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SUMMARY We propose a method of interframe prediction in depth
map coding that uses pixel-wise 3D motion estimated from encoded tex-
tures and depth maps. By using the 3D motion, an approximation of the
depth map frame to be encoded is generated and used as a reference frame
of block-wise motion compensation.
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1. Introduction

Currently, frameworks for transmitting texture video and
depth information for each pixel (called a depth map) are
being studied with the objective of reducing the amount of
data in multiview videos of free viewpoint TV (FTV) and
3DTV [1]. In these frameworks, the 3D video format is
called the multiview video plus depth (MVD) format, which
consists mainly of a set of a few texture videos of any view
point and a corresponding depth map. Some of the trans-
mitted texture videos and corresponding depth maps can be
used to create a texture video of another view point by us-
ing depth-image-based rendering (DIBR) techniques at the
decoder side. For view synthesis, the MVD format includes
camera parameters, such as the maximum and minimum dis-
tances between the camera and the subject in the captured
views and the focal length of the camera.

In general, block-wise motion compensation (MC)
based on block matching (BM) is mainly performed to re-
duce the data amount during the coding of a 2D video as
a depth map in interframe prediction. However, simple
block-wise MC is not always suitable for motions such as
local scaling, rotation, and deformation. Thus, to predict
such motions, pixel-wise MC using a technique to estimate
the apparent motion (optical flow) of each pixel through
real-precision was proposed in [2]. In this method, pixel-
wise motion vectors (MVs) are calculated using two coded
frames, t − 2 and t − 1, and an approximate frame of the cur-
rent frame is created using these vectors, assuming the linear
uniform motion of the subject. An advantage of this method
is that the pixel-wise MVs do not need to be transmitted,
because they can be calculated at the decoder side by using
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the decoded frames. Finally, this method successfully im-
proves interframe prediction accuracy by using the created
approximate frame as a reference frame of BM.

In general, when coding an MVD format, the encoded
texture video can be used for efficient depth-map coding,
because each texture video frame is encoded before its cor-
responding depth map. In [3], an interframe prediction
method for coding a depth map, in which the pixel-wise
MVs are calculated from the texture video, was proposed.
The coded pixels in the texture video frames at t − 1 and t
can be used to predict the current pixel in the depth map.
Therefore, by utilizing both the intra- and interframe infor-
mation this method allows an integrated prediction. How-
ever, the approach does not clearly present the method
for calculating the pixel-wise MVs from the coded texture
video. For example, whether the texture video being used is
monochrome or color and the method for deriving an opti-
mal solution of pixel-wise MVs are not stated.

Although both the aforementioned proposed methods
constitute superior interframe prediction methods, they may
reduce the interframe prediction accuracy when encoding
depth map under certain conditions. The condition is a
case that the subject in the corresponding texture video
largely moves in the depth direction between frames. The
depth value is determined based on the maximum and min-
imum distances between the camera and subject (these dis-
tances are determined for each frame). Thus, a considerable
change in the distance between frames leads to a consider-
able change in the depth value of the subject. As the previ-
ous two interframe prediction methods do not consider the
change in the movement of the subject in the depth direc-
tion, they cannot respond to the change in the depth value
between frames.

To solve this problem, we propose pixel-wise MC and
depth compensation (DC) techniques based on a pixel-wise
motion estimation method [2] using coded texture video. In
our proposed method, the coded texture video is consid-
ered to be a color video and the optimum pixel-wise MVs
for pixel-wise MC in the depth map coding is calculated
from the texture video. Furthermore, we calculate the depth-
directional motion between frames by using the calculated
MVs. In other words, our method performs interframe pre-
diction in depth map coding to predict 3D (2D and depth-
directional) motion between frames by utilizing the esti-
mated pixel-wise dense 3D MVs.
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2. Pixel-Wise Motion Estimation

A texture video and its corresponding depth map can be re-
garded as one set. In general, such a set is coded in the order
of texture video and depth map. Thus, the pixel-wise MVs
estimated using the coded texture video can be utilized for
depth map coding. In this case, the pixel-wise MVs do not
need to be transmitted because they can be estimated at the
decoder side by using the decoded texture video.

In the pixel-wise motion estimation performed using
the texture video, the method proposed in our previous paper
is applied [2]. In this method, the pixel-wise MVs (optical
flow vectors) are estimated using two encoded successive
frames of a monochrome moving image. By considering
that the texture video is a color image, it is possible to use
the color information of each pixel for the motion estima-
tion. Therefore, we extended the previous motion estima-
tion method such that it responds to color images.

An optical flow estimation method using the color in-
formation in a texture video was proposed in [4]–[6]. In
this study, it was assumed that the color space of the texture
video is YUV. Thus, we denote the luminance value Y , color
difference value U, and V of the continuous video function
as Y(x, t), U(x, t), and V(x, t), respectively, for an image do-
main Ω, where x = (x, y) ∈ Ω ⊂ R2 is the pixel position and
t is the time. We assume a time-invariant condition for Y , U,
and V . We define the following equation that indicates the
error of the interframe corresponding point as a data term.

EY
2(x,u) = (Y(x, t) − Y(x − u, t − 1))2 (1)

EU
2(x,u) = (U(x, t) − U(x − u, t − 1))2 (2)

EV
2(x,u) = (V(x, t) − V(x − u, t − 1))2, (3)

where u(x) = (u(x), v(x))� is the real-precision optical flow
(apparent motion). The energy functional is defined as

J(u, t) =
∫
Ω

(EY
2 + EU

2 + EV
2 + ES )dx. (4)

In this study, we defined the regularizer as

ES (u, x, t) = λ(|∇u|2 + |∇v|2), (5)

where the positive real number λ is the weight of the regu-
larizer and ∇ = (∂/∂x, ∂/∂y)�.

After u is calculated, we use bilinear interpolation to
compute the pixel-wise MC estimated frame of the depth
map using u. The proposed method searches for the value
of 0 < λ ≤ h that minimizes the squared error between the
pixel-wise MC estimated frame and the original frame t and
sends this optimal value of λ to the decoder. Here, in the
subject’s boundary region, as the estimation accuracy of u
tends to decrease. This is due to the influence of ES in the
energy functional. Therefore, in order to limit the influence
of ES in the subject’s boundary region, we use a cross bilat-
eral filter (CBF) [7] that targets the estimated u. By referring
to the pixel value on the corresponding texture video, this

CBF smoothes the estimated u.

3. Pixel-Wise Motion and Depth Compensation

The depth values (as 8-bit intensity values, in general) in a
depth map are determined based on the maximum and min-
imum distance values between the camera and the subject.
Thus, if the distance between the frames changes consider-
ably, the depth value is also considerably changed. In such a
case, a conventional MC prediction method, such as the BM
method, cannot respond to the change in the depth value be-
tween frames. To solve this problem, we propose a method
in which not only ordinary MC prediction but also DC pre-
diction are performed simultaneously by using pixel-wise
MVs calculated using the technique of pixel-wise motion
estimation.

The 3D locations of subjects can be reconstructed by
transforming depth values dv to distance values z. This trans-
formation is defined by the following equation [1].

z =

(
dv

255
·
(

1
Znear

− 1
Zfar

)
+

1
Zfar

)−1

, (6)

where Zfar and Znear are the maximum and minimum dis-
tance values, respectively. In this paper, we call this trans-
formation the depth-distance transform (DDT). To respond
to the change in the depth value between frames, we perform
interframe prediction using the distance value.

The steps of the proposed scheme are as follows. Fig-
ures 1 and 2 show the outline of the proposed method. First,
we create two distance maps based on the DDT of two depth
maps, encoded frames t − 2 and t − 1. These distance maps
contain the distance values z for each pixel. Second, we es-
timate the pixel-wise MVs by using two texture videos, en-
coded frames t − 2 and t − 1. Next, we perform pixel-wise
MC by applying the estimated MVs to the distance map of
frame t − 2 after the aforementioned transformation.

In this step, the 2D position (except the depth direction)
of the subject between the frames of the distance map after
the pixel-wise MC and the distance map of frame t − 1 can

Fig. 1 Pixel-wise motion compensation and calculation of Δz.



LETTER
2041

Fig. 2 Pixel-wise motion and depth compensation.

be considered to almost correspond. Thus, we calculate the
difference Δz of the distance value by using these distance
maps. Δz indicates the difference between two correspond-
ing distance values, zt−1 and zt−2, and the depth-directional
motion between the frames.

However, the motions of each pixel estimated from the
texture video are not always accurate. For example, owing
to influences such as occlusion, regions exist where the mo-
tion cannot be accurately estimated. In such a case, pixel-
wise MC causes considerable distortion. Thus, the region
where the 2D position of the subject between the frames
does not correspond increases, and therefore, it is difficult
to calculate the appropriate Δz in the region. Therefore, in
this method, filter processing is performed using a median
filter (MF) to the calculated Δz. In other words, we remove
as much as possible the region for which we cannot obtain
the appropriate Δz.

Finally, we perform the pixel-wise MC and DC, as
shown in Fig. 2. Specifically, the proposed method adds
Δz to the distance map at t − 1, assuming a linear uniform
motion for depth-directional motion. We define this step as
pixel-wise DC. Note that in fact we use Δz after MF pro-
cessing. Then, we estimate the pixel-wise MVs by using
two texture videos, encoded frames, t − 1 and t. Further-
more, we perform pixel-wise MC by applying the estimated
MVs to the distance map after pixel-wise DC. Finally, we
create the depth map based on the DDT from the distance
map after pixel-wise MC and DC.

The created frame (estimated frame) in Fig. 2 is an ap-
proximation of the current depth frame to be encoded. We
propose using the estimated frame as a reference frame of
BM to improve the interframe prediction.

4. Experimental Results

We evaluated the performance of the proposed method by
using depth map sequences, as shown in Table 1. Fig-
ure 3 shows the test sequences of depth maps and their
corresponding texture videos. In this study, we used the
“GT Fly,” “Undo Dancer,” “shark new” and “Shark” depth

Table 1 Information of test sequences

Sequence Pixels View
GT Fly 1920 × 1088 3

Undo Dancer 1920 × 1088 3
shark new 1920 × 1088 10

Shark 1920 × 1088 5
mountain 1 1024 × 432 left
bandage 1 1024 × 432 left
market 6 1024 × 432 left

Fig. 3 First frame of test sequences.

maps, their original depth map [8], [9], and the “moun-
tain 1,” “bandage 1” and “market 6” depth maps, trans-
formed their original depth data [10] into depth values based
on DDT, and clipped their upper and lower two pixels. We
evaluated the quality of the estimated and predicted frames
by using the peak signal-to-noise ratio (PSNR) calculated as
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Table 2 Peak signal-to-noise ratio of the estimated frames before block-
wise MC

Sequence 3D motion 2D motion t − 1
GT Fly 38.9 31.2 27.1

Undo Dancer 36.1 39.5 31.7
shark new 49.1 43.4 26.0

Shark 34.4 32.2 25.1
mountain 1 39.7 26.8 25.8
bandage 1 38.3 35.8 29.0
market 6 23.9 22.0 17.2

Table 3 Peak signal-to-noise ratio of the predicted frames after block-
wise MC

Sequence 3D motion 2D motion t − 1
GT Fly 45.5 32.6 31.7

Undo Dancer 46.9 48.8 38.8
shark new 53.1 46.6 34.6

Shark 38.5 33.4 32.5
mountain 1 44.6 27.5 27.6
bandage 1 41.6 40.2 40.5
market 6 32.5 25.2 21.9

PSNR = 10log10(2552/MSE)(dB). (7)

Here, MSE denotes the mean squared error of the pixel val-
ues of both the current frame and the estimated frame or the
predicted frame. The greater the PSNR value, the higher
is the inter-prediction accuracy. The candidates of an esti-
mated frame are generated according to Eq. (4) by changing
λ between 0.003 and 0.192 in increments of 0.003. The can-
didate having the highest PSNR is then used as an estimated
frame. The computational time for the pixel-wise MVs esti-
mation between two frames of Full HD (1920×1088) video
for certain λ is about 8 seconds on a desktop computer with
Intel Core i7-6700K CPU (4 cores) and 16 GB memory.

Tables 2 and 3 show the average PSNR values of 13
depth map frames estimated and predicted using the follow-
ing methods. In Table 2, “3D motion” is the method that es-
timates the current frame by performing pixel-wise MC and
DC, “2D motion” is the method that estimates the current
frame by performing pixel-wise MC from the depth map of
frame t − 1, and “t − 1” is the method that sets the frame
t − 1 as the estimated frame. Table 3 shows three methods
that apply BM to the estimated frame that is created by the
“3D motion,” “2D motion,” and “t − 1” methods. However,
we assume that lossless encoding is performed; therefore,
we used an original image as the encoded frame to be used
for prediction. In the BM method, the number of reference
frames is one (fixed), the MC block size is 8 × 8 pixels, and
the search range is 15 × 15 pixels.

From the values shown in Tables 2 and 3, we can in-
fer that the proposed method “3D motion” succeeds in im-
proving the interframe prediction accuracy by introducing
pixel-wise MC and DC based on pixel-wise 3D motion es-
timation as compared to “2D motion” and “t − 1,” which do
not compensate for the motion in the depth direction. Fur-
ther, even if we do not use the BM method, we can infer a
highly accurate prediction of “3D motion.”

On the other hand, the proposed method is not

Fig. 4 Original and predicted images.

so good for sequences with many occlusions such as
“Undo Dancer.” Since the proposed method cannot prop-
erly estimate pixel-wise MVs in the occlusion regions, the
estimation accuracy of Δz also decreases. The result of
“Undo Dancer” in Table 3 shows that. For the occlusion
regions, we can improve the performance of the proposed
method by using multiple reference frame MC and block
adaptive prediction selection, which are adopted in modern
coding schemes such as H.265/HEVC [11].

The proposed method indicates higher performance
even when a frame contains multiple objects with similar
textures and the corresponding depth map has considerable
distance differences, such as “mountain 1” sequence. The
reason for this is that the pixel-wise MVs estimation of the
proposed method does not use simple pixel value correspon-
dence such as BM but uses multiple resolution analysis and
variational method as in [2]. However, when interframe cor-
responding points cannot be obtained accurately due to in-
tersection of moving objects with similar textures, the es-
timation accuracy decreases as in the case of the occlusion
described above.

Figure 4 shows an enlarged view of a part (a lying
barrel) of the 12th frame in “market 6” predicted by each
method in Table 3. The figure shows that, while the previous
methods, “2D motion” and “t − 1,” cannot predict the depth
values (brighter pixel values) of the original 12th frame, our
proposed method “3D motion” favorably predicts the depth
value of the original 12th frame.

5. Conclusion

In this paper, we proposed an interframe prediction method
for depth map coding that uses pixel-wise dense 3D motion.
In the proposed method, pixel-wise 2D motion is estimated
using the coded texture video and the motion of the depth
direction is estimated using the depth value, that is, the dis-
tance value. The estimated frame is created using the esti-
mated pixel-wise 3D motion, and it is possible to predict the
realistic motion of the subject between the frames more ac-
curately by utilizing the reference frame of BM. The experi-
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mental results showed that the proposed method achieves an
effective interframe prediction. In the future, we will eval-
uate the coding rate in lossless and lossy encoding of the
proposed method.
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