protocol can support McRep-
equivalent consistency models and additionally provide
SPoF prevention feature. To avoid SPoF, the role of the
McRep’s replicator is moved to both replicas and clients.
Each replica has to independently process transaction re-
quests and ensure a required consistency model, and the
functionality of replica is computation of QVN of transac-
tions, serialization of transactions, retrieval of writesets, and
management of the version numbers. Each client has a new
role in management of their own version numbers (SVN).

The proposed protocol adaptively switches its replica-
tion method depending on a required consistency model.
The state-machine based replication is used for Lineariz-
ability because replicas must know GVN before execution
of transactions. The deferred-update based replication is
used for the other five consistency models. The proposed
protocol integrates atomic broadcast for the deferred-update
and the state-machine based replication. Atomic broadcast
is defined by the following properties in [17]:

• Validity: If a correct process p broadcasts m, then p
eventually receives m.
• Agreement: For any two correct processes p and q,

when any process s broadcasts m, if p receives m , then
q eventually receive m.
• Integrity: For any message m, when any process s

broadcasts m, every correct process p receive m at most
once.
• Total order: If a correct process p receives m that a

process s broadcasts after p receives m′ that a process
s′ broadcasts, then every correct process q receives m
only after it has received m′.

4.2 Version Control

In the proposed protocol, each replica and client control the
aforementioned version numbers. Each replica manages not
only its RVN, but also RVNhi of itself, RVNlo of all repli-
cas, and GVN, and each client has to manage its own SVN.

• RVNhi is updated when a replica stores a new writeset
of a transaction. This resembles to the update timing
of McRep’s GVN, but the replica increments its own
RVNhi in the proposed protocol because the replica
does not know exact status of the other replicas at this
time. Thus, in the proposed protocol, each replica can-
not obtain GVN like the McRep protocol. Instead, the
proposed protocol can ensure Linearizability using the
state-machine based replication.

Table 3 Updating version numbers in the proposal protocol

Replica

Version Timing Updated value
RVNhi Storing a writeset to the queue ++RVNhi

RVN Committing a writeset in the queue ++RVN

RVNlo
Receiving a broadcasted commit re-
quest

RVN

GVN Determine the order of an execution GVN

Client

Version Timing Updated value

SVN

Receiving a reply of a read-only
transaction

max (SVN, RVN)

Receiving a reply of an update trans-
action

RVNhi

• The update timing and the value of RVN is the same as
McRep. But writesets are atomically broadcasted in-
stead of the propagation process of the McRep’s repli-
cator.
• RVNlo’s update process is totally different from

McRep because a centralized server propagating write-
sets does not exist in the proposed protocol. RVNlo is
updated when a replica receives an atomically broad-
casted commit request from another replica. The com-
mit requests contains an RVN value, and the replica
updates source replica’s RVNlo to the RVN value.
• GVN is not directly used in the proposed protocol. In-

stead, we use the atomic broadcast protocol [11] to or-
der execution of transactions, which is equivalent to the
GVN based ordering.
• SVN’s update timing and updated value is the same as

McRep. However, each SVN is updated by each client
and the client observes RVNhi instead of GVN at an
update transaction. The replica replies updated RVN at
a read-only transaction or updated RVNhi at an update
transaction.

The above update processes of version numbers are
summarized in Table 3.

4.3 Processing Flow

In the proposed protocol, the lifetime of a transaction is di-
vided in two phases: the execution phase and the termina-
tion phase.

4.3.1 Execution Phase

Figure 3 describes an execution flow of a transaction. When
a replica receives a transaction request from a client, the
replica computes the QVN of the transaction based on the
required consistency model (1). Calculation method of
QVN varies depending on the required consistency model.

Linearizability
The replica atomically broadcasts the transaction to ob-
tain GVN.
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Fig. 3 Execution flows of a transaction’s lifetime in the proposed and McRep protocols

Fig. 4 Termination flows of a transaction’s lifetime in the proposed and McRep protocols

Sequential Consistency, Session Snapshot Isolation
and Causal Consistency

The replica retrieves SVN from the transaction request.
One-Copy Serializability
and Generalized Snapshot Isolation

The replica does nothing because QVN is zero.

Next, the replica compares its own RVN to QVN of the
transaction (2). If RVN is greater than or equal to QVN, the
replica straightforwardly executes the transaction (3). Oth-
erwise, the execution is postponed until the RVN is updated
by an atomic broadcast from another replica (4).

4.3.2 Termination Phase

The termination phase starts when the client requests the

replica to commit the transaction. This phase is skipped
when the required consistency model is Linearizability be-
cause any concurrency conflicts do not occur for the serial-
ization before the execution.

A process of the termination phase differs depending
on the transaction type as shown in Fig. 4. When a client
requests a replica to commit a read-only transaction, the
replica commits the transaction and sends a reply message to
the client. Otherwise, the replica atomically broadcasts the
commit request to all replicas to uniquely determine the or-
der of the commitment (1). The commit request consists of
data items accessed by the transaction (TXS) and the RVN
value of the transaction (Tver). When the commit request
is delivered to the replica, the replica detects concurrency
conflicts between TXS and writesets of concurrent transac-
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tions in the queue in the same manner as McRep (2). If no
conflict is detected, a writeset of TXS is stored in the write-
set queue (3) and RVNhi is updated to point to the newly
stored element of the queue (4). Next, the replica immedi-
ately replies to the client. At this time, the transaction suc-
cessfully terminates. If any conflict occurs, the transaction
is rollbacked because this replica has already executed the
transaction. Next, the replica retries to execute the transac-
tion with newer version numbers to avoid conflicts (i.e. Tver

+ 1) (5). When the number of the retries exceeds a threshold
(X times), the transaction is aborted and the replica notifies
the conflict to the client.

4.4 Failure Recovery Mechanism

When a replica recovers from a crash, the replica cannot par-
ticipate in the request processing until the replica retrieves
writesets of transactions that successfully completed before
the recovery. If the replica immediately participate in the
processing before the retrieval, transactions can observe in-
consistent view of the database. Therefore, the proposed
recovery protocol is based on a standard recovery protocol
from Viewstamped Replication [18]: it requires 2 f +1 repli-
cas and provides safety as long as no more than f replicas
fails simultaneously. The recovery protocol is explained as
follows:

1. The recovering replica, i, sends a <Recovery i, l, h>
message to the other replicas, where l and h are the
lowest and highest bounds of the version number of the
writesets to retrieve.

2. A replica j replies to the Recovery message. The
replica sends a <RecoveryResponse j, l, h, w> message
to the recovering replica, where w is its writesets whose
version numbers are from l to h.

3. The recovering replica waits to receive at least 1 Recov-
eryResponse messages from different replicas. The re-
covering replica updates its writeset queue if l and h are
matches between Recovery and RecoveryResponse.

4.5 Correctness

The requirements of the proposed protocol is following.

• support multiple consistency models.
• if the failure occurs at one replica, the system works

correctly.

4.5.1 Correctness of Ensuring Consistency Models

First, we argue why the proposed protocol can support mul-
tiple consistency models. A common requirement of imple-
mented consistency models (One-Copy Serializability, Lin-
earizability and Sequential Consistency) is that every replica
observes the same total ordering on the transaction [1]. Dif-
ferent consistency model requires different total ordering on
the transaction:

(1) One-Copy Serializability

A required condition for One-Copy Serializability is that
transactions are serializable. Then, we argue whether the
proposed protocol can ensure that all committed transac-
tions are serializable. The proposed protocol checks con-
flicts between concurrent update transactions and rollbacks
the execution of transaction if conflicts occur. In the pro-
posed protocol, all transactions are optimistically executed
at any replica. So, update transactions may conflict with
concurrent transactions. If conflicts occur, transactions can-
not serializable. So, the system must uniquely determine
followings among all replicas: (a) which transactions are
concurrent and occur conflicts and (b) which transaction is
rollbacked. Suppose that a transaction Ti conflicts with a
transaction T j. Ti is rollbacked if:

• start(Ti) < end(T j) < end(Ti)
• WS (T j) ∩ XS (Ti) � ∅

Where start(T ) is the time starting the execution of a trans-
action T , end(T ) is the time completing the termination of
a transaction T , WS (T ) is a writeset of a transaction T , and
XS (T ) is a readset and a writeset of a transaction T . The
first inequality tests the concurrency of Ti and T j and the
second inequality tests conflicts between Ti and T j. The sys-
tem must determines an total order of end(Ti) and end(T j)
among replicas to implement the first test. So, replicas
atomically broadcasts termination requests to all replicas be-
cause the atomic broadcast definition ensures the total or-
dering on all broadcasted messages [17]. To implement the
second test, every replica has a queue that contains write-
sets of formerly committed transactions and checks conflicts
on each termination request. Consequently, in the proposed
protocol, the system can determine (a) which transactions
are concurrent and occur conflicts and (b) which transaction
is rollbacked by atomic broadcast and the writeset queue.

(2) Sequential Consistency

Required conditions for Sequential Consistency are (a)
transactions are serializable and (b) transactions are exe-
cuted with the highest version observed by the same client.
The condition (a) is satisfied as well as One-Copy Serializ-
ability. We argue whether the proposed protocol satisfy the
condition (b). Suppose that a client send a transaction T j

after a last update transaction Ti and Ti create a new version
Vi. Sequential Consistency can ensure if:

• end(Ti) < create(Vi) < start(T j)

Where create(Vi) is the time that the database is changed
by a modification of Ti. To ensure Sequential Consistency,
start(T j) must follow create(V). So, a replica wait an exe-
cution of T j until a version of this replica is equal to Vi. For
the replica to know that Vi is the highest version observed by
the client, the client tells the replica Vi at the time that the
client sends T j a replica tells the client that Vi is the version
created by Ti at end(Ti). In the proposed protocol, when a
replica sends a reply of a transaction, the replica sends the
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version observed by the transaction. Hence, clients know
the highest version observed by itself, and clients tell the
version to any replica. Consequently, in the proposed proto-
col, any replica ensures that transactions are executed with
the highest version observed by a client.

(3) Linearizability

Required conditions for Linearizability are (a) transactions
are serializable and (b) transactions are executed in a replica
with zero version divergence, i.e. with the latest system ver-
sion. The condition (a) is satisfied as well as One-Copy
Serializability. We argue whether the proposed protocol sat-
isfy the condition (b). Suppose that a request of a transaction
Ti+1 received and the latest system version is Vi. Lineariz-
ability can ensure if:

• create(Vi) < start(Ti+1)

So, a replica must execute a transaction creating Vi before
start(Ti+1). In the proposed protocol, replicas atomically
broadcast all transactions before their execution, then repli-
cas execute all transactions and the transactions create a new
system version in the broadcasted order. Hence, a transac-
tion that will create the version Vi execute before start(Ti+1)
Consequently, in the proposed protocol, all transactions can
execute in replicas with the latest system version.

4.5.2 Correctness of Recovery Protocol

We discuss the correctness of the recovery protocol. We as-
sume that the only way replicas fail is by crashing (crash-
stop model), so that a machine is either functioning cor-
rectly or completely stopped. The proposed protocol does
not handle Byzantine failures. In the proposed protocol,
f + 1 replicas are always correct and have the latest view
of the database by atomic broadcast. Thus, correctness of
the proposed protocol depends on the correctness of the re-
covery protocol. In precisely, the recovering replica must
not participate in the request processing at an inconsistent
view of the database. The recovery protocol is correct be-
cause it guarantees that a recovering replica participates in
the request processing after the replica retrieves writesets
that the replica lost in the down time. When a replica re-
covers, it doesn’t know latest writesets. However, when the
replica receives a response for its Recovery message, the
replica retrieves the writesets from the lowest bound l (the
last committed writeset when the replica failed) to the high-
est bound h (the first broadcasted writeset when the replica
recovers). Consequently, the recovery protocol ensures the
replica learns the latest state of queue.

5. Evaluation

We implemented the proposed replication protocol with
PostgreSQL [19] as replicas. We also implemented McRep
with pgpool-II [20] as the replicator because the existing
study [1] only conducted a simulation-based evaluation for
McRep. In the proposed protocol, we implemented the

Table 4 The specification of PostgreSQL, pgpool-II and client nodes

PostgreSQL pgpool-II
version 9.3.5 3.3.3

OS Linux 3.5.0-23-amd64 Ubuntu 12.04 Server
CPU Intel(R) Core(TM) i5 3470 @ 3.2GHz
Memory 16GB
Network 1000BASE-T

atomic broadcast protocol (Paxos [21]) with LibPaxos [22]
on each replica.

5.1 Evaluation Environment

Machine specifications of PostgreSQL, pgpool-II and client
nodes are shown in Table 4. We used a pgbench bench-
mark program [23] with three workloads consisting of up-
date transactions and read-only transactions at a certain
ratio. This benchmark program creates a table that has
100,000 entries. The update transactions randomly update
an entry of the table. The read-only transactions randomly
select and read an entry of the table. We examined three
types of workloads that have different ratio of read-only and
update queries as follows.

Workload A: read-only (90%) / update (10%)
Workload B: read-only (50%) / update (50%)
Workload C: read-only (10%) / update (90%)

In the following evaluations, we measured the throughputs
of transactions for both the protocols during one minute, and
in the proposed protocol, a leader replica was selected by a
Paxos consensus protocol and only the leader had a role in
atomically broadcasting to optimize the consensus protocol.

5.2 Performance Effect of the Number of Clients

We evaluated the performance of both protocols with chang-
ing the number of clients (50–400), and the number of repli-
cas was fixed to six. We evaluated the throughput at Lin-
earizability, Sequential Consistency and One-Copy Serializ-
ability consistency models†. Figure 5 shows the throughputs
of transactions. In Sequential Consistency and Linearizabil-
ity, executions of transactions have to wait both writeset ar-
rival and writeset commitment to the database. As a result,
the throughputs were not scaled as the increase of the num-
ber of clients in both protocols. In One-Copy Serializability,
their throughputs were increased as the growing the number
of clients because the waiting period was omitted to exe-
cute transactions in both protocols. In McRep, however, the
throughputs were peaked at 200 clients because the replica-
tor became a performance bottleneck, while in the proposed
protocol, its throughput still increased at 400 clients. In both
protocols, fundamental throughputs decreased as increasing
the ratio of update transactions. The throughput decline is

†Performance of the other consistency models was the same
with that of the above three consistency models. Thus, this paper
does not provide the performance of the other consistency models.
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Fig. 5 A comparison of throughputs of different number of clients in two consistency models between
McRep and the proposed protocol, where 10/90, 50/50 and 90/10 denote the ratio of read-only and
update transactions.

Fig. 6 A comparison of throughputs of different number of replicas in two consistency models be-
tween McRep and the proposed protocol, where 10/90, 50/50 and 90/10 denote the ratio of read-only
and update transactions.

a result of the conflict detection. In McRep, the replica-
tor has to handle all the update transactions, and this results
in heavy access cost of the shared memory of the propaga-
tion queue. In the proposed protocol, the decline of perfor-
mance is mainly a result of the cost of atomic broadcasts be-
cause the processing of transaction requests was distributed
to each replica. Therefore, the proposed protocol can pre-
vent the performance loss if the cost of atomic broadcast is
reduced by using an optimized atomic broadcast protocol
depending on the reliability of the network and the server
nodes.

In Sequential Consistency and Linearizability, execu-
tions of transactions have to wait both writeset arrival and
writeset commitment to the database. Figure 7 shows de-
tailed average latencies of update transactions at each con-
sistency model at read-heavy workload. The consensus in
Fig. 7 means the time for completing atomic broadcast of a
transaction. This is almost as same as the three consistency
models. The waiting period before an execution of a trans-
action takes much more time than the consensus because the

Fig. 7 Details of average latencies of update transactions.

writing modifications of writesets to a disk takes time.

5.3 Performance Effect of the Number of Replicas

We evaluated the performance of both protocols with chang-
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Fig. 8 The throughput of S-DUR with 100 % of local transactions com-
paring with the proposed protocol and McRep in One-Copy Serializability.

Fig. 9 The throughput of S-DUR with 100 % of global transactions com-
paring with the proposed protocol and McRep in One-Copy Serializability.

ing the number of replicas (2–7) and the number of clients
was fixed to 400. Figure 6 shows the throughputs of both
protocols. In Sequential Consistency and Linearizability,
the throughputs remained flat regardless of the number of
replicas. The reason is the same as described in Sect. 5.2.
In One-Copy Serializability, any throughput gain was not
seen in McRep because the replicator became a performance
bottleneck. On the other hand, in the proposed protocol,
throughputs of the workload A rose to only 1.3 times as in-
creasing the number of replicas from two to seven. This re-
sult is ascribed to the increasing of the cost of the atomic
broadcast as the number replica increases. However, the
throughputs of the proposed protocol were better than or
comparable to those of McRep in any cases.

5.4 Comparing the Performance with an Extension to the
Deferred-Update Replication

We compared the performance with an extension to the
deferred-update replication scalable deferred update repli-
cation (S-DUR) [24]. The key insight of S-DUR is to di-
vide the database into partitions, and replicate each parti-
tion among a group of replicas. This protocol eliminates
communications among replicas that have different parti-
tions for transactions that access single partition (local trans-
action). But, extra communication is needed to terminate
transactions that access multiple partitions (global transac-

Fig. 10 Changes in transaction request throughputs during a replica or a
replicator failover.

tion). Therefore, the throughput of local transactions scales
out as the number of partitions increases but the through-
put of global transactions is worse than that of the classical
deferred-update.

We evaluated the throughput of local transactions and
global transactions in S-DUR under the read-heavy work-
loads with changing the number of clients (50–400). The
number of replicas was fixed to six. We divided the database
into three partitions for S-DUR (two replicas per partition).
First, each transaction accessed single partition for S-DUR.
This environment is ideal for S-DUR. Figure 8 shows the
throughputs of S-DUR, the proposed protocol and McRep.
The throughput of S-DUR was the best of the three protocols
because S-DUR can eliminate communications across dif-
ferent partitions for local transactions. Second, each trans-
action accessed all partitions. Figure 9 shows the through-
puts of S-DUR, the proposed protocol and McRep. This is
the worst case for S-DUR because communications between
partitions is needed on each transaction than the classical
deferred-update replication. To check whether transactions
is serializable, global transactions need the additional two-
phase commit-like communications between partitions after
transactions atomically broadcasts to servers in each parti-
tion. The throughput of S-DUR was slightly worse than
the proposed protocol because the proposed protocol uses
the classical deferred-update replication. Consequently, if
the transactions access single partition, S-DUR improves
the throughput as the number of partitions. However, the
proposed protocol can substitute S-DUR for the classical
deferred-update replication to support One-Copy Serializ-
ability. And the prposed protocol can ensure the multiple
consistency models but S-DUR supports only One-Copy Se-
rializability.

5.5 Evaluation of Failover

Finally, we conducted a proof-of-concept evaluation of the
recovery mechanism of the proposed protocol. In this exper-
iment, the number of replicas and clients were fixed to seven
and 100 respectively, and the required consistency model
was One-Copy Serializability. Note that the recovery mech-
anism works same way for the other consistency models.
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During the experiment, the leader replica of our proposal
and the replicator of McRep were down at tenth second and
both of them recovered at 20th second.

Figure 10 shows the throughputs of transaction request
during the experiment. In McRep, the throughputs became
zero during the replicator is down. On the other hand, in the
proposed protocol, the throughputs instantaneously dropped
when the leader node downs but recovers in 0.87 seconds.
This was the time taken for choosing a new leader with a
consensus protocol. When the downed node recovers, the
significant losses of throughput cannot be seen at the time
because the recovery protocol and usual request processing
were concurrently performed.

6. Conclusion

In this paper, we have proposed a novel replication proto-
col supporting McRep-equivalent consistency models with-
out a SPoF that McRep suffers. McRep places a proxy-
based centralized replicator, and therefore, McRep poten-
tially has a performance bottleneck and the SPoF. On the
other hand, our proposed replication protocol resolves these
problems by eliminating the centralized proxy without los-
ing the entire system functionality of McRep. The evalua-
tion results show that the proposed protocol achieved com-
parable throughput of transactions to McRep. Especially,
the proposed protocol gained the throughput of transactions
with 400 clients at a read-heavy workload in One-Copy Se-
rializability, while that of McRep peaked with 200 clients.
We have also proposed a concrete recovery mechanism and
proved that the fast failover mechanism works effectively.

As future work, we are planning to design a partial-
replication protocol for each consistency model to improve
performance of the entire system. Besides, we consider in-
troduction of a yet another communication protocol that do
not require a guarantee of total-order of transactions.
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