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Sheared EPI Analysis for Disparity Estimation from Light Fields

Takahiro SUZUKI'®, Nonmember, Keita TAKAHASHI™, and Toshiaki FUJII'®, Members

SUMMARY  Structure tensor analysis on epipolar plane images (EPIs)
is a successful approach to estimate disparity from a light field, i.e. a dense
set of multi-view images. However, the disparity range allowable for the
light field is limited because the estimation becomes less accurate as the
range of disparities become larger. To overcome this limitation, we devel-
oped a new method called sheared EPI analysis, where EPIs are sheared
before the structure tensor analysis. The results of analysis obtained with
different shear values are integrated into a final disparity map through a
smoothing process, which is the key idea of our method. In this paper, we
closely investigate the performance of sheared EPI analysis and demon-
strate the effectiveness of the smoothing process by extensively evaluating
the proposed method with 15 datasets that have large disparity ranges.
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1. Introduction

Depth (disparity) estimation from images has attracted
much research interest for many years. One of the most
common conventional configurations is stereo matching us-
ing two images [1]-[5], for which many sophisticated tech-
niques have been developed. Recent advances in image ac-
quisition techniques [6]-[11] has brought about a new trend
in this research field: depth estimation from a set of multi-
view images or a light field. The most straightforward ap-
proach is called multi-view stereo (MVS) [12]-[16], where
the classical stereo matching methods for two images are
extended directly to a set of multi-view images; the basic
idea is to find corresponding points across the images.
Another approach is to analyze the structure of an
epipolar plane image (EPI) that is obtained from the light
field [17]-[24]. This approach is based on the fact that an
EPI consists of many line patterns, and the slopes of those
lines are directly related to the depth information. Wan-
ner and Goldluecke [20], [22] have applied structure tensor
analysis to EPIs. Their method has been proven to be fast
and accurate when the light field is sufficiently dense, i.e.,
the disparity range between the neighboring viewpoints is
sufficiently small. However, we found that the accuracy of
their method is quite limited for relatively sparse light fields
where neighboring images have non-small disparities.
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To overcome this limitation while keeping computa-
tional cost low, we have developed a method called sheared
EPI analysis [25]%, where EPIs are transformed with several
shear values before the structure tensor analysis. Then, the
results of analysis obtained with different shear values are
integrated into a final disparity map through a smoothing
process, which is the key idea of our method.

We have found that an idea similar to ours had been
presented as EPI refocusing [21]. However, our study has
several nontrivial differences. First, our method is applied
to 2-D viewpoint arrangements, while that of Diebold and
Goldluecke [21] was limited to 1-D ones. Second, our
method includes a smoothing process during the integration
process, which significantly increases the accuracy of dis-
parity estimation. Moreover, we extensively evaluated 15
datasets that have large disparity ranges to closely investi-
gate the effectiveness of shearing EPIs and the smoothing
process. We also prove that our method is comparably ac-
curate to and much faster than a multi-view stereo method.

2. Epipolar Plane Image Analysis
2.1 Outline of Epipolar Plane Image Analysis

We assume that a set of multi-view images, such as that
shown in Fig. I (a), is given. These images constitute a 4-
D light field I(s, t, x, y), where (s, ¢) denotes a viewpoint and
(x,y) denotes a pixel position. A 2-D subspace of the 4-D
light field with a fixed (s, x) or (#,y) is called an epipolar
plane image (EPI). For example, I'Y (x,s) = I(s,t*, x,y*)
is an EPI on (x, s) plane where ¢ and y are fixed to ¢* and

(b) Epipolar plane image

(a) Multi-view images

Fig.1  Multi-view images and EPI

“This paper is an extension of a conference paper[25]. We
have included more thorough experimental validations in the
present paper to fully reveal the effectiveness of our method.

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers
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y*, respectively, as shown in Fig. 1 (b). The EPI consists of
many lines, each of which is a trace of an object point, and
its direction (slope) corresponds to the depth of the object
point. Therefore, analyzing the line direction is equivalent
to estimating depth [17]-[23].

On the basis of this idea, Wanner and Goldluecke [20],
[22] have developed a depth estimation method using struc-
ture tensor analysis. A structure tensor on an EPI I(x, s) is
defined as

G (L) G (L)
TEN= Getd) Gy | M
where G* denotes convolution with a Gaussian filter kernel.
In this paper, the filter size is fixed to the default value of
[26]: a 3 x 3 kernel with o = 1. Symbols [, and /; denote
gradients of the EPI along x and s directions. The dominant
gradient direction 6(x, s) and its confidence c(x, s) (coher-
ence in [20], [22]) can be obtained from principle compo-
nent analysis of matrix J.

1 2J12(x, $)
0(x,s) = > arctan (Jl ) — I, s)) 2)
VUG 8) = T )P + 475 5)
c(x,s) = , 3

Ji(x, s) + Jn(x, s)

where larger c(x, s) means more confidence. The dispar-
ity d(x, s) is given by d(x, s) = tan6(x, s). For simplicity,
we describe these processes as a function EPIAnaly(-). For
fixed ¢* and y*, this function is written as

<6r*y*( x, 8. (x, s)) = EPIAnaly (l’*”* (x, s)). “)

To obtain a disparity map from a specific viewpoint (s*, t*),
we perform EPI analysis for both the horizontal and vertical
directions and combine the results in accordance with the
point-wise confidence.

d"(x,s*) Y(x,5%) > My, 1)

. 5
dS X(y’ t*) ( )

ds*t* X, —
x5 { otherwise.

The disparity map d** (x,y) is further refined using a fast

denoising or a more sophisticated global optimization. The

former is given as:

&7 (x.y) = arg min £ (d(x.y).d"" (x.) ©
d(x.y)
1
E(a, @) = f hiD ol + o = aoldQ @
QcR? 2p
h(x,y) = 1= max (c"(x, s"), ¢ *(y.1")) ®

where Q is the 2-D pixel domain, p is a smoothing strength,
and D,, is a 2-D derivative operator. The first term of
Eq. (7) penalizes non-smoothness on the disparity map and
its strength is controlled by the per pixel confidence of the
initial disparity value; less confident disparities are more
strongly smoothed.
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2.2 Comparison to 4-D Analysis

A light field has originally a 4-D structure. If a pixel (x, y)
at a specific viewpoint (so, fo) has a disparity d,

I(s0, 10, X, y) = I(s,1,x — d(s — 80),y — d(t — 1)) 9

should be satisfied except for occluded regions. Several
methods use this 4-D constraint directly to obtain accurate
disparity values from the light field [11], [27]-[29]. This
constraint can be used for multi-view stereo matching where
the point correspondence is evaluated across all the images
arranged in a 2-D grid, or to derive defocus cues by tak-
ing the average of disparity-compensated multi-view im-
ages. Generally, these methods are computationally heavy
due to the complexity of analysis that is performed on the
4-D space.

Meanwhile, the EPI analysis presented in [20], [22]
works in 2-D; only the 2-D subspaces, i.e. (s, x) and (, y)
planes, extracted from the original 4-D light field, are ana-
lyzed to obtain disparities. This analysis is computationally
much more simpler than the 4-D methods. This fast 2-D
analysis is used as the basic building block of our method.
As a result, our method can achieve a good performance in
terms of the trade-off between the accuracy and computa-
tional cost, as will be shown in Sect. 4.

3. Proposed Method
3.1 Sheared EPI Analysis

EPI analysis has been proven to be fast and accurate for
a dense light field where the range of disparities among
the viewpoints is small [20], [22]. However, this does not
hold true for the images that have a larger range of dispar-
ities. For example, Fig.2 (b) shows a disparity map esti-
mated from 3 X 3 viewpoint images where disparities be-
tween neighboring viewpoints are from —2.54 to 4.86 pix-
els. This disparity map is quite erroneous compared with the
ground truth in Fig. 2 (a).

To identify the reason for this erroneous result, we
closely observe several EPIs in Fig.3, where the original
EPIs are visualized in the row of 6 = 0. As mentioned ear-
lier, the direction of each line corresponds to its disparity. If
the disparity is near zero, the line direction is almost verti-
cal. However, as the disparity diverges from zero, the line
becomes more slanted and finally separates into discontin-
uous dots. In such cases, the dominant gradient direction
obtained by the structure tensor analysis no longer corre-
sponds correctly to the line direction. In fact, the most er-
roneous parts in Fig. 2 (b) originally have disparities that di-
verge from zero.

To fix these errors, we introduce shear transforms to
EPI analysis. Specifically, a sheared EPI is written as

LY (x,8) = IV (x + 56, 9), (10)
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(a) Ground truth
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Fig.2  Disparity maps estimated by EPI analysis with different shear values

Fig.3

where § is the amount of shear, which is called the shear
value in this paper. Examples of sheared EPIs with 6 = 2
and -2 are shown in Fig. 3. It can be observed that thanks to
the shear transforms, the directions of several lines become
closer to vertical. These directions can now successfully be
estimated by the structure tensor analysis.

Disparity estimation from a sheared EPI is formulated
using Eq. (4) as

(egy* (x, 9), ¢SV (x, s)) = EPIAnaly (lgy (x, s)) (1)
d(’;y*(x, §)= 6+ tan Hf;y*(x, s), (12)

where the shear value ¢ is compensated for in Eq. (12). Sim-
ilarly to Eq. (5), a disparity map from a specific viewpoint
(s*, 1) is obtained as

dg?(x,5%)  c5"(x,8%) > ¢ ¥y, 1)

. . . (13)
d;i *(y,t") otherwise.

dy " (x,y)= {

Here, dg*’* (x,y) denotes a disparity map obtained through a
shear transform with §. Such disparity maps with § = -2
and 2 are presented in Figs.2(c) and 2 (d). We observed
that the shear transforms partly improve disparity estima-
tion; with 6 = 2, the nearer regions become accurate, while
with § = —2, the farther regions become accurate. These
results validate the effectiveness of introducing shear trans-
forms to EPI Analysis.

3.2 Integration of Multiple Disparity Maps

Shear transform of EPIs helps improve the accuracy of dis-
parity estimation where and only where the original dispar-
ities are close to the shear value 6. To cover a large range of
disparities in a target light field, we need to perform sheared
EPI analysis several (N) times while changing the value of

Sheared EPIs

¢ and combine the results. Here, we describe how to inte-
grate multiple disparity maps obtained with different shear
values.

The n-th shear value is denoted as 6, (n = 1,...,N).
First, for each ¢,,, we obtain a disparity map dg;’* (x, y) using
Eq. (13) and a confidence map C(SSZZ* (x,y) using

ey () = max (e (x, s, ¢ ", 1)) (14)

Next, we integrate N disparity maps, dg:’*(x, y) (n =
1,...,N). For this purpose, the most confident value of §
for each (x, y) is selected as

8" (x,y) = arg max cf;’* (x,y), (15)
6€{6n}
which is called a 6 map. A straightforward method of inte-
gration is to use it directly as

() =dyt L (Y), (16)
which is the same as in the work of Diebold and Gold-
luecke [21] except for the arrangement of viewpoints. How-
ever, this straightforward integration results in a noisy dis-
parity map. We found that this noisiness comes from the
noisiness of the ¢ map visualized in Fig.4(a). The true
¢ map is expected to be locally smooth because it is ide-
ally a quantized version of the continuous disparity map and
the continuous disparity map is locally smooth for a natu-
ral scene in general. Therefore, we smooth the ¢ map with
weights in accordance with the per pixel confidence.

5*"(x, y) =round|argmin E((S(x, y),8" " (x, y)) an
o S(xy)

1
E(a, a9) = f gIDxy| + S=la — aoldQ, (18)
QcR? 22
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®) g(x, y)
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© 6% (x, )

Fig.4  Visualization of proposed method

where Q is the 2-D pixel domain, A is a smoothing strength
(when A = 0, no smoothing is performed), and Dy, is a 2-D
derivative operator. Symbol g denotes a weighting function
described as

maxse(s,) C5 ' (X, y)

Zaew"] c;é*’* (x,y) .

g(x,y)=1- (19)

Function g(x, y) takes larger values where the correspond-
ing disparities are less confident as visualized in Fig. 4 (b).
Larger values of g(x,y) lead to a stronger smoothing effect
for the pixel (x,y). Finally, the smoothed & map 5 (x, y),
which is shown in Fig. 4 (c), is used to integrate N disparity
maps as

&y = d (). (20)
As shown in Fig.4(d), the disparity map obtained by
Eq. (20) is quite accurate. It is further refined by the ad-
ditional denoising given by Egs. (6)—(8), where p was fixed
to 5 throughout this paper and the weight function 7 was
defined as

h(x,y)=1- S (x, ). 21
(x,y) max ¢ (x,y) 21

4. Experiments

We examined the performance of our method and the ef-
fect of several parameters using light field datasets obtained
from other studies [30], [31]. All of the original datasets
have 9 X 9 viewpoints, but except for a few datasets the
disparity ranges are too small to show difference between
the original EPI analysis and our method. Therefore, from

1987
Table 1  Light field datasets from [30], [31]
Datasets | Disparity range | Views
buddha [-2.54, 4.86] 3x3
buddha2 [-2.15,3.74] 3x3
couple [-2.20, 3.76] 3x3
cube [-2.42, 2.39] 3x3

horses (a) [-8.92, 2.93] 3x3
horses (b) [-2.97, 0.98] 9x%x9
maria [-1.69, 1.29] 3x3
medieval (a) [-8.10, 2.72] 3x3
medieval (b) [-2.70, 0.91] 9x%x9
monasRoom [-2.38, 2.15] 3x3

papillon [-3.51, 2.68] 3x3
pyramid [-2.23,2.36] 3x3
statue [-2.79, 1.61] 3x3

stillLife (a) [-8.12,7.87] 3x3
stillLife (b) [-2.71,2.62] 9x9

each dataset, we selected 3 x 3 viewpoint images with con-
stant intervals and used them as an input light field. As for
the datasets horses, medieval, and stillLife, we also used the
original 9 X 9 viewpoints because these datasets have origi-
nally large disparity ranges. The input data and the disparity
ranges between the neighboring viewpoints are listed in Ta-
ble 1. To implement our proposed method, we used cocolib
and light field suite software available online [26], [31]. The
cocolib software includes a fast implementation of the con-
tinuous minimization for Eqgs. (7) and (18). For each dataset,
the disparity map at the central viewpoint was evaluated
against the ground truth.

In Sects. 4.1-4.5, we evaluated the performance of our
method. In Sects.4.1-4.3, we present the effects of the
three parameters: the shear range A, the shear step 7, and
the smoothing strength A (in Eq. (18)). For example, when
A = [-3,5], the candidate shear values are given as 9, =
{-3,-2,-1,0,1,2,3,4,5} with 7 = 1, and 6, = {-2,1,4}
with 7 = 3. The performance of our method also de-
pends on the target disparity ranges D and disparity-map
denoising, which are analyzed in Sects.4.4 and 4.5. For
the experiments described in Sects.4.1-4.5, we used the
buddha dataset. The disparity-map denoising was omitted
in Sects.4.1-4.4 but was enabled in Sects.4.5 and 4.6. In
Sect. 4.6, we compare our method with other methods over
all datasets and discuss the trade-off between the accuracy
and computational cost for disparity estimation.

4.1 Effect of the Shear Range A

First, we explain how the shear range A affects the perfor-
mance of our method. In this experiment, the shear range
A was changed while the target disparity range D was fixed.
The shear step 7 was fixed to 1, and the smoothing strength
A was optimized for each condition. We compared the
cases with and without 5-map smoothing. The performance
was measured by using the accuracy of disparity estima-
tion (PSNR against the ground truth) and is summarized in
Fig.5.

It can be seen that the 6-map smoothing significantly
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Without smoothing B With smoothing

[-6, 8] (1 = 50)
L, [571(=50)
20 [-4, 6] (A= 50)
& [-3, 5] (A=20)
5 [-2, 4] (A=10)

]

]

=
@ [-1,3](1=10)
[0, 2] (A= 10)
25 27 29 31 33
PSNR [dB]

Fig.5 PSNR and Shear range A

(a) Without smoothing (b) With smoothing

Fig.6  Disparity maps with A = [-6, 8]

(a) Without smoothing

(b) With smoothing

Fig.7  Disparity maps with A = [-3, 5]

improves the accuracy. We can also see that the accuracy
becomes low when the shear range A is much narrower than
the target disparity range D. This indicates that the shear
range A should cover the target disparities D to fully exploit
the potential of the sheared EPI analysis. Meanwhile, mak-
ing the shear range A wider than the target disparity range D
also negatively affects the accuracy. However, this negative
effect is greatly mitigated by using the -map smoothing.
Therefore, if we use the 6-map smoothing, A does not need
to be selected strictly. Several resulting disparity maps are
presented in Figs. 6-8.

4.2 Effect of the Shear Step 7

Second, we examined the effect of the shear step 7 on the
performance of our method. Here, we fixed the shear range

IEICE TRANS. INFE. & SYST., VOL.E100-D, NO.9 SEPTEMBER 2017

(a) Without smoothing

(b) With smoothing

Fig.8  Disparity maps with A = [0, 2]

Without smoothing B With smoothing

T=14 (1=10) '

6, ={-3,1,5}
T=3 (1=2)
6, =1{-2,1,4}
T=2 (1=10)
8n = {~3,-1,1,5}
=1 (1=20)
6 ={-3,-2,—-1,
0,1,2,3,4,5} * t 1 } 1
27 28 29 30 31 32 33
PSNR [dB]

Fig.9 PSNR with different shear steps 7

Shear Step

Without smoothing B With smoothing

T=4 (1=10)
6, ={-3,1,5}

T=3(1=2)
8, ={-2,1,4}
=2 (1=10)
6 ={-3,-1,1,5}
=1 (1=20)

571 = {_3, -2,-1,
0,1,2,3,4,5) —F——+—F——F—H
3 4 5 6 7 8

Computational time [s]

Shear Step

Fig.10  Computational time with the shear steps T

A to [-3,5] and varied the shear step 7, where the smooth-
ing strength A is optimized for each condition. The accuracy
and computational time were evaluated and are presented
in Figs.9 and 10, respectively. As expected, increasing the
shear step 7 results in a lower accuracy. However, decreas-
ing the shear step 7 results in more candidate shear values,
which leads to a longer computational time. Meanwhile,
the computational time for the 6-map smoothing is moder-
ate and independent of the shear step 7. Therefore, in terms
of the trade-off between the accuracy and the computational
time, using 6-map smoothing is often more beneficial than
using a smaller shear step 7.
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Fig.11  PSNR and smoothing strength A

(a) A =0.01
Fig. 12

(b)yA1=10 (c) 4 = 10000

¢ maps with different smoothing strengths A

(a) 1 =0.01 (b)y A =10 (c) 4 = 10000

Fig.13  Disparity maps with different smoothing strengths 1

4.3 Effect of the Smoothing Strength A

To see how the smoothing strength A affects the performance
of our method, we show a performance curve along A in
Fig. 11, where A and 7 were fixed to [-3, 5] and 2, respec-
tively. Moreover, the § maps and the disparity maps with
A =10.01, 10, and 10000 are represented in Figs. 12 and 13,
respectively. As shown in those figures, the performance of
our method depends greatly on the value of A; when A is too
small, the 6 map is still noisy; meanwhile, when A is too
large, the information on the 6 map is lost due to smooth-
ing being too strong. In this case, the best performance was
obtained with 4 = 10.

4.4 Effect of the Target Disparity Range D

Next, we analyzed how the target disparity range D affects
the performance. The disparity range was controlled by
changing the viewpoint intervals of input images because
the disparity range is proportional to the viewpoint inter-
val. The viewpoint intervals were varied from 1 to 4. The

1989
34 - Ours with §-map smoothing
s

3 | /—__—‘\‘
30 '
2 ‘ /
o 28 - * Ours
Z / w/o §-map smoothing
=26 Plain

24 '

22 + T T

[-0.85, 1.62] [-1.70,3.24] [-2.54, 4.86] [-3.38, 6.48]

Target disarptiy range [pixel]

Fig.14  PSNR and the target disparity range

® With disparity denoising ™ W/o disparity denoising

Ours with § smoothing

Ours w/o § smoothing

Plain

22 24 26 28 30 32 34
PSNR [dB]

Fig.15  Effect of disparity-map denoising

shear range A was changed in accordance with the view-
point interval while the shear step T was kept to 2. There-
fore, as the target disparity range increased, the number of
the candidate shear values also increased. Specifically, we
used 0, = {0} for the target range D = [-0.85,1.62], 6, =
{-2,0,2,4} for D = [-1.70,3.24], 6, = {-3,-1,1,3,5}
for D = [-2.54,4.86], and 6, = {-4,-2,0,2,4,6} for
D =[-3.38,6.48].

We compared our method with the original EPI anal-
ysis [20], [22] denoted as “plain,” and our method without
o-map smoothing in Fig. 14. The plain EPI analysis signifi-
cantly deteriorated as the disparity range increased, preven-
tion of which was the original motivation of our study. In
contrast, our method can maintain or even increase the accu-
racy with a large disparity range, especially when combined
with d-map smoothing.

4.5 Effect of Disparity-Map Denoising

Now, the disparity-map denoising given by Eqgs. (6)—(8) was
applied to the bare outputs of plain/sheared EPI analysis.
The results are presented in Fig. 15, where the denoising im-
proved all the results. Especially, our method without 5-map
smoothing was significantly improved by the denoising but
it was still below our method with §-map smoothing. Con-
sequently, we can conclude that our method should be com-
bined with both the 6-map smoothing and disparity-map de-
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Fig.16  Disparity map accuracy over 15 datasets
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iqi global optimization
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24 T T 28 T T
1 10 100 1 10 100
Computational Time [s] Computational Time [s]
(a) buddha (b) horses (b)
Fig.17  The trade-off between the accuracy and computational time
noising. Table 2 Shear range A for each dataset
Datasets \ A | Datasets | A
. . buddha [-3,5] | medieval (b) | [-3,1]
4.6 Comparison with Other Methods buddha? [2.4] | monasRoom | [=3.3]
couple [-2,4] papillon [-4,2]
We compared our method with three other methods as fol- cube (=331 | pyramid | [-3,3]
1 The first one, “plain + denoising”, is the original horses @) | [-8.2] sate [=2.2]
ows. fust one, “p g, 1 Tig horses (b) | [=3,1] | stllLife (a) | [-8.6]
EPI analysis without shear transform combined with the maria [C1,1] | stllLife (b) | [=3.3]
disparity-map denoising. The second, “plain + global op- medieval (a) | [-8,2]

timization”, is similar to the first one but combined with a
more sophisticated global optimization. The above two are
the proposed method in Wanner et.al. [22]. The third one,
“MVS”, is a multi-view stereo, the detail of which is de-
scribed as Eqgs. (11)—(13) in [22]. This method is catego-
rized as 4-D analysis methods mentioned in Sect.2.2. The
implementation of this method is also available online [26].
Our method was configured as follows. The shear step T
was fixed to 2 and the smoothing strength 1 was fixed to 10.

The shear range A are summarized in Table 2. Both the 6-
map smoothing and disparity-map denoising were enabled
to show the best performance of our method.

The PSNR values of the estimated disparity maps
against the ground truth are presented in Fig. 16. The av-
erage PSNR values for the datasets with 3 X 3 viewpoints
and those with 9 X 9 viewpoints are also reported. For sev-
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Fig.18  Results from buddha dataset

(b) Ground truth (c) MVS (d) Plain + denoising (e) Plain + global opt. (f) Ours

Fig.19  Results from couple dataset

(a) Input (b) Ground truth (c) MVS

Fig.20  Results from cube dataset

1 k- = ' s "-.
¥ ™= =

(a) Input (b) Ground truth (c) MVS (d) Plain + denoising (e) Plain + global opt. (f) Ours

Fig.21  Results from medieval (a) dataset

(a) Input (b) Ground truth (c) MVS (d) Plain + denoising (e) Plain + global opt. (f) Ours

Fig.22  Results from statue dataset

T il

(a) Input (b) Ground truth (c) MVS (d) Plain + denoising (e) Plain + global opt. (f) Ours

Fig.23  Results from stillLife (a) dataset
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eral datasets among them, the input images, the ground truth
disparity maps, and the estimated disparity maps using the
four methods mentioned above are shown in Figs. 18-23.

As can be seen from Fig. 16, our method consistently
achieved better quality than the other methods in almost all
the datasets, which shows the effectiveness of our method.
The disparity maps produced by our method are also vi-
sually compelling as shown in Figs. 18-23. Note that for
the datasets couple, cube, maria, pyramid, and statue, the
ground truth disparities are obviously missing for the part of
the stand; therefore, the PSNR values for those datasets are
not trustworthyT. However, as seen from Figs. 19, 20, and
22, our method obviously achieved better quality than the
other methods with those datasets.

We can also observe from Fig. 16 that the methods us-
ing EPI analysis (ours, plain + denoising, and plain + global
optimization) performed better for the datasets with 9 X 9
viewpoints than for those with 3x3 viewpoints. This reflects
the fact that the datasets with 9 x 9 viewpoints have smaller
disparity ranges than those with 3 X 3 viewpoints. As the
disparity range decreases, the advantage of our method over
the other two methods reduces, as was also shown in Fig. 14.

Finally, we show the trade-off between the accuracy
and computational cost of disparity estimation among the
four methods, all of which were implemented using GPU.
We used a desktop computer equipped with GeForce GTX
970. As clearly seen from Fig.17, “plain + denoising”
needed extremely short computation time thanks to the sim-
ple algorithm that works in the 2-D EPI domains combined
with a fast denoising method. This simple algorithm was
used as the building block of our method. The computation
time required for our method increases as the target disparity
range D increases because the computational cost is propor-
tional to the number of candidate shear values. The 6-map
smoothing requires additional computationl time. However,
the total computation time for our method is still moderate,
and at the cost of this increased computation, our method
achieves better accuracy. Meanwhile, 2-D EPI analysis with
the sophisticated optimization (plain + global optimization)
and 4-D light field stereo matching (MVS) required signif-
icant amouts of time due to their complexties, but did not
always yield accurate results.

5. Conclusion

Aiming to estimate an accurate disparity map even from
a non-dense light field, we proposed sheared EPI analysis
where EPIs are transformed with several shear values be-
fore the structure tensor analysis and the results of analysis
are integrated into a final disparity map. We carefully exam-
ined how the parameters of our method affect the result to
fully exploit the performance of our method. Moreover, we
demonstrated the effectiveness of our method by compar-

"The missing parts are included in the PSNR values for these
datasets because we treated the data as they were. However, these
untrustworthy PSNR values, which are marked with =, are not in-
cluded in the average PSNR values reported in Fig. 16.
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ing our method with three other methods over 15 datasets.
Experimental results proved that our method achieves sig-
nificant accuracy especially when combined with the J-
map smoothing step. Moreover, using the simple and ef-
ficient EPI analysis as the building block, our method re-
quires much less computational cost compared to the com-
plex multi-view stereo method. In the future work, our
method will be further improved by combining it with ap-
propriate handling of occlusions [21]-[23] and weakly tex-
tured regions.
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