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SUMMARY Multi-task learning in deep neural networks has been
proven to be effective for acoustic modeling in speech recognition. In the
paper, this technique is applied to Mandarin-English code-mixing recog-
nition. For the primary task of the senone classification, three schemes of
the auxiliary tasks are proposed to introduce the language information to
networks and improve the prediction of language switching. On the real-
world Mandarin-English test corpus in mobile voice search, the proposed
schemes enhanced the recognition on both languages and reduced the rela-
tive overall error rates by 3.5%, 3.8% and 5.8% respectively.
key words: multi-task learning, deep neural network, Mandarin-English
code mixing, speech recognition

1. Introduction

Multi-task Learning (MTL) is a machine learning approach
where a primary task is learned in parallel with related aux-
iliary tasks using a shared representation [1]. It has been
proposed as a method to improve the generalization of a
classifier [2]. In recent works, the MTL using deep neu-
ral networks (MTL-DNN) has been applied to the acoustic
modeling of speech recognition. This structure improved
the training of the network by jointly learning the classifica-
tions of phoneme context [3], monophone [4] and articula-
tory feature [5]. The ability of knowledge integration makes
it suitable for many complex tasks, such as low resource
recognitions [6], multilingual recognitions [7], recognitions
in reverberant environments [8], and so on.

In this paper, a novel use of MTL-DNN in code-mixing
speech recognition is proposed. The phenomenon that terms
from different languages coexist in an utterance is called
code mixing. Code mixing is common in Mandarin Chi-
nese conversations. The statistics from Google Voice Search
shows that 10% of the spoken queries obtained from Main-
land China contain English words [9]. Even though the two
languages (Mandarin Chinese and English) can be recog-
nized well respectively, the challenges are not trivial when
they appear together. It is hard for the system to predict
the switching of languages in an utterance. On the acoustic
model (AM) level, the main reason is the sparsity of code-
mixing data. This problem leads to the poor modeling of
the modeling units at the switching of languages. In fact,
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with a data-driven strategy for clustering triphone states to
tied triphone states (senones), most of the states of bilin-
gual triphones are merged with the states of monolingual tri-
phones. Here, bilingual triphones mean that the languages
of their context phonemes are different from that of their
central phonemes, while monolingual triphones mean that
the languages of their context and central phonemes are the
same. In this way, some information of language switch-
ing is lost during the clustering. To solve this problem, three
schemes of auxiliary tasks are proposed to introduce the lan-
guage information into the structure. The first one uses the
prediction of phoneme languages which enables the network
to learn the discrimination between languages. The second
one uses the prediction of phonemes which enables the net-
work to learn the classification of phonemes. The third one
combines the first and second tasks, and consists of three
parts including the classifications of phonemes and the left
and right context phoneme languages. It recovers the lan-
guage information which is lost during the clustering and
enables the network to learn the language context of each
phoneme.

The rest of the paper is organized as follows: Section 2
introduces the structure of MTL-DNN and describes aux-
iliary tasks in detail. The introduction of the recognition
system and the experimental results are given in Sect. 3. Fi-
nally, Sect. 4 gives the conclusion.

2. Proposed Method

2.1 Multi-Task Learning in Deep Neural Network

The structure of MTL-DNN shares the input layer and the
hidden layers. Its output layers for the primary task and the
auxiliary task are fully connected to the last hidden layer. If
the auxiliary task is chosen properly, this structure can help
the primary task be learned better [3]. Another attraction is
that when used as an AM in the decoding, the output layer of
the auxiliary task will be discarded, so that the model size
and usage are the same as the commonly-used single-task
DNN.

The structure is given in Fig. 1. xi represents the ith
dimension of the input. D is the total number of dimensions.
Given an input vector x, the output of the ith nodes of the
primary task yp

i and the auxiliary task ya
i are derived from

softmax function as follows:
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Fig. 1 The structure of MTL-DNN
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where hp
i is the ith activation of the primary task, and N p is

its number of output nodes. Similarly, ha
i is the ith activation

of the auxiliary task, and Na is its number of output nodes.
In this work, the MTL-DNN are trained by minimizing the
sum of the cross-entropies of two parts of tasks over all the
input features. Thus, the objective function is as follows:

CE =
∑

x

(CEp +CEa)

= −
∑

x

(
N p∑

i=1

rp
i log p(yp

i |x) + α
Na∑

i=1

ra
i log p(ya

i |x))

(3)

where rp
i and ra

i are the targets of the ith node for the primary
and the auxiliary tasks respectively. α is the weight that
controls the proportion of the entropy from the auxiliary task
that impacts the back-propagations.

In this work, the primary task is the classification of
the senones, and the three schemes of auxiliary tasks will be
introduced in Sect. 2.2.

2.2 Schemes of Auxiliary Tasks

The effectiveness of the MTL-DNN depends on the selec-
tion of auxiliary tasks. The auxiliary tasks should be related
to the primary task and offer extra information to the pri-
mary task.

The first scheme uses the phoneme language classifica-
tion (phnLan task) as the auxiliary task. The added output
layer contains three nodes which represent Mandarin Chi-
nese phoneme, English phoneme and non-speech phoneme.
To create the targets for each training frame, the targets of
senones are mapped down to their corresponding languages
according to the central phonemes. This task is designed to
give emphasis on the discrimination between the two lan-
guages and improve the network ability of the language pre-
diction.

The second scheme uses the task of the prediction
of phonemes (phoneme task). It enables the network to
learn the discrimination among phonemes and the similarity
among the senones which share the same central phonemes.
When creating the targets for training, the targets of each
frame are mapped down to their central phonemes.

On the basis of the previous schemes, the third one uses
the phoneme classification, and the left and right phoneme
languages as well (combined task). In this system, three
output layers are added to the baseline network. All of them
are connected to the last hidden layer of the network like the
output layer of the primary task. The CEa will be separated
as follows:

CEa=βCEa
phoneme+

α − β
2

CEa
phnLanl

+
α − β

2
CEa

phnLanr

(4)

where CEa
phoneme, CEa

phnLanl
and CEa

phnLanr
represent the en-

tropies of the phoneme task, the left phoneme language
task and the right phoneme language task respectively. The
weights of the tasks of phoneme classification and language
classification can be assigned to different values for control-
ling the proportion of the entropies from the two types of
tasks. As mentioned above, many bilingual triphones are
clustered with monolingual triphones due to the data spar-
sity of language switching. It will lead to the following
problems. Firstly, from the targets, you can not tell the lan-
guages of the context. On the other hand, in the data for
modeling the senone, the data of the bilingual triphones is
overwhelmed by that of the monolingual triphones, so that
the senone can hardly present the characteristic of bilingual
ones. To avoid losing the information of language switch-
ing, the third scheme is designed to bring the language in-
formation of each phoneme context to the network, thereby
improving the prediction of language switching.

3. Experiments

3.1 Baseline System

Experiments are carried out on Mandarin-English voice
search task. The acoustic training data consists of three parts
with 236-hour duration. One is 100-hour Mandarin Chi-
nese data: CallHome and CallFriend from LDC database
(40 hours), and self-collected in-domain data (60 hours).
The second part is 100-hour English data: part of Fisher
from LDC (70 hours), and self-collected in-domain data
(30 hours). The third part is 36-hour in-domain Mandarin-
English data collected by ourselves. The training data of
language model (LM) is the text from microblog including
9G mono-Mandarin text and 700M Mandarin-English text.
The final LM is obtained by interpolating the microblog part
with the in-domain transcripts of AM training.

All experiments use the same network architecture as
the baseline system with the exception of the output layer
of the auxiliary part. The input to the network is a 572-
dimensional vector, which is an 11-frame (5 frames on each
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Fig. 2 Performances with different weights

side of the current frame) context window of 52 dimensional
features (13-dimension PLP feature along with its first, sec-
ond and third derivatives). The phoneme set used in the ex-
periments contains 148 phonemes, including 100 Mandarin
Chinese phonemes, 39 English phonemes and 9 non-speech
phonemes. After clustering, all the triphone states are tied
to 5278 senones. Thus, the topology is 572-2048*5-5278.
The networks are trained with error back-propagation using
cross-entropy objective function. The recognition is carried
out by a WFST decoder.

3.2 Recognition Results

The test corpus is collected from the real-world applica-
tion of mobile voice search. It consists of 1200 Mandarin-
English utterances, in which 59%, 19% and 10% sentences
have one, two and three English words respectively, and the
left 12% sentences have more than three English words.

The performances of the recognition results are mea-
sured by mixed error rate (MER) which applies character
error rate (CER) for Mandarin Chinese and word error rate
(WER) for English. The MER results of the DNNs which
are trained with different weights are shown in Fig. 2. Each
line corresponds to a scheme of auxiliary task. The perfor-
mances under different values of α from 0.1 to 0.9 in in-
crements of 0.1 are estimated. In addition, the horizontal
line gives the result of the baseline DNN. The results show
that the three schemes of MTL-DNNs all achieve better per-
formances than the baseline single-task DNN under appro-
priate values of α. The scheme of ‘phnLan task’ obtains
the best result when α is 0.2. The best results of ‘phoneme
task’ and ‘combined task’ both appear when α is 0.3. In the
scheme of ‘combined task’, the parameter β in Eq. (4) can
be altered to control the weights of the three parts of auxil-
iary task. Our experiments indicate that β is not sensitive in
terms of changing the system performance significantly, so
β is assigned to α3 .

To further evaluate the respective recognition results
for Mandarin and English, Table 1 reports the CERs for
Mandarin Chinese (Man CER) and WERs for English (Eng

Table 1 Recognition results with the optimal weight

Auxiliary Task α
Evaluation (%)

Man CER Eng WER Overall MER
baseline - 33.1 36.5 34.2

phnLan task 0.2 32.2 34.7 33.0
phoneme task 0.3 32.3 34.2 32.9
combined task 0.3 31.8 33.0 32.2

WER), as well as MERs for the overall performance when
α is optimal. Because of the confusion between the two lan-
guages, the time mark should be used when aligning recog-
nition results with the reference transcriptions. The inser-
tions, deletions and substitutions are evaluated for each lan-
guage and summed up for overall evaluation. The results
show that with MTL, the performances on both languages
are enhanced. The improvement on English is more ob-
vious. The main reason is that if an English word is rec-
ognized as Chinese characters, one substitution and several
insertions will be added on the errors, thus the WERs of En-
glish words are more sensitive to the system performance.
The MER results verify the effectiveness of the proposed
schemes which obtain 3.5%, 3.8% and 5.8% relative reduc-
tions compared with the baseline DNN.

4. Conclusion

In this paper, the structure of MTL-DNN was adopted in the
Mandarin-English LVCSR. In MTL, a better shared internal
representation can be learned to improve their generaliza-
tion performance. Utilizing the advantage of this structure,
we introduced the language information into the DNN train-
ing. For the primary task of the senone classification, three
schemes of the auxiliary tasks were proposed. The experi-
ments on the real-world test corpus showed its effectiveness
in enhancing the recognition of code-mixing speech. The
recognition improvement on English is more obvious than
that on Mandarin Chinese. The best performance was ob-
tained by using ’combined task’ of predicting the phoneme
and its languages of phoneme context.

This paper aims to offer a method to utilize extra infor-
mation during training the DNNs for code-mixing speech
recognition. The method also can be applied to the code-
mixing tasks in other languages.
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