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Image Restoration with Multiple Hard Constraints on Data-Fidelity
to Blurred/Noisy Image Pair

Saori TAKEYAMA†a), Nonmember, Shunsuke ONO††,†††, Member, and Itsuo KUMAZAWA††,†††, Nonmember

SUMMARY Existing image deblurring methods with a blurred/noisy
image pair take a two-step approach: blur kernel estimation and image
restoration. They can achieve better and much more stable blur kernel es-
timation than single image deblurring methods. On the other hand, in the
image restoration step, they do not exploit the information on the noisy
image, or they require ad hoc tuning of interdependent parameters. This
paper focuses on the image restoration step and proposes a new restora-
tion method of using a blurred/noisy image pair. In our method, the im-
age restoration problem is formulated as a constrained convex optimization
problem, where data-fidelity to a blurred image and that to a noisy image
is properly taken into account as multiple hard constraints. This offers (i)
high quality restoration when the blurred image also contains noise; (ii) ro-
bustness to the estimation error of the blur kernel; and (iii) easy parameter
setting. We also provide an efficient algorithm for solving our optimization
problem based on the so-called alternating direction method of multipliers
(ADMM). Experimental results support our claims.
key words: ADMM, deblurring, hard constraints, image restoration, con-
strained convex optimization

1. Introduction

Image deblurring, removing blur from a given photograph,
has been a fundamental and longstanding problem in image
processing and computer vision. Many image deblurring
methods, e.g., [1]–[9], are categolized as single image blind
deblurring, that is, estimating both the blur kernel and the
latent image from a single blurred image (for more infor-
mation on single image blind deblurring, see a comprehen-
sive survey [10]). Although single image blind deblurring
assumes the most realistic situation, it is a very challenging
task due to the highly under-cosntrained nature, so that it of-
ten leads to inaccurate estimation of blur kernels, high sen-
sitivity to noise, and heavy dependence on prior information
used.

To overcome the inherent difficulty, blind deblurring
methods with a blurred/noisy image pair have been stud-
ied [11]–[15]. These methods consider such a situation that
both images are captured in low light conditions with dif-
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ferent settings. Specifically, the blurred image is taken with
a slow shutter speed and a low ISO setting. With enough
light, it has the correct color and intensity, but it is blurry
due to camera shake. On the other hands, the noisy image
is taken with a fast shutter speed and a high ISO setting.
It is sharp but very noisy because of insufficient exposure
and high camera gain. In addition, since it has low con-
trast, the colors of this image are also partially lost. Under
this situation, existing methods take a two-step approach:
first estimating the blur kernel from the image pair and then
restoring a sharp image using the estimated kernel. Essen-
tially, they can yield a better and much more stable result
in their kernel estimation step than single image deblurring
methods, since the difference between the two images is ex-
tremely informative for kernel estimation.

On the other hand, there exists a room for improve-
ment in the image restoration step of these methods. Specifi-
cally, the methods [11]–[13] estimate the latent image based
only on a given blurred image, i.e., do not exploit the in-
formation on a given noisy image in their image restoration
step, so that they are sensitive to the estimation error of the
blur kernel. In addition, if noise in the blurred image is not
negligible, restoring a sharp image from it becomes diffi-
cult even when using the true kernel. Meanwhile, the meth-
ods [14], [15] exploit the information on both images in their
image restoration step. In these methods, the image restora-
tion problem is formulated as the minimization of a regular-
ization term, reflecting prior information on the latent im-
age, plus two data-fidelity terms, keeping the consistency to
a blurred/noisy image pair, where the balance among these
terms is controled by multiple weights. However, the tun-
ing of such multiple weights is a tedious task because they
are interdependent and have no physical meaning. Indeed,
suitable values of them vary depending on the latent image
and/or the regularization terms used.

Based on the above discussion, we propose a new im-
age restoration method of using both a blurred image and
a noisy image, which can be integrated into any blind de-
blurring methods with a blurred/noisy image pair. In our
method, the image restoration problem is formulated as
a constrained convex optimization problem: minimizing
a (possibly nonsmooth) regularization function subject to
multiple hard constraints. Two of the hard constraints corre-
spond to data-fidelity to a blurred image and that to a noisy
image, respectively, where the degree of fidelity to each im-
age can be controlled by independent parameters that are
explicitly related to the noise intensity of the image pair.
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We also prove the existence of an optimal solution of the
problem under reasonable assumptions. Since our prob-
lem formulation properly incorporates the information on a
blurred/noisy image pair, it achieves (i) high quality restora-
tion when the blurred image also contains noise; and (ii)
robustness to the estimation error of the blur kernel. At the
same time, the independence and clear meaning of the pa-
rameters thanks to the hard constraints offer (iii) easy pa-
rameter setting.

Through several reformulations, we also provide an
efficient algorithm with guaranteed convergence for solv-
ing the constrained convex optimization problem. Our al-
gorithm is based on the alternating direction method of
multipliers (ADMM) [16]–[18], a celebrated optimization
method based on proximal splitting.

The remainder of the paper is organized as follows.
Section 2 introduces key tools of proximal splitting opti-
mization used in our method. Section 3 is devoted to newly
formulating a constrained convex optimization problem for
image restoration using a blurred/noisy image pair and de-
veloping an ADMM-based optimization algorithm for solv-
ing it efficiently. The said three advantages of the proposed
method are demonstrated through comprehensive experi-
ments in Sect. 4. Finally, we conclude the paper in Sect. 5.

2. Preliminaries

2.1 Notations and Definitions

In this paper, let R be the set of real numbers. We shall
use bold face lowercase and capital to represent vectors and
matrices, respectively. We denote the transpose of a vector
or a matrix by (·)�. The standard Euclidean norm (�2 norm)
of a vector is denoted by ‖ · ‖.

A function f : RN → (−∞,∞] is called proper lower
semicontinuous convex if dom( f ) := {x ∈ RN | f (x) < ∞} �
∅, lev≤α( f ) := {x ∈ RN | f (x) ≤ α} is closed for every α ∈ R,
and f (λx+(1−λ)y) ≤ λ f (x)+(1−λ) f (y) for every x, y ∈ RN

and λ ∈ (0, 1), respectively. Let Γ0(RN) be the set of all
proper lower semicontinuous convex functions on RN .

2.2 Proximity Operator

The proximity operator [19] plays a central role in convex
optimization based on proximal splitting. The proximity op-
erator of f ∈ Γ0(RN) with index γ > 0 is then defined by

proxγ f : RN → RN : x 
→ argmin
y

f (y)+
1

2γ
‖y−x‖2, (1)

where the existence and uniqueness of the minimizer are
guaranteed respectively by the coercivity† and the strict con-
vexity of f (·) + 1

2γ ‖ · −x‖2. Examples (calculations) of the

†A function f ∈ Γ0(RN) is called coercive if ‖x‖ → ∞ ⇒
f (x)→ ∞. In this case, the existence of a minimizer of f is guaran-
teed, that is, there exists x� ∈ dom( f ) such that f (x�) = infx∈H f (x)
(see, e.g., [20]).

proximity operator will be introduced as necessary.
We also introduce the indicator function of a nonempty

closed convex set C ⊂ RN , defined by

ιC(x) :=

{
0, if x ∈ C,
∞, otherwise.

By letting f := ιC in (1), the proximity operator is reduced
to the metric projection onto C, i.e., for any γ > 0,

proxγιC (x) = PC(x) := argmin
y∈C

‖x − y‖.

It finds a point in C which has the minimum Euclid distance
from x.

2.3 Alternating Direction Method of Multipliers (ADMM)

Consider convex optimization problems of the form:

min
x,z

f (x) + g(z) s.t. z = Gx, (2)

where f ∈ Γ0(RN), g ∈ Γ0(RM), and G ∈ RM×N . Here, we
assume that f is quadratic and that g is proximable, i.e., the
proximity operator of g is computable.

The alternating direction method of multipliers
(ADMM) [16]–[18] is an optimization method based on
proximal splitting that solves Prob. (2) by the following al-
gorithm: for any z(0),d(0) ∈ RM , iterate⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(n+1) = argmin
x

f (x) + 1
2γ ‖z(n) −Gx − d(n)‖2,

z(n+1) = proxγg(Gx(n+1) + d(n)),
d(n+1) = d(n) +Gx(n+1) − z(n+1),

(3)

where γ > 0 is the step size of ADMM.
We recall the following theorem by Eckstein-

Bertsekas [17], which provides a convergence property of
ADMM.

Theorem 1 (Convergence of ADMM [17]). Consider
Prob. (2), and assume that G�G is invertible and that a
saddle point of its unaugmented Lagrangian L0(x, z, y) :=
f (x) + g(z) − 〈d,Gx − z〉 exists.†† Then the sequence
(xn)n>0 generated by (3) converges to an optimal solution
of Prob. (2).

3. Proposed Method

3.1 Problem Formulation

Consider to estimate an unknown latent color image ū ∈ R3N

(3 is the number of color channels, and N is the number of
pixels) from an observed blurred image v1 ∈ R3N and an
observed noisy image v2 ∈ R3N . Specifically, following the
prior work [14], [15] we model them as
††A triplet (x̂, ẑ, d̂) is a saddle point of an unaugmented La-

grangian L0 if and only if L0(x̂, ẑ,d) ≤ L0(x̂, ẑ, d̂) ≤ L0(x, z, d̂),
for any (x, z, d) ∈ RN × RM × RM .
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v1 = Φū + n1, (4)

v2 = ū + n2, (5)

where Φ ∈ R3N×3N is a blur operator estimated in advance,
and n1 and n2 are additive white Gaussian noises with their
standard deviations σ1 and σ2, respectively. The model as-
sumes that the blurred image v1 also contains noise (usu-
ally σ1 < σ2), which is a realistic setting as addressed in
[14], [21].

Based on the above observation models, we newly for-
mulate a convex optimization problem with multiple hard
constraints for image restoration using a blurred/noisy im-
age pair as follows:

min
u
R(Ψu)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u ∈ [0, 255]3N ,
Φu ∈ Bv1,ε1 := {x ∈ R3N | ‖x − v1‖ ≤ ε1},
u ∈ Bv2,ε2 := {x ∈ R3N | ‖x − v2‖ ≤ ε2}.

(6)

Here, R ◦ Ψ : RN → (−∞,∞] is a regularization function
(Ψ ∈ RL×3N ,R ∈ Γ0(RL)). We assume that the proximity op-
erator of R (NOT R ◦ Ψ) can be computed efficiently. This
assumption is essential in solving the problem by ADMM,
as will be explained in Sect. 3.2. The first constraint set
[0, 255]3N ⊂ R3N is the dynamic range of eight-bit color im-
ages, and the second and third ones Bv1,ε1 ,Bv2,ε2 ⊂ R3N are
�2-norm balls that represent data-fidelity to a blurred image
v1 and that to a noisy image v2, respectively, where ε1 ≥ 0
and ε2 ≥ 0 are their radiuses determined based on the noise
intensity (noise standard deviations) of v1 and v2.

Remark 1 (Design of regularization). Total variation
(TV) [22] and its vectorial variants, e.g., [23]–[27], are well-
known edge-preserving regularizers for images, and they
have been used in many deblurring methods. In this case,
R is some norm, e.g., the �1 norm, the mixed �1,2 norm or
the nuclear norm, and Ψ is a discrete gradient operator. The
proximity operators of such norms are computable (see, e.g.,
[28], [29]). Another well-known example is frame regu-
larization relying on the sparsity of images in some trans-
formed domain. In this case, R is the �1 norm, and Ψ is a
frame analysis operator, e.g., wavelet [30] and curvelet [31].
More involved regularization, such as nonlocal regulariza-
tion [32]–[34], regularization using learned operators [35],
[36] and plug-and-play regularization [37], [38], can also be
handled in our formulation by setting Ψ to the correspond-
ing nonlocal/learned analysis operator.

Remark 2 (Benefits of incorporating data-fidelity as hard
constraints). Since ε1 and ε2, the radiuses of the �2-norm
balls in (6), are directly related to the noise intensity (noise
standard deviations) of a blurred image and a noisy image,
respectively, one can determine their values with the help of
existing noise level estimation methods. More importantly,
these parameters can be determined (almost) independent of
the latent image ū and the regularization functionR◦Ψ. This
means that once finding suitable values of ε1 and ε2 for some
noise intensity, they can be used for various types of latent

images and regularization functions under the same noise
intensity, which makes the setting of parameters on data-
fidelity much easier than existing methods that requires the
tuning of interdependent parameters (see Sect. 4.4 for exper-
imental validation). Such benefits of hard constraints have
also been addressed, for example, in [39]–[45].

The following statement is on the existence of a solu-
tion of Prob. (6).

Proposition 1. Assume that the intersection of the con-
straint sets in (6) is nonempty, i.e.,

S := [0, 255]3N ∩ΦBv1,ε1 ∩ Bv2,ε2 � ∅,
and that there exists some x ∈ S such that R(Ψx) < ∞.
Then, Prob. (6) has at least one optimal solution, i.e., the
function R ◦Ψ has a minimizer over S .

Proof : Since R ◦ Ψ ∈ Γ0(R3N) and S is a bounded
closed convex subset of R3N , the statement is a direct con-
sequence of [20, Proposition 11.14] . �

3.2 Optimization

Since Prob. (6) is a highly nonsmooth constrained problem,
we need suitable iterative optimization methods to solve it.
In this paper, we adopt ADMM, reviewed in Sect. 2.3. In
what follows, we reformulate Prob. (6) into the ADMM-
applicable form, i.e., Prob. (2).

First, let us define the indicator functions (see Sect. 2.2)
of the closed convex sets [0, 255]3N , Bv1,ε1 and Bv2,ε2 . Then,
Prob. (6) can be rewritten as

min
u
R(Ψu) + ι[0,255]3N (u) + ιBv1 ,ε1

(Φu) + ιBv2 ,ε2
(u). (7)

Second, we replace the input variables of all the terms
in (7) with auxiliary variables z1, . . . , z4, and express the re-
lation between the input and the auxiliary variables by linear
equality constraints, yielding

min
u
R(z1) + ι[0,255]3N (z2) + ιBv1 ,ε1

(z3) + ιBv2 ,ε2
(z4)

s.t. z1 = Ψu, z2 = u, z3 = Φu, z4 = u. (8)

Third, we define

g(z1, . . . , z4) := R(z1) + ι[0,255]3N (z2) + ιBv1 ,ε1
(z3)

+ ιBv2 ,ε2
(z4).

Then, the function g becomes proximable thanks to the vari-
able splitting, as long as each term of g is proximable. In-
deed, R is proximable from the assumption, and the other
terms, the three indicator functions, are also proximable be-
cause the metric projections onto the corresponding closed
convex sets are available (see Sect. 2.2, (10) and (11)).

Finally, by letting I be the identity matrix of size 3N ×
3N and defining

f (u) := 0 and G :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ψ

I
Φ

I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (9)
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Fig. 1 Test images

Prob. (8) is reduced to Prob. (2).
The resulting algorithm based on ADMM is summa-

rized in Alg. 1. Since G in (9) is a full column rank matrix
due to I, G�G is invertible, so that the convergence of Alg. 1
is guaranteed if a saddle point of g(z) − 〈d,Gu − z〉 exists.

Now we discuss the computation of each step of Alg 1.
Since the update of u (Step 2) is strictly-convex quadratic
minimization because of the full-column-rankness of G, it
boils down to solving the following matrix inversion:

u(n+1) =(Ψ�Ψ +Φ�Φ + 2I)−1RHS

RHS :=(Ψ�(z(n)
1 − d(n)

1 ) + (z(n)
2 − d(n)

2 )

+Φ�(z(n)
3 − d(n)

3 ) + (z(n)
4 − d(n)

4 )).

If the matrix (Ψ�Ψ + Φ�Φ + 2I) is a block circulant with
circulant blocks (BCCB) matrix [46], we can leverage 2D
fast Fourier transform to efficiently solve the inversion (in
O(N log N) time) because the matrix can be diagonalized by
the 2D dicrete Fourier transform matrix. The matrix Φ�Φ
becomes a BCCB matrix provided that the corresponding
blur kernel is spatially invariant. Meanwhile, the structure
of Ψ�Ψ depends on the design of regularization. If Ψ is
a discrete gradient operator with periodic boundary (e.g.,
TV regularization), Ψ�Ψ becomes a BCCB matrix. If Ψ
is a Parseval tight frame [47] (e.g., wavelet/curvelet regu-
larization), Ψ�Ψ = I. Thus for these cases, the 2DFFT-
based computation is possible. Otherwise, we offer to use a
preconditioned conjugate gradient method [48] for approxi-
mately solving the inversion.

For the updates of z1, . . . , z4 (Step 3-6), we need to
compute the proximity operators of each term of g. The
proximity operator of R depends on the design of regular-
ization. As addressed in Remark 1, it is indeed computable
for many types of regularization. The proximity operator
of ι[0,255]3N equals to the metric projection onto the box con-
straint [0, 255]3N , given, for i = 1, . . . , 3N, by

[P[0,255]3N (x)]i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if xi < 0,

255, if xi > 255,

xi otherwise.

(10)

The proximity operators of ιBv1 ,ε1
and ιBv2 ,ε2

can also be com-
puted by the metric projection onto a v-centered �2-norm
ball with radius ε ≥ 0, given by

Algorithm 1: ADMM method for Prob. (6)

input : z(0)
1 , z(0)

2 , z(0)
3 , z(0)

4 , d(0)
1 , d(0)

2 , d(0)
3 , d(0)

4 , and γ > 0
1 while A stopping criterion is not satisfied do
2 u(n+1) = argmin

u

1
2γ (‖z(n)

1 −Ψu(n) − d(n)
1 ‖2 + ‖z(n)

2 − u(n) −
d(n)

2 ‖2 + ‖z(n)
3 −Φu(n) − d(n)

3 ‖2 + ‖z(n)
4 − u(n) − d(n)

4 ‖2);

3 z(n+1)
1 = proxγR(Ψu(n+1) + d(n)

1 );

4 z(n+1)
2 = proxγι[0,255]3N

(u(n+1) + d(n)
2 );

5 z(n+1)
3 = proxγιBv1 ,ε1

(Φu(n+1) + d(n)
3 );

6 z(n+1)
4 = proxγιBv2 ,ε2

(u(n+1) + d(n)
4 );

7 d(n+1)
1 = d(n)

1 +Ψu(n+1) − z(n+1)
1 ;

8 d(n+1)
2 = d(n)

2 + u(n+1) − z(n+1)
2 ;

9 d(n+1)
3 = d(n)

3 +Φu(n+1) − z(n+1)
3 ;

10 d(n+1)
4 = d(n)

4 + u(n+1) − z(n+1)
4 ;

11 n← n + 1;

PBv,ε (x) =

⎧⎪⎪⎨⎪⎪⎩x, if x ∈ Bv,ε,

v + ε(x−v)
‖x−v‖ , otherwise.

(11)

4. Experiments

4.1 Experimental Setting

We demonstrate the three advantages of the proposed
method (see Sect. 1) through three experiments. In the fol-
lowing experiments, we used 20 color images used as test
images, which are taken from the Berkley Segmentation
Database [49] (Fig. 1).

We utilized a popular color TV [23] as regularization in
our method, which is defined as follows:

TV(u) := ‖Du‖1,2,
where D is a discreat gradient operator defined as

D : R3N → R6N : u 
→ (d�v d�h )�

with dv,dh ∈ R3N being the vertical and horizontal differ-
ences of a color image u, and ‖ · ‖1,2 is the mixed �1,2 norm
defined as

‖ · ‖1,2 : R6N → R : x 
→
N∑

i=1

√√√ 5∑
j=0

x2
i+ jN .



TAKEYAMA et al.: IMAGE RESTORATION WITH MULTIPLE HARD CONSTRAINTS ON DATA-FIDELITY TO BLURRED/NOISY IMAGE PAIR
1957

Fig. 3 Resulting images with their PSNR in the first experiment (σ2/σ1 = 8).

Fig. 2 PSNR gain of the proposed method over the single image deblur-
ring/denoising.

In this case, R := ‖ · ‖1,2 and Ψ := D in Prob. (6). The
proximity operator of the mixed �1,2 norm can be computed
by a simple soft-thresholding type operation: for γ > 0 and
for i = 1, . . . , 6N,

[proxγ‖·‖1,2 (x)]i := max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1 − γ
⎛⎜⎜⎜⎜⎜⎜⎝

5∑
j=0

x2
ĩ+ jN

⎞⎟⎟⎟⎟⎟⎟⎠
− 1

2

, 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ xi,

where ĩ := ((i − 1) mod N) + 1.

We set ε1 and ε2 in (6) to 0.95
√

3Nσ2
1 and

0.95
√

3Nσ2
2, respectively.

We adopted the peak signal-to-noise ratio (PSNR) [dB]
to evaluate the objective quality of a restored image u, which
is given by

20 · log 10
3N × 255
‖u − ū‖ .

4.2 Basic Performance Evaluation

To evaluate the effectiveness of incorporating multiple hard
constraints on data-fidelity to a blurred/noisy image pair,
we compare our method with two single image restora-
tion methods. One is single image deblurring, i.e., solving
Prob. (6) without the constraint u ∈ Bv2,ε2 . The other is
single image denoising, i.e., solving Prob. (6) without the
constraintΦu ∈ Bv1,ε1 . As in our method, ADMM was used
for both methods.

In this experiment, we generated blurred images as fol-
lows: clean test images are blurred by a horizontal motion
blur of 9 pixels and then contaminated by an additive white
Gaussian noise n1 in (4) with the standard deviation σ1 = 2.
Meanwhile, noisy images were generated by adding a white
Gaussian noise n2 in (5) to clean test images, where the stan-
dard deviation σ2 was increased from 4 to 20 by 2.

Figure 2 plots the PSNR gain of our method over the
single image deblurring (circle marker) and the single image
denoising (asterisk marker), where PSNR is averaged over
the 20 test images. One can see that for all the ratio of the
noise standard deviations σ2/σ1, the proposed method out-
performs both single image deblurring and denoising meth-
ods. This observation suggests that for a given blurred/noisy
image pair, exploiting information on the noisy image in the
image restoration step is very effective when the blurred im-
age also contains noise.

Figure 3 depicts some resulting images with their
PSNR (σ2/σ1 = 8). One can see that 1. details are lost in
the images obtained by the single image deblurring, 2. color
artifact remains in the images obtained by the single image
denoising, and 3. Our method achieves detail-preserving
restoration with much less artifact.

We also check the convergence behavior of our algo-
rithm (Alg. 1). For evaluation of convergence, we define the
normalized root mean square error (NRMSE) between the
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Fig. 4 Evolution of NRMSEn versus iterations (left) and the evolution of PSNR[dB] versus iterations
(right) of Alg. 1.

Table 1 Results of the experiment using inaccurate blur kernel.

kernel error 0◦ 1◦ 2◦ 3◦ 4◦ 5◦ 6◦ 7◦ 8◦ 9◦ 10◦ spatially-varying
PSNR [dB] 32.97 32.91 32.62 32.29 32.01 31.79 31.61 31.47 31.36 31.26 31.17 30.12

gain over single
2.85 2.88 3.06 3.40 3.81 4.18 4.47 4.70 4.88 5.03 5.15 6.58

image deblurring

current estimate u(n) and the optimal solution u� of Prob. (6),
i.e., NRMSEn := ‖u(n) − u�‖/‖u�‖. Since the optimal solu-
tion u� is analytically unavailable, it was pre-computed by
Alg. 1 with 100000 iterations. Figure 4 plots the evolution of
NRMSEn versus iterations (left) and the evolution of PSNR
versus iterations (right), where the stepsize γ of ADMM was
set to 0.01. These plots suggest that Alg. 1 properly works,
and that exploiting the information on a blurred/noisy im-
age pair makes the convergence of ADMM faster than the
single image deblurring/denoising, which is a positive side
effect of using a blurred/noisy image pair.

4.3 Robustness to Inaccurate Blur Kernels

To illustrate the robustness of our method to the estimation
error of blur kernels, we conducted the following experi-
ment. First, we generated images blurred by a certain blur
kernel, which we refer to as the true blur kernel, and then in
the image restoration step, we used an inaccurate blur ker-
nel. Specifically, we consider the two cases: motion blur
and spatially-varying blur. In the motion blur case, the true
blur kernel was set to a horizontal motion blur of 9 pixels,
and the inaccurate blur kernel was set to a motion blur of 9
pixels with its angle θ > 0, where we examined θ = 1◦ to 10◦
by 1◦. In the spatially-varying blur case, the true blur matrix
Φ was made from spatially-varying per-pixel kernels, as vi-
sualized in Fig. 6, and the inaccurate blur kernel was set to
be spatially invariant with its kernel being the center ker-
nel of the second image from left in Fig. 6. For both cases,
the blurred images contain an additive white Gaussian noise
with the standard deviation σ1 = 2, and the noisy images
σ2 = 16.

Table 1 shows PSNR of restored images and the PSNR
gain over the single image deblurring, where these valuers
are averaged over the 20 test images. One can observe that
for the motion blur case, the PSNR gain over the single im-
age deblurring is proportional to the angle error, implying
the robustness of our method to inaccurate blur kernels com-
pared with the single image deblurring. For the spartially-
varying blur case, the PSNR gain is also significant.

Figure 5 and Fig. 6 depict several resulting images with
their PSNR. One can see that the single image deblurring
leads to oversmoothing when the kernel error is large. By
contrast, our method can restore sharp images in such a sit-
uation.

4.4 Facilitation of Parameter Setting

In the final experiment, we demonstrate that the setting of
the parameters on data-fidelity in our method are much eas-
ier than the existing methods using a blurred/noisy image
pair in the restoration step [14], [15]. In the existing meth-
ods, image restoration is performed by minimizing the sum
of some specific regularization term and two data-fidelity
terms on a blurred/noisy image pair, which can be expressed
as the following optimization problem:

min
u
R(Ψu) +

λ1

2
‖Φu − v1‖22 +

λ2

2
‖u − v2‖22, (12)

where λ1, λ2 > 0 control the balance among the three terms.
Table 2 shows the (hand-optimized) best values of λ1

and λ2 (in terms of PSNR) in Prob. (12) for each test im-
age, where the regularization term was set to the color TV.
For every test image, the noise standard deviations of a
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Fig. 5 Restored results with their PSNR by using inaccurate blur kernels in the motion blur case.

Fig. 6 Restored results with their PSNR by using an inaccurate blur kernel in the spatially-varying
blur case.

Table 2 Best values of λ1 and λ2 in the existing formulation (Prob. (12)).

image img1 img2 img3 img4 img5 img6 img7 img8 img9 img10
λ1 733 1047 578 603 563 801 916 446 589 645
λ2 8 9 11 7 9 8 7 9 6 7

image img11 img12 img13 img14 img15 img16 img17 img18 img19 img20
λ1 770 895 988 932 905 812 917 678 920 650
λ2 6 8 8 8 7 6 8 8 8 8
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blurred/noisy image pair (σ1, σ2) were fixed at (2, 16). One
can see that the best values of λ1 and λ2 are different for
each test image even though the noise standard deviations
are the same for every test image. This is because λ1 and
λ2 depend on the latent image, so that the tuning of them
is very difficult. By contrast, the proposed method achieves
almost the same restoration performance with common pa-

rameters ε1 = 0.95
√

3Nσ2
1 and ε2 = 0.95

√
3Nσ2

2 for all the
test images, i.e., the parameter setting is much easier.

5. Conclusion

We have proposed a new image restoration method that fully
exploits the information on a blurred/noisy image pair. We
formulated the image restoration problem as a convex op-
timization problem with multiple hard constraints, where
data-fidelity measures to both a blurred image and a noisy
image are imposed via �2-norm balls. Then we developed an
ADMM-based algorithm for solving the problem efficiently.
Our method has the three advantages over existing meth-
ods with a blurred/noisy image pair, that is, (i) high quality
restoration when the blurred image also contains noise; (ii)
robustness to the estimation error of the blur kernel; and (iii)
easy parameter setting. We illustrated the effectiveness and
utility of our method through comprehensive experiments.

Finally, we remark again that our method can be
plugged into the image restoration step of any blind deblur-
ring methods with a blurred/noisy image pair, which would
enhance them. Incorporating variational image decomposi-
tion models, e.g., [50]–[53], into the proposed method is an
interesting direction of future work. Also, a stochastic im-
age restoration methodology [54] would be able to further
accelerate our method.
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