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Re-Ranking Approach of Spoken Term Detection Using Conditional
Random Fields-Based Triphone Detection

Naoki SAWADA†a), Nonmember and Hiromitsu NISHIZAKI†b), Senior Member

SUMMARY This study proposes a two-pass spoken term detection
(STD) method. The first pass uses a phoneme-based dynamic time warp-
ing (DTW)-based STD, and the second pass recomputes detection scores
produced by the first pass using conditional random fields (CRF)-based
triphone detectors. In the second-pass, we treat STD as a sequence la-
beling problem. We use CRF-based triphone detection models based on
features generated from multiple types of phoneme-based transcriptions.
The models train recognition error patterns such as phoneme-to-phoneme
confusions in the CRF framework. Consequently, the models can detect
a triphone comprising a query term with a detection probability. In the
experimental evaluation of two types of test collections, the CRF-based
approach worked well in the re-ranking process for the DTW-based detec-
tions. CRF-based re-ranking showed 2.1% and 2.0% absolute improve-
ments in F-measure for each of the two test collections.
key words: conditional random fields, phoneme-to-phoneme confusion
learning, re-ranking, spoken term detection, triphone detection

1. Introduction

Spoken term detection (STD), a speech data retrieval tech-
nology, is designed to determine whether a given utterance
includes a query term comprising a word or phrase. STD re-
search has become a popular topic in spoken document pro-
cessing research, and the number of STD research reports
has increased following the 2006 STD evaluation organized
by the National Institute of Standards and Technology [1].

The difficulty in STD lies in the search for terms under
a vocabulary-free framework because search terms are not
known prior to a large vocabulary continuous speech recog-
nition (LVCSR) system. Many studies focusing on STD
have been conducted [2], [3]. In the past, most STD stud-
ies focused on out-of-vocabulary (OOV) and speech recog-
nition error problems. For example, STD techniques using
subword (syllable or phoneme)-based lattices or confusion
networks (CN) have been proposed [3].

Another problem in STD is ineffectiveness to detect
speech recognition errors. For example, the speech recog-
nition performance of target speeches affects STD perfor-
mance of a dynamic time warping (DTW)-based matching
approach between a subword (such as a phoneme) sequence
of a query term and a transcription of speech. Therefore,
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the STD performance of a DTW-based technique depends
on the accuracy of subword-based transcriptions. There-
fore, improvement of automatic speech recognition (ASR)
performance for target speeches is also important to obtain
good STD results. However, it is nearly impossible to re-
move ASR errors completely, although we use state-of-the-
art ASR technologies. Therefore, it is necessary to develop
an STD technique that is robust against ASR errors. For ex-
ample, a lattice-based STD approach [4] has been proposed.

In a recent study, we proposed CN-based indexing and
a DTW-based search engine [5]. The CN-based index, a
phoneme transition network (PTN)-formed index [5], com-
prised of ten types of transcriptions generated by ten dif-
ferent ASR systems, including LVCSR and phoneme recog-
nition systems. We have shown that the PTN-formed in-
dex comprising the multiple ASR systems’ outputs obtained
better STD results than that of the n-best output from a sin-
gle ASR system. This STD system could outperform other
STD technologies that participated in the ninth National In-
stitute of Informatics Testbeds and Community for Infor-
mation Access Research (NTCIR-9) project STD evaluation
framework [6].

Although our DTW-based approach using a PTN-
formed index for STD was very robust against ASR er-
rors, the approach outputted many false detections from a
PTN with a complex structure [7]. It is difficult to speech-
recognize correctly an utterance including OOV words or
unclearly pronounced words. Therefore, each ASR system
can output different phoneme sequences from those with
errors. This increases the number of PTN arcs, increas-
ing the complexity of the PTN structure. Consequently,
a query term might falsely match such complexly formed
PTNs. In particular, a short query term, with a low number
of phonemes, is likely to be detected incorrectly in wrong
positions.

In this study, we focus on controlling false detections
by the DTW-based STD engine [5] in a second-pass stage
using a machine learning framework. The principal idea
is to verify detections from the first stage, which uses the
DTW-based approach, by estimating a correct phoneme se-
quence, represented as a combination of triphones, of a
query term. We achieve the estimation by using conditional
random fields (CRF)-based triphone detectors, which can
estimate the detection probability of a query term detected
by the DTW-based STD engine. This study examines the
speech recognition error diversity in STD. Speech recogni-
tion error patterns are different in each ASR system. We
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show that phoneme error pattern training with different ASR
systems can yield better CRF models compared to the one
with N-best outputs from an ASR system. The ASR er-
ror patterns are trained using a CRF-based framework on
each triphone from phoneme-level transcriptions by multi-
ple ASR systems. Then, a correct phoneme (triphone) se-
quence in a PTN can be re-estimated using the CRF models.

Figure 1 shows our STD framework. In the pre-
processing stage, search target speeches are automatically
transcribed by NA (the number of ASR systems) types of
phoneme-based transcriptions. Then, they are converted
to a PTN-formed index. A triphone detection model for
each possible triphone is also trained using features gen-
erated from NA types of phoneme-based transcriptions by
training speeches. In the first-pass of the STD process, the
DTW-based STD engine outputs the detections for a query
term [5]. In the second-pass, we use a triphone detection
model with a CRF-based framework for calculating the de-
tection probability of query terms in an utterance. In this
study, we used NA = 10 types of ASR systems.

In the process of filtering detected candidates at the
second pass, first, a query term is decomposed into tri-
phones, and for each triphone, whether a given utterance in-
cludes that triphone is determined using the corresponding
CRF-based triphone detection model. A CRF-based model
is trained for each triphone. Then, we calculate the term de-
tection probability by calculating the sum of the products of
the output probabilities from all the models. This is the de-
tection probability of the query term of the given utterance.
Finally, the probability is used to recompute the final de-
tection score using the DTW-based approach. Although the
CRF-based approach is used to filter false detections, it can

Fig. 1 Overview of the two-pass STD framework using CRF-based tri-
phone detection modeling.

work independently. In the experiment, we show the STD
performance of the CRF-based approach only.

In experimental evaluation with the OOV subset of
the Japanese test collection for STD [8] and the NTCIR-
10 SpokenDoc-2 moderate-size task [9], the CRF-based ap-
proach alone could not outperform the DTW-based sin-
gle approach on both tasks, but we found that a combina-
tion of CRF-based triphone detection and the DTW-based
method in the STD process shows better performance than
the DTW-based baseline approach on all evaluation metrics.
In addition, the CRF-based models trained from the triphone
sequences outputted by multiple ASR systems obtained bet-
ter performance compared to the n-best triphone sequences
of the single ASR system.

2. Related Work

Our CRF-based approach is similar to those of previous re-
search [10], [11]. In those approaches, a phoneme sequence
of some target speech is estimated using CRF models trained
using ASR hypothesis-based features. This idea is similar
to an acoustic modeling framework using CRF [12]. Chaud-
hari’s technique [10], [11] was effective for the OOV detec-
tion task, because the CRF models learned phoneme confu-
sions well.

Our study is intended as an extension of [10], [11],
treating STD as a triphone sequence labeling problem for
speech data. Chaudhari’s technique [11] trains CRF models
using training features related to phoneme-based n-grams
extracted from a single phoneme sequence by an ASR sys-
tem. Although we also use phoneme-based n-grams as a
training feature for CRF models, our n-grams are gener-
ated from multiple phoneme sequences from multiple ASR
systems’ outputs. Our STD engine used in the first-step is
based on a DTW-based approach using multiple ASR sys-
tems’ outputs. The features for CRF training are extracted
from the outputs of the same ASR systems. Therefore, using
these n-gram features makes sense. In addition, The Chaud-
hari’s CRF estimates the posterior probability of each mono-
phone at any position and the posterior-grams (sequences
of the posterior probabilities of monophones) are used to
search a query term. Conversely, our CRF models can de-
tect a suitable triphone with a probability considering pho-
netic context. This is a more robust detection of a phoneme
from a phoneme label sequence than monophone detection.
The detection probability of a triphone is used to calculate
the confidence of a detected term by the DTW-based STD
engine.

Further machine learning approaches for STD have
been proposed recently. For example, Prabhavalkar et
al. [13] proposed articulatory models using discriminative
training for STD with low resource settings. They pro-
posed an STD framework without any LVCSR system, and
their models could detect a query term directly from acous-
tic feature vectors. Conversely, multiple linear regression,
support vector machines, and multilayer perceptrons were
also used to estimate confidence in the detected candidates
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in a decision [14], [15] or re-ranking process [16]. Our CRF-
based models train phoneme-to-phoneme confusion patterns
on the basis of multiple types of transcriptions in contrast
to these previous studies. In addition, our study investi-
gates the effectiveness of a combination of outputs of multi-
ple ASR systems. This is a new “cherry-picking” approach
based on machine learning that trains phoneme-to-phoneme
confusions.

The novelty of this study is that CRF is extended to pro-
vide the detection probability of a query term based on the
estimation of a correct phoneme sequence and also in the de-
cision process on the second pass of our STD framework by
combining the DTW-based STD score with the CRF-based
probability. In addition, we show that the CRF-based tri-
phone detection models trained with multiple ASR systems’
outputs are useful in filtering out false detection candidates.
An advantage of this approach is that the DTW-based STD
engine and CRF-based triphone detector are independent of
ASR systems because they need only phoneme-based label
sequences, that is, the proposed method can work on an ASR
system-free framework. Therefore, we do not use any pa-
rameters related to ASR systems such as acoustic likelihood.

Our approach has been evaluated on the same OOV
subset as reported already in the previous paper [17]. In
addition, it has also been evaluated on the spoken query
(SQ)-STD subtask of the NTCIR-11 SpokenQuery&Doc-1
task [18], [19], which is different from the task we use in this
study. In the subtask, our CRF-based re-ranking approach
did not outperform the baseline DTW-based STD approach
because the CRF models for each triphone were trained us-
ing a different speech corpus from the first to sixth Spo-
ken Document Processing Workshops (SDPWSs). How-
ever, this paper provides more detailed discussion on the
types of features in CRF model training and the length of
a query term.

3. DTW-Based Approach Using Multiple ASR Sys-
tems’ Outputs

DTW-based STD using a PTN-formed index is performed
in the first-pass stage on the entire STD framework, as in
the baseline approach. Figure 2 shows an overview of the
baseline method. In the indexing phase, speech data are
processed using ASR, and the recognition outputs (words
or sub-word sequences) are converted into the PTN-formed
index for STD. Figure 3 shows an example of the devel-
opment of a PTN-formed index for the speech “Nepale”
(Japanese pronunciation is /n e p a a r u/ † ) by align-
ing NA phoneme sequences from the best hypothesis of all
the ASR systems. The speech was recognized by the NA
ASR systems to yield NA hypotheses, which were then con-
verted into phoneme sequences. Next, we obtained “aligned

†In this paper, a vowel and a long vowel are modeled separately
in triphone-based acoustic models, such as /a/ and /a:/. Conversely,
syllable-based acoustic model does not have long vowels. There-
fore, a long vowel is represented by repeating single vowel, such
as /a a/.

Fig. 2 Overview of the first-pass stage using DTW-based matching.

Fig. 3 Generation of a PTN-formed index by performing alignment us-
ing DP and converting to a PTN.

sequences” using the same dynamic programming (DP)
scheme as described in [20]. Finally, a PTN was obtained
by converting the aligned sequences. The symbol “@” in
Fig. 3 indicates a null transition.

In the search phase, the word-formed query is con-
verted into a phoneme sequence. Then, the phoneme-
formed query is inputted to the term search engine. The term
search engine searches for the query term from the index at
the phoneme level using the DTW framework. Unlike the
combination techniques of multiple STD systems described
in [21], the baseline system combines the transcriptions pro-
duced by multiple ASR systems.

We calculate the distance between a query and a PTN
using Bhattacharyya distance (BD) [22]. The BD between
phoneme p and q is calculated by the monophone-based
acoustic models of p and q.

The total DTW cost D(i, j) at the grid point (i, j) (i =
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{0, . . . , I}, j = {0, . . . , J}, where I and J are the number of
the set of arcs in the index and query terms, respectively) on
the DTW lattice was calculated using the following equa-
tions:

D(i, j) = min

 D(i, j − 1) + Del(i)
D(i − 1, j) + Null(i)
D(i − 1, j − 1) + Match(i, j) + Vot(i, j)

(1)

Match(i, j) =
{

0.0 : Query( j) ∈ PT N(i)
minBD : Query( j) < PT N(i) (2)

Vot(i, j) =


α ÷ (Voting(p) + Σq(BD(q)

×BDVoting(q)))
: ∃p ∈ PT N(i), p = Query( j),
q , Query( j)

α : Query( j) < PT N(i)

(3)

Del(i) = min


minBD(p, q) : ∃p ∈ PT N(i − 1),

q = Query( j)
minBD(p, q) : ∃p ∈ PT N(i),

q = Query( j)

(4)

Null(i) = min


NullVot(i) : Null ∈ PT N(i)
minBD(p, q) : ∃p ∈ PT N(i − 1),

q ∈ PT N(i)
minBD(p, q) : ∃p ∈ PT N(i),

q ∈ PT N(i + 1)

(5)

NullVot(i) = β ÷ Voting(Null) (6)

where PT N(i) is the set of phoneme labels of the arcs at the
ith node in the PTN, and Query( j) indicates the jth phoneme
label in the query term.

Equations (2) and (3) are related to the cost calcula-
tion for a substitution error. minBD in Eq. (2) is the smallest
BD between j and any phoneme in PT N(i). Vot(i, j) is a
confidence parameter for the matching between PT N(i) and
Query( j). Voting(p) is the number of ASR systems out-
putting the same phoneme p at the same arc. A greater
value of Voting(p) improves the reliability of phoneme p.
BD(q) is the BD between Query( j) and phoneme q, which
does not correspond to Query( j). BDVoting(q) also indi-
cates the number of ASR systems outputting the phoneme q.
The cost for a deletion error is calculated based on Eq. (4).
minBD(p, q) is a BD between phoneme p and q. Equations
(5) and (6) are used for the cost calculation of an inser-
tion error. We allow a null transition between two nodes in
the PTN-formed index with the cost NullVot(i) defined in
Eq. (6). α and β are hyperparameters set to 0.5 and 0.45, re-
spectively. They were optimized using the development set.
The appropriate null cost achieves increasing term detection
and decreasing numbers of false detections.

In advanced searches for the query term, the term
detection engine initializes D(i, 0) = 0 (both endpoints
are free), and then it calculates D(i, j) using Eq. (1) (i =
{0, . . . , I}, j = {1, . . . , J}). Furthermore, D(i, J) are nor-
malized by the length of the DTW path. After completing
the calculation, the engine outputs the detection candidates,
which have a normalized cost of D(i, J) below a threshold θ.

4. CRF-Based Triphone Detection

CRFs [23] have been used successfully in numerous text
processing tasks, such as named entity extraction [24] and
phrase chunking [25]. In speech processing, CRFs are used
for sentence boundary detection [26] and OOV detection in
speech [27]. In this section, we describe how to calculate a
detection probability of a query term in an utterance using
CRF-based triphone detectors.

4.1 Overview

Figure 4 shows an overview of the STD process using CRF-
based triphone detection modeling in the second-pass stage
on the entire STD framework. In this study, we use ten
(NA = 10) types of phoneme-based transcriptions generated
by ten different ASR systems for training CRF-based mod-
els. A query term is translated into a phoneme sequence
and decomposed into triphones. Then, a CRF-based tri-
phone model calculates the detection probability of the tri-
phone corresponding to that model in an utterance. The final
term detection probability (score) is based on the sum of the
products of the output probabilities from all of the triphone
models. In this research, we prepared two types of acoustic
models (AMs), five types of language models (LMs), and
a decoder. The AM and LM combinations resulted in ten
ASR systems. The details of these models are explained in
Sect. 6.1.

Fig. 4 Overview of the STD framework using CRF-based triphone de-
tection modeling.
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4.2 Training Label Definition and Features for CRF Train-
ing

In this study, we use CRFs to detect a triphone in an utter-
ance. Therefore, we prepare a CRF-based triphone detec-
tor for each triphone. Idealy, although it is desirable that
CRFs estimate a term detecion probabity directly, this is
impossible, because CRF models detect words that cannot
be trained. Conversely, all words can be decomposed into
phoneme sequences. Therefore, we use a phoneme detector
for word detection. In addition, context information is very
useful for speech processing. We create triphone detectors
considering phoneme-to-phoneme confusion error patterns
in the CRF framework.

Figure 5 shows an example of training features for the
triphone “n-e-p”and an output label definition on an utter-
ance for CRF training. First, training data for CRFs are gen-
erated using the ten sorts of ASR systems, which are the
same as those for creating the PTN-formed index described
in Sect. 3. A DP-based alignment procedure [20] was also
performed on the ten sorts of phoneme-based transcriptions
and the reference (correct) phoneme sequence for creating
an alignment between the phonemes at a position. Finally,
we can obtain the phoneme-based alignment sequence on
the transcriptions.

We used BIO (beginning/inside/outside)† encod-
ing [27], [28] in the CRF-based triphone detection model-
ing. CRF with the BIO encoding framework was used to
solve a text-chunking problem. As mentioned in Sect. 2, the
BIO encoding framework is completely different from that
of previous work [11], which directly estimates a phoneme
from a phoneme-based transcription using CRF. We attempt
to achieve triphone detection by solving a sequence-labeling
problem. In the BIO encoding method, the B tag corre-
sponds to the head phoneme of a target triphone, the I tag
indicates the inside phones of the target triphone except for
the head, and the O tag shows the target triphone. To achieve
that, we must prepare BIO tag labeling for each alignment.
As each alignment corresponds to the correct phoneme la-
bel in the reference, we can put one of the BIO tags on each
alignment depending on the triphone. In Fig. 5, the “cur-
rent token” alignment corresponds to the correct phoneme
“e” and the I tag because “e” is the middle phoneme of the
triphone “n-e-p”. The BIO-tag labeling procedure is per-
formed for all possible triphones. A CRF model for a tri-
phone estimates the occurrence probabilities of the B, I, and
O tags in an alignment sequence. By considering these prob-
abilities for triphones composing a query term, we can cal-
culate the detection probability of the query term.

Next, we describe features that are used to train a CRF-
based model. As shown in Fig. 5, we prepare four types of
features: unigrams, in-ASR bigrams, cross-ASR bigrams,
and in-ASR trigrams. Table 1 shows a list of training fea-
tures and the number of features for each type of feature.

†IOB representation is alternatively used.

Fig. 5 Example of features for CRF model training and BIO encoding.

Table 1 List of training features for a CRF-based triphone detector. #
indicates the number of feature types.

Feature type Definition #

Unigram (rp, hi
t) 10

in-ASR bigram (rp, hi
p−1, hi

p), (rp, hi
p, hi

p+1) 20

cross-ASR bigram (rp, hi
p−1, h j

p | i , j), 180

(rp, hi
p, h j

p+1 | i , j)

(rp, hi
p−2, hi

p−1, hi
p),

in-ASR trigram (rp, hi
p−1, hi

p, hi
p+1), 30

(rp, hi
p, hi

p+1, hi
p+2)

hi
p is the phoneme at current position p of the phoneme se-

quence from the ith ASR system, and rp is the BIO tag. The
aim of this CRF modeling is to learn phonetic confusion er-
ror patterns with contexts in each ASR system.

Output label sequences and alignment sequences gen-
erated by phoneme-level transcriptions are used to train
CRF-based triphone detectors. The conditional probability
of an input (alignment) sequence x for a triphone t, given an
output (BIO) label sequence yt, is calculated as follows:

Pt(yt |x) =
1

Z(x)
exp

∑
k

λkFk(x, yt)

 (7)

where Fk(x, yt) is the kth feature representation for the input
alignment sequence x, and λk is the weight parameter for
Fk(x, yt). Z(x) is a normalization factor given by:

Z(x) =
∑
y

exp

∑
k

λkFk(x, yt)

 (8)

We train the CRF models for all possible triphones t. A
trained CRF model for a triphone can calculate the posterior
probabilities of B, I, and O tags at any alignment position
of a testing utterance. By applying all the trained models to
testing utterances, we can obtain the sequences of the poste-
rior probabilities of BIO tags for all possible triphones. The
number of sequences is equal to the number of possible tri-
phones. We show term detection using these probabilities.
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Fig. 6 Example of a term detection based on triphone detection models.

4.3 Term Detection

The term detection probability P(T |xi) of a query term T
consisting of N triphones in the input alignment sequence x
of utterance i is calculated using the following equation:

P(T |xi) =


N∏

j=1

Pt j (yt j |xi)


1
N

, (lt1 < lt j < ltN ) (9)

where t j is the jth triphone of T , xi is the input sequence
of utterance i, and yt j is a part of the BIO label sequence
for triphone t j. lt j indicates the location (position) of the
beginning phoneme of triphone t j. A triphone is extracted
many times in the same utterance. Using the constraint of
the occurrence positions of triphones composing T reduces
wasteful computation and false alarm detections of T . Note
that Pt j (yt j |xi) is not calculated using the conditional proba-
bility of the entire label sequence for utterance i, but using
the sum of the products of probabilities of each B and I tag.
The probability of O tag output is not considered because
our aim is to detect possible triphones. This idea is similar
to maximum entropy modeling. However, CRFs can find an
optimal labeling for an entire sequence. Therefore, CRF-
based models can detect triphones with high accuracy. The
detection probability of triphone t j is calculated using:

Pt j (yt j |xi) =
I
tj
tail∏

L=Btj

Pt j (L|xi) (10)

where Btj and I
tj
tail represent the beginning and tailing tags

of triphone t j, respectively. In other words, the detection
probability of t j is calculated by taking the product of the
conditional probability of each tag between the head Btj and
tailing I

tj
tail tags. The start position for detecting triphone t j

is based on the probability of Bt j . If Bt j has a probability
value greater than probability ϕ, the detection probability of
t j is calculated using Eq. (10). If the head triphone of t j is

detected at the different position from Bt j (this is denoted
as Bt j+1 ), the position Bt j+1 will show the head triphone of
t j. Therefore, the same triphones are sometimes detected
at the close positions. If Pt j (yt j |xi) is less than probability
ϕ, then Pt j (yt j |xi) is set to ϕ. ϕ is a smoothing parameter
that prevents a very low or zero detection probability for
T when any triphone consisting of T is detected with very
low probability or cannot be detected. In this study, ϕ is
heuristically set to 0.01. If P(T |xi) is greater than a threshold
θC , then term T appears to be in utterance i. Changing the
threshold θC enables us to draw the recall-precision curve of
the evaluation.

Figure 6 shows an example of a term “Mt. Fuji” ( /f u
j i s a N/ ) detected using CRF-based triphone detection
models. For example, the detection probability of a triphone
“j-i-s” in the utterance A is 0.50 (0.8 × 0.7 × 0.9), which is
calculated based on the products of the posterior probabil-
ities of the B and I tags. The final detection probability of
the query term for the utterance is 0.35, which is the nth root
of the sum of the products of all of the triphones comprising
the query term.

5. Re-Ranking of First-Pass Detections

We used the simple combination of DTW- and CRF-based
scores (detection probabilities) given by Eq. (11), which is
well-known as a weighted harmonic mean. The recomputed
detection score RS(T, i) is calculated as follows:

RS(T, i) =
(γ2 + 1) · DTW(T, i) · CRF(T, i)
γ2 · DTW(T, i) + CRF(T, i)

(11)

where γ is a weight parameter that controls the bal-
ance between CRF(T, i) and DTW(T, i), and CRF(T, i) and
DTW(T, i) are the scores of term T in utterance i derived us-
ing the CRF- and DTW-based STD methods, respectively.
Both scores from the two approaches range from zero to one.
γ is set to 0.05, which is determined by the in-vocabulary
(INV) subset of the Japanese test collection [8] and is com-
mon for all of the query terms in the test collection.



2524
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.10 OCTOBER 2016

6. STD Experiment

6.1 Test and Development Set

We used two types of STD test collections to verify our pro-
posed method. One is the CORE subtask of the NTCIR-
9 SpokenDoc-1 STD task [6] (CSJ-CORE set). The test
collection targets 177 lectures (39 hours) in the Corpus of
Spontaneous Japanese (CSJ) [29]. The number of utter-
ances is 53,892. This test collection contains a total of 50
query terms. The average number of occurrences per term
is 7.1. The other test collection is the moderate-size task of
NTCIR-10 SpokenDoc-2, which contains 104 oral presen-
tation speeches (28.6 hours) from the first to sixth annual
SDPWS (SDPWS set). The number of query terms is 100.
The average number of occurrences per term is 9.0.

In addition, we prepared a development set for γ pa-
rameter tuning of Eq. (11). We used the IVN subset of the
Japanese test collection for STD [8], which includes 50 IVN
query terms.

As shown in Figs. 2 and 4, the speech data were rec-
ognized by the ten ASRs. Julius ver. 4.1.3 [30], an open
source decoder for LVCSR, was used in all the systems. We
prepared two types of AM and five types of LM for con-
structing the PTN. The AMs are triphone-based (Tri.) and
syllable-based hidden Markov models (HMMs) (Syl.) with
both types of HMM trained from the spoken lectures except
for the 177 lectures in the CSJ. All the LMs are word- and
character-based trigrams as follows:

WBC: Word-based trigram in which words are represented
by a mix of Chinese characters, Japanese Hiragana, and
Katakana.

WBH: Word-based trigram in which all words are repre-
sented only by Japanese Hiragana. Words consisting
of Chinese characters and Katakana are converted into
Hiragana sequences.

CB: Character-based trigram in which all characters are
represented by Hiragana.

BM: Character sequence-based trigram in which the unit of
language modeling is two of Hiragana characters.

None: No LM is used. Speech recognition without any LM
is equivalent to phoneme (or syllable) recognition.

Each model is trained from the many transcriptions in the
CSJ under the open speech data of STD. The AMs and
LMs are trained under the same condition as in the previ-
ous work [5].

Finally, ten combinations, consisting of two AMs and
five LMs, are formed.

Table 2 shows the phoneme recognition accuracy rate
of each ASR system on the evaluation corpora.

6.2 CRF-Based Model Training and Feature Types

Our CRF-based triphone detection models were trained
from the portion of the CSJ other than the 177 lectures that

Table 2 Phoneme recognition accuracy rate (%) of each ASR system.

LM / AM CSJ SDPWS

WBC / Tri. 93.2 88.4
WBH / Tri. 93.1 88.3
CB / Tri. 90.8 85.4
BM / Tri. 91.8 86.3
None / Tri. 88.2 66.7
WBC / Syl. 88.9 81.1
WBH / Syl. 88.8 81.6
CB / Syl. 88.1 80.9
BM / Syl. 85.7 75.6
None / Syl. 86.0 54.6

used a CRF++ toolkit†. A total of 2,525 speeches were used
to train models. The number of trained triphone models was
908, derived from 43 types of Japanese monophones, and
we did not use any clustering algorithm for grouping similar
triphones together as AM training before training the CRF-
based models.

We introduced four kinds of feature types in Table 1.
In this paper, we use two types of feature sets from Table 1
as follows:

1. all of the types of features,
2. unigrams, in-ASR bigrams, and trigrams.

We verify the effectiveness of learning the relationships of
error patterns between and across the ASR systems using
these two feature sets.

In addition, we trained CRF models from the n-best
phoneme-based transcriptions outputted by the single ASR
system (Tri./WBC) that achieved the best ASR performance.
They were compared to the CRF models trained from the
multiple ASR systems. We use the best and ten best tran-
scriptions of the ASR system in this paper.

6.3 Evaluation Metrics

The evaluation metrics used included recall, precision, F-
measure of optimal point on a recall-precision curve, and
mean average precision (MAP) values [6]. These measures
are used officially in the test collections.

Recall =
Ncorr

Ntrue
(12)

Precision =
Ncorr

Ncorr + Nspurious
(13)

F − measure =
2 · Recall · Precision
Recall + Precision

(14)

Here, Ncorr and Nspurious are the total numbers of cor-
rect and spurious (false) term detections, respectively, and
Ntrue is the total number of true term occurrences in the
speech data. The F-measure values for the optimal balance
of Recall and Precision values are denoted by “maximum
F-measure.”

†CRF++: Yet Another CRF toolkit, https://code.google.com/
p/crfpp/
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The STD performance for the query sets can be illus-
trated using a recall−precision curve, which is plotted by
changing the threshold θC in the CRF-based STD method or
θD in the DTW-based baseline.

MAP is the mean of the average precision values for
each query term, calculated as follows:

MAP =
1
Q

Q∑
q=1

AveP(q) (15)

where Q is the number of full queries and AveP(q) is the av-
erage precision of the qth query term of the query set. Aver-
age precision is calculated by averaging the precision values
computed for each relevant term in the list in which retrieved
terms are ranked by a relevance measure.

AveP(q) =
1

Relq

Nq∑
r=1

(δr · Precisionq(r)) (16)

where r is the rank, Nq is the rank number at which all the
relevance terms of query term q are detected, and Relq is the
number of the relevance terms of the query term q. δr is a
binary function for a given rank r.

6.4 Experimental Results

Figures 7 and 8 show the recall-precision curves of each
STD approaching the CSJ-OOV and SDPWS sets, respec-
tively. Tables 3 and 4 also represent maximum F-measure
and MAP values of the STD methods. We then compared
the STD performances of three STD methods. The STD sys-
tem (1) explained in Sect. 3 is the baseline in this study, and
(2)−(5) are the CRF-based approaches only. “CRF-1” refers
to the CRF models trained with all of the feature types for
CRF training, and “CRF-2” also refers to the models trained
with all of the feature types except for cross-ASR bigram
features, while “multi” indicates that the training data of the
CRF models consist of multiple ASR systems. Conversely,
“single” systems use only the best output or ten best outputs

Fig. 7 Recall-precision curves of the STD methods on the CSJ-OOV set.

from a single ASR system (Tri./WBC). Systems (6), (7), (8),
and (9) are the proposed approaches, which recompute the
scores of the detections obtained by the baseline, and (7)
and (9) are revised versions of (6) and (8), respectively. In
(7) and (9), the CRF-based approach is applied only to de-
tections by the baseline system for a query term with fewer
than 11 phonemes (N ≦ 10) †. The CRF-based re-ranking is
not applied in (7) and (9) to query terms with more than ten
phonemes.

First, we discuss the feature types of the CRF-based
triphone detection models. Comparing CRF-1 and CRF-2
in Table 3, we see that CRF-2 obtained better STD perfor-
mance than CRF-1 on the CSJ-OOV set. Conversely, for the

Fig. 8 Recall-precision curves of the STD methods on the SDPWS set.

Table 3 Maximum F-measure and MAP values of the STD methods on
the CSJ-OOV set.

Systems Max. F-measure (%) MAP

(1) DTW 78.61 0.863
(2) CRF-1 (multi) 58.60 0.771
(3) CRF-2 (multi) 61.14 0.795
(4) CRF-2 (single, 1-best) 37.22 0.582
(5) CRF-2 (single, 10-best) 39.16 0.574
(6) (1)+(2) 80.74 0.882
(7) (1)+(2) (short queries) 79.72 0.869
(8) (1)+(3) 80.47 0.893
(9) (1)+(3) (short queries) 79.16 0.869

Table 4 Maximum F-measure and MAP values of the STD methods on
the SDPWS set.

Systems Max. F-measure (%) MAP

(1) DTW 47.35 0.621
(2) CRF-1 (multi) 32.98 0.477
(3) CRF-2 (multi) 28.57 0.460
(4) CRF-2 (single, 1-best) 25.48 0.367
(5) CRF-2 (single, 10-best) 23.90 0.358
(6) (1)+(2) 47.92 0.624
(7) (1)+(2) (short queries) 49.34 0.626
(8) (1)+(3) 47.79 0.625
(9) (1)+(3) (short queries) 49.26 0.626

†The average number of phonemes consisting of all the query
terms is approximately ten. Therefore, we divided the query set
equally into two groups based on the number of phonemes more
than ten and less than 11.
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SDPWS set, CRF-1 performed better than CRF-2 (Table 4).
The cross-ASR bigram features can train the relationship
of phoneme confusion patterns across ASR systems. On
the CSJ-OOV set, the training and testing data are from the
same corpus. Therefore, the CRF models were well trained,
using only unigram-, in-ASR bigram-, and trigram-based
features. For the SDPWS set, the environment between the
training and testing of the CRF models was unmatched. In
addition, the ASR performance of the SDPWS speeches was
lower than that of the CSJ speeches as shown in Table 2.
In that case, the CRF model cannot be trained adequately
with only in-ASR-based features. The cross-ASR feature
was useful for error pattern training.

Next we discuss the training data of the CRF models.
As shown in Tables 3 and 4, we were able to improve the
CRF models when we used transcriptions outputted from
the multiple ASR systems, even though the training volume
of multi and single, ten-best are the same.

Although the CRF-based STD-only studies (2)−(5) did
not perform well compared to the baseline approach (1), the
re-ranking approach (6)−(9) of the DTW- and CRF-based
STD outputs improved STD performance (both maximum
F-measure and MAP) compared to the baseline approach
(1). The recall-precision curves of (6)−(9) in Figs. 7 and
8 from the re-ranked detections also improved substantially.
Comparing (6) with (8) on both the sets, we see that there
are no significant differences between CRF-1 and CRF-2,
both of which are used in the re-ranking approach, on the
two evaluation metrics.

The CRF labeling performances† were approximately
85% and 70% on the CSJ-OOV and SDPWS sets, respec-
tively. The reason the labeling performance for the SDPWS
set was so much worse was the lower ASR performances of
each ASR system (Table 2) and the unmatched environment
between the training and testing of the CRF-based models.
This resulted in the estimation of the correct triphone on
the SDPWS being more difficult than for the CSJ. Conse-
quently, for the SDPWS set, a long query term that consists
of more triphones is difficult to detect from transcriptions
using the CRF models because the detection probability is
likely to be low. However, the difficulty of triphone detec-
tion on the SDPWS set did not have a negative impact on
the STD performance for the short query terms compared
to the long query terms because the short queries consisted
of a limited number of triphones. As shown in Table 5, the
STD performance for the short query terms improved more
than any of the query terms in the SDPWS set. As shown
in (7) and (9) from Fig. 8 and Table 4, we obtained the best
STD performance when the CRF-based re-ranking approach
was applied to only the short query terms. Conversely,
the CRF-based models trained on the matched environment
worked well on the evaluation for the CSJ-OOV set because
phoneme-to-phoneme confusion patterns trained using CRF

†The correct label (B and I) detection rates were 85.4% (CRF-
1) and 86.0% (CRF-2) for the CSJ. The rates for the SDPWS were
70.3% (CRF-1) and 70.5% (CRF-2).

Table 5 Maximum F-measure and MAP values for only the short query
terms.

CSJ-OOV set SDPWS set
Systems F-measure MAP F-measure MAP

(1) 78.18 0.838 39.85 0.537
(6) 80.00 0.855 42.18 0.549
(8) 79.45 0.853 41.46 0.548

were fit well to the target transcriptions (matched condition).
Therefore, in the case of the CSJ-OOV set, applying the
CRF-based re-ranking to all of the query terms improved
the entire STD performance compared to applying it to only
the short query terms.

Finally, the experimental results showed that CRF-
based triphone detection modeling is useful in providing
confidence regarding terms detected using the different
types of STD technique despite the unmatched condition be-
tween training and testing of the CRF models.

7. Conclusion

In this study, we proposed a CRF-based re-ranking approach
that recomputes the detection scores provided by the DTW-
based STD engine. The CRF model finds triphones com-
prising a query term from an utterance. We used CRF-
based triphone detection models based on features generated
from multiple types of phoneme-based transcriptions that
are used for creating a PTN-formed index used in the DTW-
based approach. The aim of this approach is to train recogni-
tion error patterns such as phoneme-to-phoneme confusions
on the CRF framework and to control false detections from
the DTW approach. In the STD experiment on the OOV
subset for Japanese test collection from the CSJ and the
NTCIR-10 moderate-size task from the SDPWS speeches,
the CRF-based approach alone could not outperform the
DTW-based STD approach by using the outputs of multi-
ple ASR systems. However, we found that the CRF-based
method could perform accurate detections. In the end, the
combination of CRF- and DTW-based methods yielded the
best STD performance. In particular, we also showed that
STD performance for short query term detection in the un-
matched environment between training and testing of the
CRF-based models was improved by using the CRF-based
approach.

As future work, we intend to study a triphone cluster-
ing approach to training CRF-based models. This approach
might solve the training data shortage problem and improve
the detection accuracy of each triphone. In addition, we will
attempt to investigate how to set the weight parameter γ au-
tomatically and dynamically for each query term. We expect
this to achieve more improvement than a uniform value of γ
for all query terms.
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