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SUMMARY Peer-to-peer (P2P) networks have attracted increasing at-
tention in the distribution of large-volume and frequently accessed content.
In this paper, we mainly consider the problem of key leakage in secure P2P
content distribution. In secure content distribution, content is encrypted so
that only legitimate users can access the content. Usually, users (peers)
cannot be fully trusted in a P2P network because malicious ones might
leak their decryption keys. If the redistribution of decryption keys occurs,
copyright holders may incur great losses caused by free riders who access
content without purchasing it. To decrease the damage caused by the key
leakage, the individualization of encrypted content is necessary. The indi-
vidualization means that a different (set of) decryption key(s) is required
for each user to access content. In this paper, we propose a P2P content
distribution scheme resilient to the key leakage that achieves the individu-
alization of encrypted content. We show the feasibility of our scheme by
conducting a large-scale P2P experiment in a real network.
key words: peer-to-peer, content distribution, key-leakage resilience, indi-
vidualization, multiple encryption

1. Introduction

1.1 Background and Motivation

Although many content distribution services are available to
consumers, copyright holders are always concerned about
the problem of online piracy. For instance, Stop On-
line Piracy Act (SOPA) and Protect IP Act (PIPA) bills in
Congress argue that online piracy is a huge problem, one
which costs the U.S. economy between $200 and $250 bil-
lion per year, and is responsible for the loss of 750,000
American jobs [17]. Legally, the unauthorized redistribution
of copyrighted content is copyright infringement and hence
a copyright holder of the content can claim damages against
a user who committed the piracy [6], [23].

To protect digital content from various malicious
users/attackers, the encryption-based content distribution
system Fig. 1(a) is proposed and implemented so far. In this
kind of system, the content provider encrypts the content in
such a way that only legitimate users can access it. This ac-
cess control is realized by giving a decryption key only to
each legitimate user in advance and encrypting the content
with the corresponding encryption key. End-user devices
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such as PC monitors will access unencrypted content in the
end and, for instance, users can capture it using their cam-
corders. Therefore, some malicious users can redistribute
the content itself, and in some cases that all the contents are
encrypted using the same key, malicious users can just re-
distribute the decryption key to free riders.

In the case that the content itself is redistributed by
malicious users as described above, both legal and tech-
nical measures are available and can help to mitigate ad-
verse effects. Legally, the unauthorized redistribution of
copyrighted content is copyright infringement and hence a
copyright holder of the content can claim damages against
a user who committed the piracy [6], [23]. Technically, au-
dio/video fingerprinting (e.g., [15]) and digital watermark-
ing (e.g., [7]) can be used to detect unauthorized content and
then identify who redistributed the content. For example,
Gao et al. [14] proposed an asymmetric fingerprint scheme
which can be implemented to trace the malicious user by
identifying his unique ID (as a fingerprint) from the con-
tent, then for example, a revocation process can be executed
later. The existence of these measures deters users from the
redistribution of content.

On the other hand, the reality is that no satisfactory
technical measure against the redistribution of decryption
keys has been taken (we will discuss the problem in Sect. 1.2
in detail). Besides, as far as we know, the legal status of the
redistribution of decryption keys is still unclear. The leakage
of decryption keys has become a problem (e.g.,[1], [29]).
Therefore, we focus on the problem of the key leakage in
this paper.

In recent years, P2P digital content distribution, e.g.
[10], [13], have attracted increasing attention in terms
of several desirable features such as adaptation, self-
organization, load-balance, high availability, low cost, scal-
ability, etc. Because of the features, it is expected that
large-volume and frequently accessed content (e.g., a popu-
lar high-definition (HD) movie) can be efficiently distributed
using a P2P network. In this paper, we consider the distribu-
tion of such content and discuss a secure distribution scheme
which is resilient to the key-leakage threat utilizing the P2P
network.

1.2 Challenging Issues

Even if several security solutions for solving the key-
leakage problem have been proposed, we find that some sig-
nificant characteristics are still unsatisfied in the practical
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Fig. 1 Types of content distribution systems and our approach

content distribution service.
A famous one is the revocation of decryption keys (e.g.,

[24]). Revocation means that the content provider can make
the decryption key(s) of a malicious user useless without
confiscating it (them), and therefore prevent free riders from
decrypting other content. However, in reality, the revocation
is not an effective measure for the following pragmatic rea-
son. Suppose that a licensing body makes a DRM specifica-
tion and a manufacturing company produces DVD players
that conform to the DRM specification after both of them
make a license agreement, which specifies conditions cov-
ering production and sales of the DVD players. In the agree-
ment, it is usually specified that, in the case of the key leak-
age from the DVD player, the licensing body can immedi-
ately revoke the leaked key. But in reality the deadline when
the revocation will be imposed is waived for some period of
time (e.g., one month). This grace period is necessary for
both of them. The licensing body has to carefully verify
that the leaked key is that of the DVD player. If the licens-
ing body falsely incriminates an innocent consumer, it may
give rise to a serious problem such as a lawsuit. The licens-
ing body also needs time to inquire about the cause of the
leakage to the manufacturer, in order to prevent similar trou-
ble with other products of the company. The manufacturer
needs time to find out the cause and get rid of it. Therefore,
a grace period is inevitable from a practical point of view.
Since free riders can keep using the leaked key during the
grace period, local piracy can escalate into global piracy. As
long as the legal status of the redistribution of decryption
keys is unclear, the copyright holder might not be able to
claim damages against the piracy. Hence, we cannot take
the technical measure in which any free rider can use leaked
decryption keys, even though we can identify a user who
leaked decryption keys using e.g., a fingerprint scheme such
as [14].

Another one is the individualization of encrypted con-
tent. We mean by this terminology that a different (set of)
decryption key(s) is required for each user to decrypt an en-
crypted version of the downloaded content. As illustrated
in Fig. 1(a), a content server sends E(keyi, content) to each
client in a one-to-one manner, where E(keyi, content) de-

notes a ciphertext in which content, content, is encrypted
with a key, keyi, using a symmetric-key encryption algo-
rithm, E. Each user is given a distinct key, keyi, and there-
fore can access the content by decrypting the ciphertext. It
is clear that the individualization of encrypted content is
achieved in this system. However, the content server has to
incur a heavy transmission burden proportional to the num-
ber of users. This scheme is still unsuitable for the large-
scale distribution of HD content. Consequently, a technical
solution is desirable where the leaked key is useless to free
riders and the burden of the content server is reduced.

1.3 Our Contributions

In this paper, compared with the problems of the centralized
system Fig. 1(a), we consider realizing individualization of
encrypted content to a large scale P2P HD content distribu-
tion system to deal with the key-leakage problem. Content
is divided into fragments called pieces and a user receives
the encrypted pieces not only from the content server but
also from other users. Since the transmission burden of the
content server is shifted to the users, the problem described
above is solved in this type of system. To endow a P2P con-
tent distribution scheme with both the individualization of
encrypted content and the key-leakage resilience, we also
propose a scheme in which each piece is multiply encrypted
when transmitted via each user, as illustrated in Fig. 1(c).
Sets of decryption keys for the same piece are designed to
be different from one another. Therefore, the influence of
the leakage of the decryption keys is minimized.

We analyze and point out that a previous scheme [34]
achieves the individualization of encrypted content, but it
has no key-leakage resilience. Our proposed P2P content
distribution scheme achieves both the individualization of
encrypted content and the key-leakage resilience. The pro-
posed light-weight piece encryption scheme reduces the de-
cryption cost for a user client. Finally, to show the feasibility
of our scheme, we implement our scheme in a large-scale
network to analyze both the communication cost and the
computation cost. The experiment result shows our scheme
are practical in a real P2P network.
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2. System Model and Requirements

We first introduce the entities (See Fig. 2) involved in our
scheme, and then we identify the threat model and security
requirements.

2.1 Overall System

• A content provider provides content for a content
server. For simplicity, we suppose that it also works
as a content distribution service provider.
• A content server (a.k.a. an initial seeder) receives con-

tent from the content provider. It divides the con-
tent into multiple pieces and encrypts them. Then,
it transmits the encrypted pieces to users. For sim-
plicity, we suppose that it also works as a BitTorrent
tracker [30], [31].
• A personal-information management server (a PM

server for short) receives and manages the personal in-
formation of all users. It issues a registration certifi-
cate stating that a user has registered his personal in-
formation with it, to the user. It is managed by, e.g.,
the content provider, which is independent of a content
distribution system such as BitTorrent [30].
• A key-management server (a KM server for short) holds

all keys assigned to the content server and users. It
gives each user a unique key, which we call a user key.
Each user uses it for generating an encryption key for
a piece. It also computes decryption keys for the en-
crypted pieces and gives them to users on request.
• Users subscribe to the content distribution service by

registering to the PM server and the KM server. They
upload/download encrypted pieces in a P2P network.

A general use case of our scheme is described as fol-
lows.

1. At first, a user registers his personal information to the
PM server for subscribing the content service. The PM
server issues a registration certificate which includes
a pair of secret/public keys and a digital signature. A
third party can verify the certificate from its signature
using the public key.

Fig. 2 Overall system

2. Then, the user can acquire a content’s metadata, i.e.
from the homepage of this service. The metadata in-
volves detail information of the content and the P2P
network, the IP addresses of the content server and the
KM server.

3. The user then registers to the KM server using his cer-
tificate. If the certificate is verified, the KM server gen-
erates a unique user ID and a key for encrypting content
pieces for that user. A user may skip this KM registra-
tion process once the user has registered before.

4. The KM server has a unique pair of signing key and
verification key. The verification key is used to verify a
signature made by the KM server using the singing key.
This verification key is included in a public-key certifi-
cate which must be distributed to all users. (Details are
described in Sect. 3.2.)

5. Using the metadata, a user downloads content from the
content server and other online users. Each piece is en-
crypted multiply in the transmission route. A one-time
random number is used to achieve the individualization
of encrypted content.

6. After all encrypted pieces are downloaded, the user has
to obtain their decryption keys (Ki for user i) from the
KM server by sending the following information: user
ID, content ID, route information and random numbers.
The computation of Ki is performed at the KM server.
(Details are described in Sect. 3.1)

2.2 Threat Model and Security Requirements

We assume that users are not trusted but the other entities
are trusted. We consider the following attacks in this paper.

• A malicious user might leak his decryption keys, which
are received from the KM server, to free riders.
• A malicious user might alter a received encrypted piece

and upload the altered piece to other users.

The latter is called a pollution attack. If it happens, the con-
tent quality is degraded owing to altered pieces.

The requirements for secure P2P content distribution in
our system are as follows:

• Personal information, a user key, and decryption keys
should be protected from eavesdroppers who intercept
communications (1) between the PM server and a user
and/or (2) between the KM server and a user.†

• Content should be protected from eavesdroppers who
monitor communications among users.
• Suppose that a malicious user leaks his decryption

keys. In this case, the leaked decryption keys should
not be usable for free riding.
• Colluding users cannot compute any decryption keys

other than those they have.
• A user should be able to detect a pollution attack.

†We suppose that the communications are protected by e.g.,
TLS [32].
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3. Proposed Scheme

First, we show the piece-encryption scheme. Second, we
present an integrity-verification scheme that copes with a
pollution attack.

3.1 Piece Encryption

We explain how a piece is multiply encrypted during the
piece downloading phase (see Fig. 3). We define kA, kB,
kC , kI as the user keys of users, A, B,C, and a content server,
I, respectively.

First, I generates a random number, rI , and computes
an encryption key, WI , as follows:

WI = H(kI ||rI),

where H, || denote a hash function and concatenation, re-
spectively. In this paper, we suppose that (1) SHA-256 [11]
is used as H, (2) the length of Wi is 128 bits, and (3) the out-
put of H is appropriately truncated, i.e., the lengths of ki, ri

are 128 bits each, and Wi is the lower 128 bits of H(ki||ri).
Note that a different random number, ri, is used each time
an entity, i, (the content server or a user) encrypts a piece.

Next, I encrypts a piece (plaintext), piece, and then
sends a 3-tuple of data, (X1, X2, X3), to A.

(EP1 =)X1 = Enc(WI ,Tr(= 1), piece),

X2 = IDI ,

X3 = rI ,

where IDi,Tr denote ID of an entity, i, and hop counter,
respectively. In other words, Tr means that the piece has
traversed Tr nodes. The value of Tr can be computed by
counting how many IDs are included in X2. We explain Enc
below. Note that I encrypts each of the pieces with a differ-
ent encryption key.

Definition 1 (Enc algorithm):
Input: W an encryption key, Tr the number of times piece
transfer occurs, Y a piece to be encrypted. Y will be divided
into multiple sub-pieces, Yi, where 1 ≤ i ≤ t (t means the
number of sub-pieces in Y).
Output: an encrypted data, Y ′.

• If Tr = 1, then compute Y ′ as follows:

Fig. 3 Sketch of the flow of an encrypted piece

Y ′ = E(W,Y),

where E denotes that Y is encrypted with W. We con-
sider AES-CBC is E in this paper.
• Else if 2 ≤ Tr ≤ t + 1, then compute Y ′ as follows:

Y ′ = Y1||Y2|| · · · ||YTr−2||E(W,YTr−1)||
YTr−1 ⊕ YTr || · · · ||YTr−1 ⊕ Yt,

where ⊕ denotes XOR.
• Else if Tr ≥ t + 2, then compute Y ′ as follows:

Y ′ = Y1||Y2|| · · · ||Yz−1||E(W,Yz)||Yz+1|| · · · ||Yt,

z =

{
Tr − 1 mod t (Tr mod t , 1)

t (Tr mod t = 1)
.

Based on the Definition 1 above, when receiving
(X1, X2, X3), A increments Tr by one, generates a random
number, rA, and computes (X′1, X

′
2, X

′
3) as follows:

(EP2 =)X′1 = Enc(WA, 2, X1),

X′2 = X2||IDA = IDI ||IDA,

X′3 = X3||rA = rI ||rA,

WA = H(kA||rA).

Then, A sends (X′1, X
′
2, X

′
3) to B. As mentioned above, a dis-

tinct random number is generated each time A computes the
encryption key, WA. Therefore, EP3, which is sent to C, is
different from EP2. To upload EP3 to C, A computes and
sends (X′′1 , X

′′
2 , X

′′
3 ) to C.

(EP3 =)X′′1 = Enc(W ′A, 2, X1),

X′′2 = X2||IDA = IDI ||IDA,

X′′3 = X3||r′A = rI ||r′A,
W′A = H(kA||r′A),

where rA , r′A.
Suppose that a piece to be encrypted is Y =

Y1||Y2|| · · · ||Yt and the size of each sub-piece, Yi, is the same.
In our experiments, we set t = 8. First, the content server
encrypts a piece in a conventional way (when Tr = 1). Sec-
ondly, a user encrypts YTr−1 and performs XOR of each sub-
sequent sub-piece and YTr−1 when Tr ≤ t+ 1. Thanks to the
proposed encryption algorithm in Definition 1, both the in-
dividualization of encrypted content and the key-leakage re-
silience are achieved. The reason for introducing the partial
encryption for Tr ≥ 2 is that we can reduce the decryption
cost for a user. The reason for introducing the XOR opera-
tion is that, for example, we can prevent decrypting of EP2

if the only leaked key is KI . Lastly, a user just encrypts a
sub-piece when Tr ≥ t + 2, since the above concern is re-
duced.

For ease of understanding, we give a concrete example
of the piece encryption in the case that the encrypted piece
hops among I, A, and B as illustrated in Fig. 3. First, I com-
putes EP1 as follows:

EP1 = Enc(WI , 1, piece),
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= E(WI , piece).

Suppose that EP1 = EP1,1||EP1,2|| · · · ||EP1,t. Secondly, A
computes EP2 as follows:

EP2 = E(WA, EP1,1)||EP1,1 ⊕ EP1,2|| · · · ||EP1,1 ⊕ EP1,t.

Note that, for another transmit route to C, A generates
EP3 using another key, W ′A.

EP3 = E(W′A, EP1,1)||EP1,1 ⊕ EP1,2|| · · · ||EP1,1 ⊕ EP1,t.

It is intractable to discover EP1 even if B and C collude.
Thirdly, B computes EP4 as follows:

EP4 = E(WA, EP1,1)||E(WB, EP1,1 ⊕ EP1,2)

||(EP1,1 ⊕ EP1,2) ⊕ EP1,1 ⊕ EP1,3|| · · ·
||(EP1,1 ⊕ EP1,2) ⊕ EP1,1 ⊕ EP1,t

= E(WA, EP1,1)||E(WB, EP1,1 ⊕ EP1,2)

||EP1,2 ⊕ EP1,3|| · · · ||EP1,2 ⊕ EP1,t.

We present a method of protecting X2 and X3 in Sect. 3.2.
We explain the key management mechanism of the KM

server. After receiving the key request from the user, the
KM server authenticates the user and then checks if the total
number of pieces is correct and also confirms the validity of
the following items for each piece: Tr ≤ Trmax, user IDs
included in route information, and the uniqueness of each
user ID included in route information. After confirming all
of these items, the KM server computes Ki for the key re-
quest, appends its digital signature to Ki, and sends them to
the user, i.

If B wants to get the decryption keys for EP2, B sends
(IDB,CID, X′2, X

′
3) to the KM server, where CID denotes

a content ID. When receiving (IDB,CID, X′2, X
′
3), the KM

server computes the decryption key as follows:

WI = H(kI ||rI),

WA = H(kA||rA).

where the KM server knows all of the user keys. Likewise, B
makes a request for a set of the decryption keys, KB, for all
of the encrypted pieces of the content, and obtainsKB. Then
B verifies the signature and decrypts the encrypted content
with KB. It is obvious that a user can decrypt the encrypted
pieces (and therefore play back the content) if all of the Wi’s
used in encrypting the pieces are obtained.

3.2 Integrity Verification

An attacker might alter encrypted pieces to disrupt the P2P
content distribution. In order to detect a pollution attack,
the integrity verification of (encrypted) pieces is necessary.
We show how the integrity verification is integrated into the
proposed piece-encryption scheme. Let S ig(sk,M) denote
a signature in which a message, M, is signed with a sign-
ing key, sk, using e.g., ECDSA [4]. Let ski, vki, certi be a
signing key, a verification key corresponding to ski, and a
public-key certificate of an entity, i, and IDi, vki be included

in certi. We reuse the same notations used in Sect. 3.1 and
omit describing the same part of the protocol as in Sect. 3.1.

The content server, I, sends (X1, X2, X3) to the user, A.

X2 = certI ,

X3 = rI ||S ig(skI , X1||X2||rI).

When receiving (X1, X2, X3), A verifies (1) certI with
a (public) verification key of the KM server, vkKM , which
can be used for verifying all certificates certi of all users in
the transmission route, and (2) S ig(skI , X1||X2||rI) with vkI

included in certI . If both verifications succeed, A transmits
(X′1, X

′
2, X

′
3) to the user, B.

X′2 = X2||certA = certI ||certA,

X′3 = X3||rA||S ig(skA, X
′
1||X′2||X3||rA).

Otherwise, A discards (X1, X2, X3).
Likewise, when a user, U, receives a 3-tuple of data,

(Z1,Z2,Z3), U verifies both the public-key certificate and the
signature that have been appended most recently. If both
verifications succeed, U stores (Z1, Z2,Z3). Otherwise, U
discards it. If U transfers the encrypted piece to another
user, V , then U encrypts Z1 using Enc, appends certU to Z2,
generates and appends a signature of the entire data to Z3,
and then sends the resulting data, (Z′1,Z

′
2,Z

′
3), to V .

Since certU , which includes vkU , is signed by the KM
server, V can verify, using vkKM and vkU , that (1) the re-
ceived data was generated by the legitimate user, U, and (2)
it has not been altered since the time it was generated by U.
Note that V does not need to know vkU before he receives
(Z′1,Z

′
2,Z

′
3), since V does not have to verify that he is com-

municating with U but just needs to verify that (1) and (2)
are satisfied. This is suitable for the P2P network, in which
a user might not know in advance who will communicate
with him.

The above method is sufficient to detect a pollution at-
tack as long as U behaves honestly. But we should also
consider a case in which U is malicious. Suppose that U is
a legitimate but malicious user. The malicious user, U, can
choose any data as Z′1 as long as U follows the above proto-
col in computing Z′2 and Z′3. Such (Z′1,Z

′
2,Z

′
3) can pass the

above verification for V . To cope with this attack, we adopt
the following method.

Suppose that a user, V , receives (1) an encrypted piece,
ci, and (2) a public-key certificate, certU j , and a signature,
S igU j , that have been appended to ci most recently. We de-
note by S igU j a signature generated by a user, U j, according
to the above protocol. After downloading c1, . . . , cN , V ex-
ecutes the following procedures. We analyze the efficiency
of this scheme in Sect. 4.2.

1. Receive a set of decryption keys, KV , for the content
from the KM server.

2. Check if the decryption keys are valid by verifying with
vkKM a signature appended to KV by the KM server.

3. Repeat the following procedures for 1 ≤ i ≤ N.

3-a Decrypt ci with the corresponding keys inKV , and
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obtain a (potentially altered) piece, m′i .
3-b (Let mi denote a correct piece.) Compute H(m′i)

and check if H(m′i) is equal to H(mi) obtained
from the content server, in the same way as in
the original BitTorrent system. If H(m′i) = H(mi),
then determine that the piece is not altered. Oth-
erwise, discard ci.

4. Performance Analysis

In this section, we present an experimental evaluation of our
scheme. Regarding a P2P platform, our implementation is
based on BitTorrent. We show that (1) content is distributed
efficiently by conducting a large-scale content distribution
experiment in Sect. 4.1, (2) the encryption and decryption
costs for a user are acceptable in Sect. 4.2, (3) the burden
for a key-management server to distribute decryption keys to
users is also acceptable in Sect. 4.3, and (4) the key-leakage
resilience is achieved in Sect. 4.4.

4.1 Performance Evaluation of P2P Content Distribution

Our P2P content distribution experiments are conducted on,
StarBED [22], [27], a large-scale network testbed.

4.1.1 StarBED – Experimental Environment

StarBED is the large-scale network testbed of the National
Institute of Information and Communications Technology
Hokuriku Research Center in Ishikawa, Japan. This experi-
ment environment is a cluster-based testbed.

We use actual nodes (PCs) for our content distribution
experiments. Each node runs on the Intel Pentium 4 proces-
sor at 3.2 GHz with 2 GB of RAM. Each node also has two
network devices. As depicted in Fig. 4, one network device
is connected to a management network and the other net-
work device is connected to an experiment network. Each
node is controlled by a management node in the manage-
ment network and content distribution is done in the experi-
ment network. One node acts as a content server, which has

Fig. 4 StarBED experimental environment

all of the pieces of content. The other 150 nodes behave as
clients. We also use LibTorrent C++ library [19] for imple-
menting our client software. We use the original BitTorrent
tracker [31] and implement it to the content server.

4.1.2 Parameters of Experiments

We describe six parameters of the experiments: the number
of nodes, frequency of re-entry to the network, the maxi-
mum number of times piece transfer occurs, waiting time af-
ter downloading is finished, the number of clients per node,
and the size of data. We illustrate how our scheme works
when we change each parameter.

The number of nodes. In our experiments, we run
up to 150 nodes. The management node controls all of the
nodes in the management network. Note that we run plu-
ral clients on one node in some experiments. Clients up-
load/download data pieces to/from one another.

Frequency of re-entry to the network. The frequency
of re-entry to the network denotes the number of times one
client node enters the experiment network in one experi-
ment. If this parameter is set to 50, for instance, all clients
do the following steps 50 times:

1. Generate a new client ID and a user key,
2. Enter the experiment network,
3. Upload/download pieces,
4. Finish downloading (and continue uploading during

pre-determined waiting time),
5. Escape from the experiment network,
6. Save log data and clean up downloaded data.

A re-entered client is assigned a new different ID, and so
this client acts as a newly joined client. In order to avoid
a case in which most of the clients enter the network at the
same time, we introduce a random delay, which is at most
10 [sec], between Step 1 and Step 2.

The configured limitation of piece transfer times.
As explained in Sect. 3.1, a piece is multiply encrypted as it
is transferred through clients. The number of times a piece is
encrypted increases as the number of times a piece is trans-
ferred, Tr, grows. In the case of the excessive increase in
the number of times of encryption, the following three prob-
lems arise: (1) The KM server has to incur the heavier load
of generating the decryption keys for the encrypted pieces.
(2) The decryption cost for a client increases. (3) (Recall
that (Z1, Z2,Z3) denotes a 3-tuple of data transferred among
users.) The size of Z2||Z3 increases as Tr grows, though
the size of Z1, which stays constant, is much larger than
that of Z2||Z3 in most cases. In order to avoid these prob-
lems, Trmax, which is defined as the limitation number of Tr,
needs to be set. At the same time, we should not set Trmax

to a too small value. If the configured Trmax is too small,
most of the clients try to connect to the content server, and
then the downloading time grows owing to the substantially
increased congestion.

Waiting time after downloading is finished. This
waiting time is defined between Step 4 and Step 5. For ex-
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ample, when this parameter is set to 0, a client leaves the net-
work immediately after downloading the data is completed,
even if other clients are downloading encrypted pieces from
this client. A longer waiting time means that the client con-
tributes to more other clients by uploading the encrypted
pieces to them.

The number of clients per node. Since a node is a PC,
we can run one or more clients on it. In some experiments,
we run five clients on one node. For example, in Exp. 4-2
and Exp. 4-4, the total number of clients in the experiment
is 37,500, whereas it is 7,500 in Exp. 4-1 and Exp. 4-3.

The size of data. We generate two random data for our
distribution experiment, 195-MB data and 1954-MB data.
In most of the experiments, we use 195-MB data. Through-
out the paper, we set the size of each piece to 1 MB.

4.1.3 Experimental Results

All parameters and the results of the experiments are shown
in Appendix A. We explain our experimental results from
three viewpoints: contribution analysis, the number of times
piece transfer occurs, and downloading time.

(1) Contribution Analysis.

In a P2P system, data pieces are provided not only from
the content server but also from participant nodes (clients).
Therefore, a P2P system can distribute data more efficiently
than a server-client system. We analyze the contribution of
each client to our system, such as how many pieces are up-
loaded from clients. i.e. In the table of Appendix A, “Ra-
tio of uploading to downloading” means the average ratio
(x/y) of the number of pieces that a node transferred to
other nodes, x, to that of pieces that the node received, y.
In Exp. 1-1, when a small number of client is online, nearly
(or, less than) half of the pieces are uploaded from clients. In
Exp. 3-1, 3-2, 3-3, 3-4 where Trmax is set higher, the “Ratio
of uploading to downloading” is also growing. This means
much more pieces are uploaded from clients. From these re-
sults, it follows that the number of online clients and a value
of Trmax should not be set too small. Therefore, the cost
of the content server is reduced in comparison. (However,
some exceptions also exist in our experiment, e.g. in Exp. 1-
5 and Exp. 2-1, where a higher Trmax does not achieves
higher “Ratio of uploading to downloading”. We will dis-
cuss and explain the reason later in paragraph (3) The Mea-
sured Maximum of Piece Transfer)

In Fig. 5, we present a tendency analysis of the number
of online clients using an example of Exp. 3-3. The num-
ber suddenly rises to around 110 at first, then it is generally
constant in the middle, and at last it gradually drops to zero.
Since the number of nodes is 150 and the number of clients
per node is 1, about 40 clients are offline constantly. This be-
havior indicates that most (about 73%) of the clients work
(or, contribute) during Step 2, Step 3 and Step 4.

(2) The Average Number of Times Piece Transfer Occurs.

Our results shows the transmission burden of the content

Fig. 5 The number of online clients in Exp. 3-3

server is directly related to this parameter, Tr. In Exp. 1-1,
1-5, 2-1, and 2-3, where the number of online clients is very
small (e.g. Tr=1.7), because the encrypted piece is trans-
ferred at least once by the content server, over half of the
transfers have to be performed by the content server herself
and the load of the content server is thought to be very high,
similar to that of a server-client system. When the number
of the online clients is relatively large (e.g., Exp. 1-2, 1-3,
and 1-4), the average number of Tr also increases. This
means instead of downloading pieces directly from the con-
tent server, because a lot of clients downloaded pieces from
other user clients, pieces transfer occurs more frequently be-
tween user clients. According to the experiment results anal-
ysis above, we can infer that a higher average piece trans-
fer time represents a lower ratio of piece transfer from the
server, then we say the transmission burden of the content
server is shifted to the user clients in the P2P network.

To analyze the influence from the Trmax, we set Trmax

to a different smaller value (i.e. 5 ∼ 30) in Exp. 3-1,. . .,
3-4. The result shows Tr settles at around 60% of Trmax.
When Trmax is set to an extremely large number, e.g., 254 in
Exp. 4-2, Tr falls down. The reason can be considered that
lots of node can get pieces directly from its neighborhoods
nearby. This trend is evident in experiments for both data
sizes, 195 MB and 1954 MB. Therefore, this parameter also
impacts the decryption cost. (We discuss the decryption cost
in Sect. 4.2)

(3) The Measured Maximum of Piece Transfer.

This result shows the max hop count we have measured in
each experiment. We can compare this value, Trmeas, with
another result, Trmax, to show whether the configured limi-
tation really worked in each experiment. Such a comparison
is important in a tendency analysis of the average number
of Tr among several experiments. For example, in Exp. 1-5
and Exp. 2-1, the tendency of ”Ratio of uploading to down-
loading” does not follow our analysis above, “a higher Trmax

achieves higher the Ratio of uploading to downloading”.
The reason can be explained as that the Trmax configured
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in both Exp. 1-5 and Exp. 2-1 did not really work because
a small number of online clients is not able to transmit the
pieces too many times, and then, Trmeas < Trmax in both ex-
periments . In such a case, since the “Ave. no. of transfers”
of Tr in Exp. 1-5 and Exp. 2-1 are 1.8 and 1.7, we could
explain that a higher average hop number (or, average Tr)
also achieves higher the Ratio of uploading to downloading”
when the setting of Trmax does not work. This case also im-
plies that a higher “average hop number” means a bigger
chance for a user to upload pieces to others.

(4) Downloading Time.

We analyze the factors that impact the average downloading
time. Our experiment results show the time is mainly influ-
enced by the following three factors/parameters: Limitation
of pieces transmission (Trmax), Client PC resources (CPU,
memory, etc.) and Waiting time.

Compare the Exp. 2-2 where Trmax = 254 and Exp. 2-
5, 3-1,. . ., 3-4, where Trmax are small, the downloading
time increases as we reduce the Trmax. A smaller Trmax

also influences the decryption cost for users. The average
downloading time in Exp. 4-1 (Trmax = 254) and Exp. 4-3
(Trmax = 20) is longer than that in Exp. 2-2 (Trmax = 254)
and Exp. 3-3 (Trmax = 20), though the total number of
clients is the same. This is because PC resources (CPU,
memory, etc.) are shared by 5 clients in one node. The
process of reading from and writing to a hard disk of such
a node increase the time. In Exp. 3-3 (no waiting time)
and Exp. 6-6 (where 20-second waiting time is introduced),
the average downloading time increases from 8.7 to 11.1
[sec]. Besides, Exp. 5-2 and Exp. 5-4 also show that average
downloading time is reduced by introducing waiting time.
From these results, it follows that the downloading process
is speeded up if users who finished downloading contribute
to other ones.

4.2 Performance Analysis of the User Client

To show the feasibility of our scheme on the client side, we
give an analysis of the computation cost (i.e. encryption, de-
cryption) and communication cost (i.e. keys transmission).

As described in Sect. 3.2, a user, U, performs two
signature verifications, one piece encryption using Enc,
and one signature generation in re-encrypting an encrypted
piece. We estimate the time needed from the time U
received (Z1,Z2,Z3) until the completion of generating
(Z′1,Z

′
2,Z

′
3). We refer to the following benchmarks on the

Intel Core 2 processor at 1.83 GHz in [8]: 2.88 [msec] for a
256-bit ECDSA signing operation, 8.53 [msec] for a 256-bit
ECDSA verifying operation, and 109 [MB/sec] for a 128-
bit AES-CBC operation. From these benchmarks, it follows
that the estimated time is 21.1 (= 8.53 × 2 + (1/8)/0.109 +
2.88) [msec], where U encrypts 1/t (= 1/8) of the encrypted
piece regardless of a value of Tr. Since the total download-
ing time (shown in Appendix A) overshadows the piece re-
encrypting time, the computation cost is acceptable.

One might be concerned about the computation cost

for the user client, since it seems to explode as the number
of times piece transfer occurs increases. We numerically
show that this is not true if we set Trmax to an appropriate
value. For Trmax = 20, we measured the time required for
the repeated procedures (3-a and 3-b in Sect. 3.2) using our
decryption software respectively running on: (1). Intel Pen-
tium 4 processor at 2.4 GHz with 1 GB of RAM; on average
it takes 174.2 [msec] per piece; (2). Intel Pentium D proces-
sor at 3.4 GHz with 2 GB of RAM; on average it takes 63.6
[msec] per piece. Both results are measured in the worst
case where each piece is encrypted 20 times. These results
imply that it is possible to play back the content while de-
crypting the encrypted pieces (depending on the cost of de-
coding e.g., MPEG audio and video data).

Regarding the communication cost for receiving the
decryption keys (|KU |) from the KM server, we also cal-
culate the size of decryption keys in the worst case. For a
25,000 MB content, when the size of each piece is 1 MB,
Trmax = 20, and the size of each decryption key, |key|=128
bits, the size: |KU | < 7.63 MB. It follows that the cost for
receiving decryption keys stays acceptable if we set Trmax

to an appropriate value.

4.3 Performance Evaluation of the Key Management
Mechanism

In our scheme, because the computational burden (or cost) is
shifted to the KM server for managing decryption keys, one
might worry about the costs of the KM server in the system.
We implement the key management mechanism to a KM
server using Java. Our application, which runs on the Intel
Xeon processor X3320 at 2.50 GHz with 4 GB of RAM,
performs the key distribution service. To simulate multiple
virtual nodes that simultaneously access the KM server to
get their decryption keys, we use a load generator, which is
based on WebLOAD [33] and runs on the Intel Core 2 Duo
processor P8400 at 2.26 GHz with 1 GB of RAM.

As shown in Fig. 6, a user first sends a key request to
the KM server. We use ECDSA as the signature algorithm.
When the KM server receives the key request, it first authen-
ticates the user and then it verifies the signature of the ticket.
If both processes are successful, it generates a set of decryp-

Fig. 6 Key distribution protocol. We measure processing time, ttotal, in
the experiment.
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Fig. 7 Key distribution capacity of the KM server

tion keys and sends them to the user. We choose eight kinds
of key requests whose sizes are 675, 1,350, 2,700, 4,700,
10,000, 15,000, 20,000, and 25,000 MB †. For Tr = 20,
we measure processing time, ttotal, for completing each key
request. Note that ttotal includes the overhead due to TLS.
Figure 7 shows the key distribution capability of the KM
server. Let S be the number of users that the KM server
can support per day, i.e., service capacity of the KM server.
Let R be the simultaneous-access ratio, which means R % of
users simultaneously access the KM server to receive their
keys. From the results shown in Fig. 7, we can estimate
S = 24 × 602 × t−1

total/(R/100) on the assumption that ac-
cesses from users are dispersed throughout a day. In Fig. 8,
we show the service capacity when 0.1 ≤ R ≤ 1. For exam-
ples, when R = 1.0, the KM server can support 61.3, 34.8,
and 5.5 million users per day for MPEG-4 content, DVD
content, and Blu-ray Disc content, respectively. Moreover,
we can achieve much more service capacity using several
KM servers in parallel. Consequently, these results show
that the key management mechanism in our scheme is effi-
cient and practical for large-scale content distribution.

4.4 Key-Leakage Resilience Analysis

We explain which user can get a free ride in our scheme.
First, we consider a case in which there is one malicious
user and focus on a single piece. Suppose that, in Fig. 3,
B leaks a set of his decryption keys, KB. Then A can de-
crypt EP1 (and therefore obtain the plaintext piece) with the
leaked key, WI (⊆ KB). A free rider (in this case, A) can
decrypt an encrypted piece (EP1) he received with leaked
keys only if an encrypted piece (EP2) a malicious user (B)
received has traversed the free rider. On the other hand, C
cannot decrypt EP3 with any leaked key because W′A ⊈ KB.

Suppose that (1) k malicious users, i1, . . . , ik, leak sets
of their decryption keys, Ki1 , . . . ,Kik and (2) a free rider,

†2,700-MB, 4,700-MB, and 25,000-MB content can be consid-
ered to be MPEG-4 content (3 Mbps, 2 hours), DVD content, and
Blu-ray Disc content [5], respectively.

Fig. 8 Service capacity

Fig. 9 Key-leakage resilience in Exp. 3-3

F, has downloaded N encrypted pieces, c1, . . . , cN , of con-
tent where a set of decryption keys for each c j is KF, j. If
KF, j ⊆ ∪k

ℓ=1Kiℓ , F can decrypt c j with the leaked keys.
Therefore, F can obtain D % of the content if |{ j | KF, j ⊆
∪k
ℓ=1Kiℓ }|/N = D/100. Figure 9 shows the experimen-

tal results for the influence of the key leakage in Exp. 3-
3. We mean by decryptable ratio what percentage of en-
crypted pieces of content can be decrypted by a free rider
with leaked keys. The solid lines show the maximum and
average decryptable ratios when k malicious users leak their
decryption keys. In this case, the decryptable ratio is formu-
lated as D.

Malicious users might also leak their user keys to free
riders, though the leaked user keys can immediately be
traced back. The dotted lines show the maximum and av-
erage decryptable ratios when k malicious users leak their
user keys in addition to their decryption keys. In this case,
the decryptable ratio is formulated as D′ = 100×|{ j | KF, j ⊆
∪k
ℓ=1(Kiℓ ∪ K ′iℓ )}|/N, where K ′iℓ denotes a set of decryption

keys that are derived from iℓ’s user key.
We found in either case, a free rider can only decrypt a

low percentage of the encrypted pieces on average, whereas
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only a few free riders can decrypt almost 100% of the en-
crypted pieces. Since the quality of content is greatly de-
graded unless the decryptable ratio becomes high, these re-
sults verify that the proposed scheme is resilient to the key
leakage in the presence of hundreds of malicious users.

5. Related Work and Discussion

Many P2P content distribution schemes (e.g., [10], [13],
[30]) have been proposed. The survey in [3] is helpful for
grasping the literature of P2P content distribution. Content
protection in a P2P network is studied in [12], [18], [20],
[25], [26], [28]. Key management is discussed in [20], [26].
And a fingerprint based scheme is proposed in [14]. With
regard to other properties, availability, file authenticity, and
anonymity are extensively studied in the literature. This is
the case also for a content delivery network (e.g., [2]).

To the best of our knowledge, previous schemes, ex-
cept that of [34], in a P2P content distribution system do not
achieve the individualization of encrypted content. In [34]
the problem of the key leakage is dismissed as insoluble by
making an unrealistic assumption. Their implementation of
players (software players, set-top boxes, etc.) is idealized
and it is assumed that no decryption keys are leaked from
any players. This assumption does not hold true in reality for
software players. As implied in [1], not all of the players are
implemented robustly enough to ensure protection from the
key leakage in the real world. Therefore, we should make a
realistic assumption that decryption keys might be leaked.

The scheme of [34] is based on BitTorrent [30]. Let
mi (1 ≤ i ≤ N) be the i-th piece of content and g, p be
parameters in the standard ElGamal encryption scheme [9].
Calculations are done over Z∗p. Each user, P j, generates a
pair of secret and public keys, (s j, g

s j ). A tracker, which
is a server that keeps track of which users are online, gen-
erates secret random numbers, r1, j, . . . , rN, j, for all of the
users. At the initial stage of distribution, the tracker en-
crypts mi with ri, j, g

s j (in response to P j’s request) and
sends the resulting ciphertext, mig

ri, j s j , to P j. As users have
encrypted pieces, they upload/download encrypted pieces
to/from one another. Suppose that P j wants to upload
a ciphertext of mi to another user, Pk. First, P j makes
a request for re-encryption to the tracker. Secondly, the
tracker sends a re-encryption key, RK j→k, back to P j, where
RK j→k = g

ri,k sk−ri, j s j . Thirdly, P j re-encrypts his ciphertext
for Pk by calculating (mig

ri, j s j )RK j→k = mig
ri,k sk , and sends

it to Pk. Lastly, Pk decrypts the received ciphertext with
their decryption key, (sk, g

ri,k ), where gri,k is given by the
tracker after Pk pays for the content. Since the ciphertext
for P j and that for Pk are different (i.e., mig

ri, j s j , mig
ri,k sk ),

this scheme supports the individualization of encrypted con-
tent. Unfortunately, the scheme is vulnerable to the leakage
of decryption keys. Suppose that Pk is compromised and
a set of its decryption keys, (sk, g

r1,k , . . . , gri,k , . . . , grN,k ), is
leaked. Because any user, Pℓ, who just follows the above
protocol and has their ciphertext, mig

ri,ℓ sℓ , can obtain RKℓ→k

from the tracker, Pℓ can get mig
ri,k sk (= (mig

ri,ℓ sℓ )gri,k sk−ri,ℓ sℓ )

by re-encrypting their ciphertext. Therefore, Pℓ can obtain
mi by decrypting the re-encrypted ciphertext with the leaked
decryption key, (sk, g

ri,k ). This means that anyone can play
back the content without purchasing it and that just a sin-
gle set of leaked decryption keys suffices for the free ride.
We also consider the decryption cost in the scheme of [34].
Suppose that (1) content consists of N pieces, (2) the length
of each piece, |mi|, is the same, (3) mi consists of n sub-
pieces, (4) the length of each sub-piece is the same as |p|,
i.e., n = |mi|/|p|. A user has to execute the standard ElGamal
decryption nN times in order to decrypt the content. This is
impractical in most cases: if the sizes of content, mi, and
p are 25,000 MB (e.g., Blu-ray Disc content), 1 MB, and
1024 bits, respectively, then it holds that nN = 25, 600, 000.
In this case, it takes more than 7 hours to decrypt the content
if the time required for decryption of a single sub-piece (i.e.,
1024-bit ElGamal decryption) is 1 [msec].

We explain how to cope with a threat that a valid
but malicious user redistributes the decrypted content it-
self. Gao et al.[14] applied an asymmetric fingerprinting
scheme [16] to content protection in the P2P network. In
their scheme, each user gets a slightly different fingerprinted
content as follows: A distributor (a content server in our
scheme) encrypts the content in such a way that each user
decrypts the same encrypted content with a different key.
Every user has to leave his node ID (user ID in our scheme)
into the content in order to decrypt it, since his decryption
key corresponds to his own node ID and the results of de-
cryption vary with the decryption key. Assuming that the
maximum number of malicious users in a coalition is less
than a predetermined value, redistributed content can be
traced back to at least one of the colluders.

Fortunately, their scheme can easily be integrated into
ours in the following way. We omit describing the same
part of the proposed scheme. A content server, I, devides
the content into pieces, piece1, . . . , pieceℓ. According to the
encryption algorithm of [14], I encrypts piece j with e j for
1 ≤ j ≤ ℓ, where {e1, . . . , eℓ} denotes the encryption key
in the scheme of [14] and {e1, . . . , eℓ} is given by the KM
server. Let piece′j be the result of the encryption of piece j.
Using the method as described in Sect. 3.1, I encrypts piece′j
and sends a 3-tuple of data, (X1, X2, X3), to a user, A. After a
user, B, gets all of the encrypted pieces, B obtains a set of the
decryption keys, KB, and the decryption key in the scheme
of [14] from the KM server. By the decryption with KB,
B gets piece′1, . . . , piece′ℓ. Finally, B obtains a fingerprinted
content using the decryption algorithm of [14].

6. Conclusions

We proposed a P2P content distribution scheme that
achieves both the individualization of encrypted content and
the key-leakage resilience. From the experiments on a real
and large-scale P2P network, we showed that the proposed
scheme works on a large-scale network and provides the
key-leakage resilience.
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Appendix A: Detailed Results of Large-Scale P2P Content Distribution Experiments

Table A· 1 This table shows the results of StarBED based large-scale P2P content distribution exper-
iments

Exp. No. of Re-entry
Max. no. Waiting No. of Size of Ratio of Measured max. Ave. Ave.

no. nodes frequency
of transfers time clients data uploading to no. of transfers no. of downloading

(Trmax) [sec] per node (MB) downloading (%) (Trmeas) transfers time [sec]
1-1 10 10 254 0 1 195 46.7 10 1.8 8.2
1-2 50 10 254 0 1 195 89.8 67 10.0 8.8
1-3 100 10 254 0 1 195 94.5 93 21.3 9.5
1-4 150 10 254 0 1 195 96.2 100 26.2 9.7
1-5 10 50 20 0 1 195 47.5 12 1.8 8.2
1-6 50 50 20 0 1 195 89.6 20 8.2 9.3
1-7 100 50 20 0 1 195 93.4 20 11.0 10.7
2-1 10 50 254 0 1 195 45.6 14 1.7 8.1
2-2 150 50 254 0 1 195 96.5 254 55.7 9.6
2-3 10 500 254 0 1 195 45.8 17 1.7 8.1
2-4 150 500 254 0 1 195 97.1 254 60.7 9.6
2-5 150 50 15 0 1 195 94.2 15 9.4 12.1
3-1 150 50 5 0 1 195 78.2 5 3.1 47.9
3-2 150 50 10 0 1 195 91.3 10 6.3 16.3
3-3 150 50 20 0 1 195 95.1 20 12.0 11.1
3-4 150 50 30 0 1 195 95.8 30 16.4 10.4
4-1 30 50 254 0 5 195 96.7 227 38.0 27.8
4-2 150 50 254 0 5 195 99.4 254 89.6 28.9
4-3 30 50 20 0 5 195 95.7 20 11.9 27.5
4-4 150 50 20 0 5 195 98.9 20 14.9 30.9
5-1 50 50 254 0 1 1,954 93.1 141 11.0 77.0
5-2 150 50 20 0 1 1,954 97.2 20 11.9 90.6
5-3 150 50 20 0 5 1,954 100.2 20 13.1 616.0
5-4 150 50 20 20 1 1,954 97.3 20 11.8 82.2
6-1 150 50 254 2 1 195 96.7 254 47.9 9.0
6-2 150 50 254 4 1 195 96.9 254 47.4 8.7
6-3 150 50 254 8 1 195 96.7 226 41.6 8.7
6-4 150 50 20 5 1 195 95.5 20 11.7 9.3
6-5 150 50 20 10 1 195 95.7 20 11.8 8.9
6-6 150 50 20 20 1 195 97.9 20 13.0 8.7
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