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SUMMARY The time taken for processor simulation can be drastically
reduced by selecting simulation points, which are dynamic sections ob-
tained from the simulation result of processors. The overall behavior of the
program can be estimated by simulating only these sections. The existing
methods to select simulation points, such as SimPoint, used for selecting
simulation points are deductive and based on the idea that dynamic sections
executing the same static section of the program are of the same phase.
However, there are counterexamples for this idea. This paper proposes an
inductive method, which selects simulation points from the results obtained
by pre-simulating several processors with distinctive microarchitectures,
based on assumption that sections in which all the distinctive processors
have similar istructions per cycle (IPC) values are of the same phase. We
evaluated the first 100G instructions of SPEC 2006 programs. Our method
achieved an IPC estimation error of approximately 0.1% by simulating ap-
proximately 0.05% of the 100G instructions.
key words: simulation point, sampling simulation, microarchitecture, pro-
cessor architecture, simulation, computer architecture

1. Introduction

In modern computer architecture studies, simulation of a tar-
get architecture is indispensable to evaluate its performance.
However, process or simulation is highly time consuming
because of the following two reasons.

Long Simulation Time

First, the execution speed of simulators is low. The ratio of
the execution time taken by a simulator to the actual exe-
cution time is termed as speed-down (SD). In general, the
SDs of emulators are approximately 10, whereas the SDs of
cycle-accurate simulators are approximately 1000 to 10,000.
This is because emulators only reproduce the architectural
result of the program instructions, whereas cycle-accurate
simulators reproduce cycle-by-cycle behavior of the target
processors. When the SD of a simulator is 1000, a 10 min
program on a real machine will take 10,000 min to execute,
i.e., a week on that simulator.

Second, there are a huge number of instructions in
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benchmark programs. In the SPEC CPU 2006 [1], which
is the most typical benchmark for evaluating the processor
performance, the longest program execution consists of as
much as 100T instructions, and it will take years to simu-
late such a program. In addition, it is necessary to simulate
each program for tens of combinations of different values of
several parameters.

In conclusion, speeding up simulators is an impor-
tant but not a fundamental solution. Even if several times
speedup is achieved, the simulation time will be reduced
from years to months. It is still far from practical consid-
eration.

Simulation Points

Therefore, we usually simulate small sections of benchmark
programs, typically, the subsequent 100M instructions after
the first 1G program instructions, to skip the initialization
section from the evaluation result.

Although this method is generally accepted, it is still
uncertain whether the simulated sections accurately reflect
the characteristics of a program. In fact, the skipping of
the first 1G instructions was determined to be insufficient
to exclude all initialization sections, such as astar, mcf, and
omnetpp in SPEC 2006 [2].

To cope with this problem, the idea of sampling sim-
ulation can be considered. Instead of executing the entire
program, simulating a set of simulation points, which are
the dynamic sections of program execution, is sufficient to
estimate the overall behavior of the target processor. Simu-
lating 100M instructions after skipping the first 1G instruc-
tions, as stated earlier, can be considered as the simplest but
insufficient example of simulation points.

SimPoint

Selection of simulation points is usually performed based
on the same idea of phase detection [3], [4]. SimPoint [5]–
[8], which is the most recognized method, selects simula-
tion points from the program counter (PC) sequence of ex-
ecuted instructions obtained by emulating the target proces-
sor. SimPoint assumes that the dynamic intervals of instruc-
tions executing the same static section of a program will be
of the same phase, and the target processor behaves simi-
larly in these intervals.

Thus, SimPoint categorizes the instruction intervals
into clusters based on the PCs included in each interval. If
two intervals have almost the same variety of PCs, they are
categorized into the same cluster. Then, the representative
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interval from each of the clusters is selected as one of the
simulation points. The IPC (or other performance metrics)
of the program will be extrapolated as an average of simu-
lation results of the selected simulation points weighted by
the number of intervals in each cluster.

Proposal

However, there are counterexamples about the assumption
that the target processor executing the same static section of
the program behaves similarly. Even when the target pro-
cessor is executing the same loop or function, the cache hit
rates will differ depending on the amount of data it refers,
and the IPC can be drastically different. In reality, as de-
tailed in Sect. 4, the IPC of the 483.xalancbmk program of
SPEC 2006 [1] gradually degrades because the working set
size gradually increases even executing the same static in-
tervals. Thus, this paper proposes a method to select sim-
ulation points from the simulation results of several proces-
sors with distinctive microarchitectures. SimPoint can be
referred to as deductive, whereas the proposed method can
be referred to as inductive.

The remainder of this paper is organized as follows:
Section 2 describes SimPoint and summarizes its limita-
tions. The proposed method is explained in Sect. 3, which
begins with an analogy of a racing circuit, and followed by
the detailed description of the method’s procedure. Sec-
tion 4 shows the evaluation results. The related literature
excepting SimPoint is summarized in Sect. 5.

2. SimPoint

In this section, we describe SimPoint [5]–[8] and summarize
its limitations.

2.1 SimPoint

As previously described, SimPoint selects simulation points
based on the assumption that the dynamic sections executing
the same static section of a program are of the same phase.

Pre-Emulation

First, SimPoint obtains the sequence of executed instruc-
tions by pre-emulating the target program. This sequence is
divided into intervals of a fixed length. The interval length
is typically 1M to 100M instructions.

Basic Block Vector

SimPoint categorizes these intervals into clusters according
to the basic block vector of each interval. Each element
of the basic block vector denotes the number of executions
of each basic block in the interval. The number of dimen-
sions of basic block vector is given by the number of basic
blocks executed more than once throughout the execution
of the target program. However, in an interval, only hun-
dreds or thousands of basic blocks are executed resulting
in hundreds or thousands of non-zero elements in the basic
block vector. Therefore, basic block vectors will be high-

dimensional sparse vectors.

Clustering, Selection, and Estimation

SimPoint clusters intervals by using the k-means method [9],
which is suitable to cluster sparse vectors such as basic
block vectors.

Finally, the nearest interval to the weighted center of
each cluster is selected as one of the simulation points.

To estimate the IPC or other performance metrics,
the target processor only simulates the selected simulation
points of the program. The metrics is then deduced as an
average of the simulation results of the simulation points
weighted by the number of intervals in each cluster.

2.2 Limitation of SimPoint

As previously described, there are counterexamples about
the assumption that the target processor executing the same
static sections of the program behaves similarly. Even when
the target processor is executing the same loop or function,
the cache hit rate is different depending on the amount of
data it refers, and the IPCs can be drastically different. Thus,
the accuracy of SimPoint degrades in some benchmark pro-
grams, as shown in Sect. 4.

The cache hit rate is affected by the cache size, which
is the microarchitectural parameter of the target processor.
Therefore, to overcome this limitation, information about
the microarchitecture must be considered. However, Sim-
Point only uses the information about the target program.
One of the most obvious reasons is that even if simulation
points are selected for the specific microarchitecture, it is
uncertain whether the simulation points can be used for an-
other microarchitecture.

This paper proposes an inductive method, which se-
lects simulation points that can be used for general microar-
chitectures from the simulation results of several processors
with distinctive microarchitecture.

3. Inductive Method

This section describes the proposed inductive method for
selecting simulation points. Section 3.1 introduces an anal-
ogy for a better understanding of the proposed method, and
Sect. 3.2 describes the procedure of the method.

3.1 Analogy of Racing Circuit

The following analogy of a racing circuit is helpful in under-
standing the proposed method. Assume that we want to esti-
mate the runtime of a very long circuit for an unknown trans-
portation model X without making it run the entire length of
the circuit. Our method is as follows.

First, in advance, we make several models run the en-
tire length of the circuit to measure the speed of each model
in all the sections of the circuit. Figure 1 shows the results
for a racing car, a scooter, and a walker. For example, the
speed of the racing car increases in the second half of the
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Fig. 1 Speeds of three transportation models in sections of a circuit
(km/h).

long straight section (S2) and downhill (S3), and decreases
in the S-curves (S4 and S5) and uphill (S7). The speeds of
the other models also change according to their characteris-
tics.

Although we denote the type of sections as straight, S-
curve, uphill, and downhill to illustrate the cause of speed
change, our method does not determine what the sections
really are. All that is needed in our method is the resulting
speed values.

In both S1 and S6, the speeds of all the three models
are (300, 30, 4). Therefore, S1 and S6 can be considered as
similar sections. The same applies to S4 and S5.

Next, to estimate the runtime of an unknown trans-
portation model X, we do not need to run it in S5 and S6,
instead, we can use the speeds in S4 and S1, respectively.
The runtime of model X can be estimated by running it in
sections marked by a yellow solid circle in Fig. 1. These
sections play the role of simulation points in the sampling
simulation.

For this method to work, using the transportation mod-
els beforhand is essentially important. They must be suf-
ficiently distinctive from each other. For example, if the
walking speed is not used, S7 can be regarded as similar
to S4 and S5. As a result, the estimation accuracy for model
X possibly degrades.

Processor Simulation

The same method can be applied to processor simulation.
If the results for the full-length execution are available for
different processors with distinctive microarchitectures, we
can select a set of simulation points by comparing the IPC
values in this case.

Figure 2 shows the IPC transitions of four distinctive
models for full-length execution of 400.perlbench with test
input. In this figure, we can observe that the phases are con-
served for the different models. Furthermore, an unknown
model is expected to have a similar IPC transition.

Difference with SimPoint

By considering the analogy of a racing circuit, SimPoint and
other methods based on PCs are regarded as methods to de-
tect the phases of the circuit from the static characteristics
of the sections. That is, in Fig. 1, they will categorize two
straight sections S1 and S2 into the same phase, for exam-

Fig. 2 IPC transitions of four models for 400.perlbench with test input.

ple, by comparing the geometric shapes of these sections.
However, the speed of the racing car is different in S1 and
S2, and it is possible that the estimation accuracy for model
X will degrade.

This is because the speed in a section changes depend-
ing on the dynamic state when a vehicle is approaching the
section. A racing car can run faster on long straight sec-
tions. Similarly, a modern processor can run faster if a loop
is longer, because branch prediction and/or the cache hit rate
become higher.

In contrast, our method does not consider the static
characteristics of the sections but considers the resulting
speed, which is affected by both the static characteristics of
the sections and the dynamic state of the vehicle.

3.2 Pre-Simulation by Using Basis Models

As described in the previous sections, SimPoint selects sim-
ulation points based on a PC sequence obtained by pre-
emulating benchmark programs. In contrast, our method
detects simulation points based on an IPC sequence ob-
tained by pre-simulating benchmark programs with distinc-
tive models.

The proposed method first obtains IPC values for each
interval by pre-simulating benchmark programs with sev-
eral models. We refer to these models as basis models. As
the previously mentioned circuit analogy suggests, the basis
models should be distinctive from each other. The method to
choose good basis models is explained in detail in Sect. 3.6.

3.3 IPC Vector

By pre-simulating two intervals with n basis models, two
n-dimensional IPC vectors v1 = (i11 , i12 , . . . , i1n ) and v2 =
(i21 , i22 , . . . , i2n ) are obtained.

If the distance between v1 and v2 is sufficiently small,
i.e., i11 � i21 , i12 � i22 , . . . , i1n � i2n , these two intervals
show similar IPC values for all the basis models. Therefore,
two intervals can be expected to be of the same phase, and
for an unknown model mn+1, i1n+1 � i2n+1 can be expected,
and obtaining only i1n+1 with simulation is sufficient to esti-
mate i2n+1 . Therefore, our method clusters all the IPC vectors
based on the distance between them. Similar to SimPoint,
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one simulation point is then selected from each cluster.
Note that IPC vectors are low-dimensional dense vec-

tors. The number of dimensions of IPC vectors is small
(i.e. four, as shown in Sect. 4) because it is dependent on
the number of basis models. That is, the IPC vectors in our
method are low-dimensional (dense) vectors. In contrast,
the basic block vectors of SimPoint are high-dimensional
sparse vectors as explained in Sect.2.

3.4 Clustering IPC Vectors

Unlike SimPoint, which uses the k-means method, our
method uses the following simple algorithm to cluster IPC
vectors:

1. For a new IPC vector v, the distances to all the clusters
are calculated. The Euclidean distance to the gravity
center of a cluster is typically used for these distances.

2. If the distance from v to any cluster is less than a given
threshold, v is appended to the nearest cluster.

3. Otherwise, a new cluster is created, and v is appended
to that cluster as the first member.

The clustering threshold in this algorithm affects the
tradeoff between the amount of simulation points and the
accuracy of the estimation. The threshold gives the max-
imum radius of each cluster in the vector space. Thus, a
smaller threshold results in a larger number of smaller clus-
ters; and then, a larger number of simulation points and a
higher accuracy of the estimation.

In this manner, the number of clusters is automatically
decided by the threshold value, whereas determining the op-
timal k value of the k-means method is difficult [9].

This simple algorithm works because IPC vectors are
low-dimensional dense vectors. In contract, SimPoint re-
quires complex algorithms, such as k-means, because basic
block vectors are high-dimensional sparse vectors.

3.5 Fixed-Length Interval

Similar to SimPoint, the proposed method divides the pro-
gram execution into sections. We used fixed-length inter-
vals, as used in SimPoint.

Fixed-length intervals can degrade the estimation ac-
curacy because a single phase can have phase changes [10]–
[12].

However, our proposed method can mitigate this prob-
lem by using shorter intervals. Our method clusters the vec-
tors more efficiently than SimPoint even with the increased
number of shorter intervals, because IPC vectors are low-
dimensional dense vectors, whereas basic block vectors are
high-dimensional sparse vectors. In other words, the pro-
posed method can adopt finer intervals to lower the impact
of phase changes.

3.6 Basis Models

As the analogy in Sect. 3.1 suggests, the basis models should

Table 1 Basis Models & IPC Degradation Factors.

Basis Model 1) cache miss 2) bpred miss 3) inst. dep.
superscalar � � �
scalar �
cache-perfect � �
bpred-perfect � �

Table 2 Configuration of superscalar Model.

ISA Alpha w/ byte/word ext.
pipeline stages Fetch:3, Rename:2, Dispatch:2, Issue:4
fetch width 4 inst.
issue width Int:2, FP:2, Mem:2
inst. window Int:32, FP:16, Mem:16
branch pred. 8KB g-share
BTB 2K entries, 4way
RAS 8 entries
L1C 32KB, 4way, 3cycles, 64B/line
L2C 4MB, 8way, 15cycles, 128B/line
main memory 200cycles

be sufficiently distinctive from each other.
We selected the basis models based on the IPC degra-

dation factors of processors. The following are the three
main IPC degradation factors of modern superscalar proces-
sors:

1. cache miss
2. branch prediction miss
3. dependency among instructions

In general, studies on processors focus on increasing or
maintaining IPC by decreasing the effect of these factors.

In Sect. 4, we use the following four basis models for
evaluation:

superscalar A moderate 4-way out-of-order superscalar
processor. Table 2 summarizes the configuration.

scalar A scalar processor with a cache.
cache-perfect A superscalar processor with a perfect

cache
bpred-perfect A superscalar processor with a perfect

branch predictor.

Table 1 summarizes these basis models, and displays
whether the three IPC degradation factors have an influence
on them.

The basis models other than superscalar are not af-
fected by one or two of the three IPC degradation factors.
Thus, these models can be considered as the lower limits
in IPC degradation, and the IPC degradation of all realistic
processors is larger than those. Therefore, these models play
the role of basis vectors to represent realistic processors.

4. Evaluation

In this section, we provide the evaluation and comparison
of our method with SimPoint. Section 4.1 summarizes the
methodology and Sects. 4.2 and 4.3 display the results.
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Table 3 Averaged relative IPC of target models to superscalar.

Target Model Relative IPC
cache-half −7.6%
pht-single −2.5%
eight-way 11.1%
regcache −9.2%

4.1 Evaluation Methodology

Simulator

We used the fully cycle-accurate Onikiri 2 simulator [13],
that is, it reproduces the behavior of instructions in each
stage in the accurate cycles. It executes instructions in the
accurate execute stages, and verifies the results with those of
an on-line emulator in the commit stage. Thus, the behavior
after mispredictions is also accurately reproduced.

The Onikiri 2 was used to evaluate several advanced
studies on microarchitecture [14]–[16], including a register
cache system [14] that we evaluated in this paper.

Benchmark Programs

We used all of the 22 programs of SPEC CPU 2006 with ref
input [1].

Although we could only use the first 100G instructions
of each program owing to time constraints. This number
is three orders of magnitude greater than the instructions
evaluated in the existing studies on microarchitecture [14]–
[16].

We selected simulation points from the 100G instruc-
tions, estimated IPC values by using SimPoint and our
method, and calculated the estimation errors. True IPC val-
ues were obtained by simulating the 100G instructions.

Basis Models

We used the four basis models mentioned in Sect. 3.6.

Target Models

The IPCs of the following four target models were estimated
using the simulation points obtained through SimPoint and
our method:

cache-half A superscalar processor in which the numbers
of ways of the caches are half-sized.

pht-single A superscalar in which the bit width in the
PHT of the branch predictor decreased from 2 to 1.

eight-way An 8-way out-of-order superscalar processor af-
ter the Intel Haswell [17] and IBM POWER8 [18] pro-
cessors.

regcache A superscalar processor with a register cache.

Table 3 summarizes and compares the relative IPC of the
target models with those of the superscalar model. The first
three models are simple variations of the basis models, and
show how our method reflects the IPC degradation factors.
In contrast, the regcache model, detailed as follows, is more
realistic to estimate.

Fig. 3 Estimation error against simulation point rate of our method.

Fig. 4 Estimation error against simulation point rate of SimPoint and our
method.

The regcache Model

The regcache model adopts the Non-latency Oriented Reg-
ister Cache System proposed by Shioya et al. [14]. This
register cache system causes one-cycle stall in the backend
pipeline when more than two (number of register file ports)
register cache misses occur in a single cycle.

When the register cache is sufficiently large (e.g., eight
entries), this system has slight IPC degradation, that is, the
regcache model shows almost the same IPC as the super-
scalar model. Therefore, we set the register cache size to
only 2 entries for a sensible evaluation. As a result, the IPC
of regcache model degraded by 9.2% of the superscalar
model (Table 3).

The IPC degradation factor of the regcache model is
register cache miss, which is different from the three IPC
degradation factors described in Sect. 3.6. Thus, the result
of this model is the most important because it will verify if
our method works for target models that have general IPC
degradation factors other than the three mentioned earlier.

4.2 Evaluation Results

In this section, we describe the use of graphs Figs. 3 and 4 to
show the estimation error against the amount of simulation
points.

In these graphs, the x-axis shows the simulation point
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rate, i.e., the rate of number of instructions in the selected
simulation points to the number of all the instructions in a
benchmark program. Thus, the number of instructions is
represented by the simulation point rate, and the number of
simulation points is calculated by the simulation point rate
and the length of the intervals.

The y-axis shows the estimation error, i.e., the rate
of estimated IPC obtained by simulating only the selected
simulation points to the true IPC obtained by simulating all
the instructions in a benchmark program.

In general, because there is a tradeoff between the sim-
ulation point rate and the estimation error, negatively sloped
curves are plotted. The nearer the curve is to the origin, the
better simulation points are selected. That is, a more precise
IPC estimation is achieved by less simulated instructions.

Interval Length of Our Method

SimPoint has only one parameter, i.e., the interval length,
whereas our method has two parameters, i.e., the interval
length and the clustering threshold. Thus, we first set the
interval length of our method.

Figure 3 shows the estimation error against the simula-
tion point rate of our method for different interval lengths.
In this figure, four curves are plotted for four interval lengths
of 1K, 10K, 100K, and 1M instructions, and each curve is
plotted for six thresholds of 0.025, 0.05, 0.1, 0.2, 0.3, and
0.4. For each interval length and threshold, we have 88
pairs of the estimation errors and simulation point rates for
22 benchmark programs of each of the four target models.
Each point on the curves is plotted for a pair of the geo-
metric mean of the 88 estimation errors and the geometric
mean of the 88 simulation point rates. The point for an inter-
val length of 1K instructions and a threshold of 0.025 is not
plotted because the clustering program did not finish even in
three days for some pairs out of 88 owing to a huge number
of clusters.

In the graph, the curve for 10K instructions is the near-
est to the origins of all clustering thresholds, indicating that
10K is optimal. Hereafter, the interval length is fixed to 10K
instructions for our method unless otherwise stated.

Overall Results

Figure 4 has two groups of curves. The group of dashed
curves represents the result of SimPoint, and the group of
solid curves represents those of our method. Each group
has four curves for the four target models, and each curve is
plotted for the geometric means of 22 estimation errors and
22 simulation point rates for 22 benchmark programs. Note
that the four markers of the same parameter are vertically
arranged, because the simulation point rates do not vary for
the different target models.

As previously described, SimPoint has only one param-
eter, whereas our method has two. The curves for SimPoint
are plotted by changing the interval lengths: 10K, 100K,
1M, and 10M instructions. In contrast, the curves for our
method are plotted by changing the clustering thresholds:
0.025, 0.05, 0.1, 0.2, 0.3, and 0.4, with the fixed interval

length to 10K instructions. (10K was found to be optimal
by Fig. 3). That is, the curve for 10K-instruction interval in
Fig. 3 is the geometric mean of the four curves for the four
target models used in our method in Fig. 4.

Figure 4 shows the four curves in each group crowding
together, indicating that the estimation errors do not widely
vary for the different target models.

The group of curves of our method is nearer to the
origin than SimPoint, implying that our method can select
better simulation points. If the rate of simulation points is
approximately 0.05%, the error can be improved from ap-
proximately 0.5% to 0.1%. If approximately 0.5% of errors
of SimPoint can be acceptable, the rate of simulation points
can be reduced to less than 0.01%. That is, a 0.5% error rate
can be achieved by simulating only 100G × 0.01% = 10M
out of 100G instructions.

In addition, the error of SimPoint is saturated at larger
rates of simulation points. As the interval length decreases,
the error increases on the contrary. The errors of SimPoint
is minimized at the point of 1M instructions [5]–[8].

Our method can more freely select any tradeoff points
between the rate of simulation points and the estimation er-
ror than SimPoint by changing the clustering threshold.

Interval Lengths

SimPoint needs longer intervals than 1M instructions would
comes from the limitation of its clustering ability. It is es-
sentially difficult to cluster a huge number of sparse vectors.

In contrast, our proposal does not work well for 1K-
instruction intervals. The reason would be that 1K instruc-
tions is essentially too short to stably measure the IPC. For
example, because the latency of the main memory is hun-
dreds of cycles, the IPC of 1K-instruction intervals varies
by tens of percent by a coincidental last-level cache miss.

Note that there is no way to prove this speculation. If
the IPC of one out of two intervals is degraded only by a
coincidental cache miss, they should be regarded as differ-
ent phases by definition. In other words, a phase loses its
meaning for short intervals such as 1K instructions.

Selected Intervals as Simulation Points

Figure 5 shows simulation points for 483.xalancbmk se-

Fig. 5 Selected simulation points for 483.xalancbmk.
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Fig. 6 Estimation error against simulation point rate of regcache.

lected by our method. In this graph, the x-axis shows the
dynamic interval number measured in instructions from 0 to
100G, and the y-axis shows IPC. Each point is plotted for
an interval selected as a simulation point and its IPC on the
superscalar model. There are three groups of points plotted
for three thresholds: 0.05, 0.2, and 0.4.

For these three thresholds, the numbers of selected
10K-instruction intervals are 34,546, 884, and 154; and the
geometric means of the estimation errors for the four target
models are 0.0715%, 0.179%, 1.22%, respectively.

The variation in IPC is wider than expected or than
Fig. 8 in Sect. 4.3. This is because of the shorter interval
length, 10K instructions in this figure and 1M instructions
in Fig. 8. Higher or lower IPC values observed in shorter
intervals are averaged in a longer interval.

Per-Program Results of regcache Model

Figure 6 and Table 4 show the estimation errors against sim-
ulation point rates of each of the 22 benchmark programs on
the regcache model. In Fig. 6, the triangles represent the
plots for SimPoint, whereas the circles represent the plots
for our method. The lower graph in the figure is an enlarged
view of the upper graph. The interval lengths of SimPoint
and our method are 10M and 10K instructions respectively,
and are the optimal values for each method as obtained from
the previous results. The clustering threshold of our method
is 0.05, which is selected for better precision than the rate of
simulation points.

Obviously, the plots of our method are concentrated

Table 4 Estimation error (EE) against simulation point rate (SPR) of
regcache.

Proposal SimPoint
program SPR (%) EE (%) SPR (%) EE (%)

400.perlbench 0.16561 0.01694 0.27000 3.06510
401.bzip2 0.09348 0.02843 0.22000 2.74195
445.gobmk 0.13175 0.00298 0.17000 0.60204
458.sjeng 0.03027 0.10885 0.08000 0.19820
462.libquantum 0.00221 6.28601 0.22000 0.98451
464.h264ref 0.03662 0.11553 0.16000 0.84040
471.omnetpp 0.35213 0.05085 0.27000 0.53224
483.xalancbmk 0.34546 0.06200 0.17000 1.74393
410.bwaves 0.00683 0.04421 0.11000 0.12033
416.gamess 0.03645 0.08479 0.26000 0.81849
434.zeusmp 0.09130 0.01052 0.29000 1.84017
435.gromacs 0.07791 0.41340 0.23000 0.04990
436.cactusADM 0.00889 0.56141 0.14000 0.25654
437.leslie3d 0.04766 0.05636 0.23000 0.45934
444.namd 0.03986 0.06121 0.21000 0.34736
447.dealII 0.06057 0.14103 0.23000 1.94106
450.soplex 0.83813 0.04425 0.20000 1.18586
459.GemsFDTD 0.02940 0.12953 0.23000 0.81928
465.tonto 0.06017 0.04078 0.23000 0.21437
470.lbm 0.00219 0.15174 0.04000 0.22357
481.wrf 0.03287 0.02536 0.17000 0.13511
482.sphinx3 0.09580 0.03031 0.29000 0.31499
GEOMEAN 0.04832 0.07033 0.18557 0.53591

around the origin, whereas those of SimPoint are father from
the origin. This indicates that our method outperforms Sim-
Point for most of the programs. The graph shows that our
method achieves both lower rates of simulation points and
lower error rates 16 out of the 22 programs.

In the four cases of 462.libquantum on regcache,
471.omnetpp and 444.namd on cache-half, and 465.tonto
on eight-way, SimPoint outperforms our method in some
parameters. The reason for this will be partly discussed in
the following subsection through a few examinations.

As a whole, our method also works well for regcache
model, which has a IPC degradation factor different from
the three described in Sect. 3.6.

This is partly because the IPC degradation of regcache
model is caused by the number of register accesses per cy-
cle, it is strongly correlated to the instruction-level paral-
lelism of each interval, which can be distinguished by the
difference in IPC between the scalar and superscalar mod-
els.

Therefore, if a target model has another IPC degrada-
tion factor that is not correlated to the instruction-level par-
allelism, our method will need another basis model to dis-
tinguish that factor.

4.3 Detailed Results

This section visualizes the phases of some characteristic re-
sults. In this section, we denoted a single phase as a point
in graphs by using an interval length of 1M instructions for
both methods.

401.bzip2 on regcache

401.bzip2 is one of the benchmark programs that showed
the best results through our method.

Figure 7 shows the IPC of clustered intervals for
401.bzip2 on the regcache model. The upper and the
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Fig. 7 IPCs of intervals in top ten clusters for bzip2 on regcache by
using SimPoint (upper) and proposal (lower).

lower graphs of Fig. 7 show the results of SimPoint and our
method, respectively. As in Fig. 5, the x-axis represents the
interval number in instructions, and the y-axis represents the
IPC.

The intervals clustered to the same cluster are painted
with the same color. Because the graphs will be filled with
colors if all intervals are plotted, only the largest 10 clusters
are plotted. In each graph, the intervals in the clusters are
painted with different colors (gnuplot default colors) in the
descending order of cluster size. Thus, the occurrence of
colors in two graphs has no relevance. Each of the black
points is the selected intervals as a simulation point from
each cluster.

In the lower graph of Fig. 7, our method shows an ideal
result. A straight horizontal stripe of different colors in the
graph show that the intervals of almost identical IPC are
clustered to the same cluster.

In contrast, in the upper graph, different colors are
mixed together, indicating that the IPC of the same color,
i.e., the same cluster widely vary in SimPoint. As a result, a
selected interval as the simulation point from a cluster does
not represent the other intervals in that cluster in regard to
IPC, resulting in a poor IPC estimation.

483.xalancbmk on eight-way

As previously described, 483.xalancbmk executes the same
loop with increasing working set. As a result, the cache hit
rate and the resulting IPC are gradually decreased.

Figure 8 shows the IPC of the intervals in the top ten

Fig. 8 IPC of intervals in top ten clusters for xalancbmk on eight-way by
using SimPoint (upper) and proposal (lower).

Fig. 9 IPC of intervals in top ten clusters for xalancbmk on cache-half.
Proposal.

cluster for 483.xalancbmk on the eight-way model. The up-
per and lower graphs show the results of SimPoint and our
method. Although horizontal stripes of different colors are
observed in both the graphs, the stripe of SimPoint is curved
while the stripe of our method is not.

The stripe of SimPoint shows that the same set of static
sections are repeatedly executed, because SimPoint clusters
intervals based on the PC. Then, the curve of the stripe
shows that the IPC of these static sections gradually de-
graded at the same rate as one another, because of the grad-
ually increasing working set.

In contrast, in Fig. 7, the straight stripe of our method
shows that intervals of almost identical IPC, irrespective of
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the PC, are clustered to the same cluster.

483.xalancbmk on cache-half

Nevertheless, for 483.xalancbmk on the cache-half model
in Fig. 9, the graph of our method does not show horizontal
stripes as shown in the lower graphs of Figs. 7 and 8, which
indicates that our method also cannot detect good phases for
different sizes of caches.

5. Related Work

This section introduces related studies such as software
phase marker, SimFlex, and Live-Points.

Software Phase Marker

Lau et al. proposed an automated profiling approach to iden-
tify code locations whose executions correlate with phase
changes [10]. They called these code constructs software
phase markers, which are used to detect phase changes
across different inputs to a program without hardware sup-
port.

They built a hierarchical call-loop graph, which is an
extended call graph with nodes for loops to represent the
flows between the functions and loops in a program. The
edge of the graph tracks the maximum, average, and stan-
dard deviation in hierarchical instruction counts on the edge
path. A software phase marker is instrumented at the edge
of low standard deviation as a fraction of the average of hi-
erarchical instruction counts. The phase markers can also be
used to create variable length intervals to guide SimPoint. A
new variable length interval starts when a new phase marker
is observed during execution. However, the evaluation re-
sults showed lower accuracy for some benchmark programs
than that obtained through the original SimPoint, because
the makers tended to produce extremely short intervals for
IPC estimation. The authors claimed that the benefit for
SimPoint is not an improvement of accuracy or reduction
in simulation time;however, a new feature must be provided
in which simulation points can be mapped to the source code
so that the simulation points can be re-used if the program
is recompiled, even on a different instruction sets.

SimFlex and Live-Points

Hardavellas et al. proposed SimFlex [19]–[22], which ran-
domly selects simulation points for sampling simulation.
They introduce the confidence interval for an acceptable
margin of error on a statistical basis.

Although G. Hamcrly et al. [6] claimed that SimPoint
is better than random sampling, Hardavellas et al. argued
that the merit of SimFlex is that it can provide statistical
reliability to users.

The group of SimFlex also proposed Live-Points,
which checkpoints the cache and the branch predictors to
avoid frequent cold starts in sampling simulation [23].

6. Conclusion

This paper proposed an inductive method to select simu-
lation points. This method inductively selects simulation
points from the simulation results of several processors with
distinctive microarchitecture.

We selected simulation points of SPEC CPU 2006
benchmark programs, and estimated the IPC of several
target architectures including advanced microarchitectures
from recent studies. The evaluation results show that our
method achieves more accurate estimation with less simula-
tion points than SimPoint.

However, our method is still insufficient for different
sizes of caches. Thus, we are currently evaluating a basis
model with vast levels of caches, which will show different
IPC for slightly different working set sizes.

In addition, we plan to evaluate an inductive method
without the superscalar model. Although the IPC se-
quences of the other basis models can be obtained by emula-
tion, the superscalar model needs simulation, which takes
10 to 100 times more time. If a method without simulation
can be established, the phase detecting time will be drasti-
cally reduced.
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