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Investigation of Combining Various Major Language Model
Technologies including Data Expansion and Adaptation

Ryo MASUMURA†,††a), Taichi ASAMI†, Takanobu OBA†∗, Hirokazu MASATAKI†, Sumitaka SAKAUCHI†,
and Akinori ITO††, Members

SUMMARY This paper aims to investigate the performance improve-
ments made possible by combining various major language model (LM)
technologies together and to reveal the interactions between LM technolo-
gies in spontaneous automatic speech recognition tasks. While it is clear
that recent practical LMs have several problems, isolated use of major LM
technologies does not appear to offer sufficient performance. In consider-
ation of this fact, combining various LM technologies has been also ex-
amined. However, previous works only focused on modeling technologies
with limited text resources, and did not consider other important technolo-
gies in practical language modeling, i.e., use of external text resources and
unsupervised adaptation. This paper, therefore, employs not only manual
transcriptions of target speech recognition tasks but also external text re-
sources. In addition, unsupervised LM adaptation based on multi-pass de-
coding is also added to the combination. We divide LM technologies into
three categories and employ key ones including recurrent neural network
LMs or discriminative LMs. Our experiments show the effectiveness of
combining various LM technologies in not only in-domain tasks, the sub-
ject of our previous work, but also out-of-domain tasks. Furthermore, we
also reveal the relationships between the technologies in both tasks.
key words: language models, direct decoding, unsupervised adaptation,
rescoring, spontaneous speech recognition

1. Introduction

Two statistical models, acoustic models and language mod-
els (LMs), are essential components of modern automatic
speech recognition systems. This framework was estab-
lished many decades ago [1]. Until now, many researchers
strove to develop these two statistical models for improving
their performance. It can be said that the current progress in
speech recognition technology is driven by advancements in
these two models.

In recent years, a major breakthrough occurred in
acoustic modeling with the introduction of the deep neu-
ral network (DNN) [2]. DNNs catch acoustic features more
precisely than traditional Gaussian mixture models, and
significant performance improvements have been achieved
with DNN-based acoustic modeling [3]. Language model-
ing, however, has seen no comparable breakthrough for a
long time even though a lot of LM technologies have been
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proposed. It is clear that back-off n-gram LMs, the mod-
ern practical LMs, have several problems [4]. However, the
performance improvements offered by individual LM tech-
nologies remain insufficient.

The most likely explanation for the insufficiency is that
the problems posed by the back-off n-gram LMs cannot
be solved by using just one LM technology. The knowl-
edge that individual LM technologies can solve different
problems raises the thought that significant performance im-
provements can be obtained by combining several of them.
This paper identifies the feasibility of this approach and elu-
cidates the relationships between LM technologies that are
used in concert.

A couple of previous works provide comparative stud-
ies of various LM technologies as well as investigations of
combining various LM technologies [5]–[7]. The previous
works showed that some combinations may theoretically
yield much better performance. However, the studies pub-
lished to date merely considered the modeling techniques in
abstract terms and failed to conduct examinations involving
actual speech recognition systems.

In fact, two important issues are raised in the actual use
of speech recognition system. The first one is the scarcity of
training data. For instance, in the voice search task, it is easy
to collect data corresponding to the target task by accessing
text-input query logs [8]. In the spontaneous speech task, on
the other hand, the data corresponding to the target task must
be obtained by manually transcribing speech. Thus, data ex-
pansion techniques that can collect useful training data sets
from external text resources are important [9]–[12]. In ad-
dition, data expansion techniques are useful in addressing
the out-of vocabulary (OOV) problem. The second issue is
the current weakness of unsupervised adaptation [13]–[15].
Since technologies that offer robust performance in various
tasks are difficult to realize, it is important to make LMs that
specialize in processing input speech. Unsupervised adap-
tation is an important approach for realizing these kinds of
technologies. We can say that it is necessary to take into ac-
count these two issues for our examination since these issues
are involved in major problems in back-off n-gram model-
ing.

This paper, therefore, examines several combinations
of various LM technologies, not only modeling technolo-
gies but also data expansion and unsupervised adaptation.
This challenge raises, of course, new issues of what kinds
of technologies we should use and how to combine different
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kinds of LM technologies. Our contributions to address the
issues are summarized as follows.

• We redefine problems posed by traditional back-off n-
gram modeling as four items; data sparseness, con-
text limitation, domain dependency, and unawareness
of recognition errors.
• We divide LM technologies into three categories (di-

rect decoding, unsupervised adaptation, and rescoring)
and prepare the major technologies for each category
to totally cover the traditional problems.
• We present combination methods for each category and

examine various combination settings to reveal rela-
tionships between the technologies.

This paper is an extended study of our previous work [16].
The previous work only examined in in-domain tasks. In
this paper, we extend our evaluation to not only in-domain
tasks but also out-of-domain tasks.

This paper is organized as follows. Section 2 describes
baseline LM technologies and their problems. In Sect. 3, we
categorize the LM technologies and identify the major LM
technologies in each category. In addition, we also explain
how to combine technologies. Section 4 describes our ex-
periments and discusses the relationship between the tech-
nologies. Section 5 concludes this paper.

2. Baseline LM Technology and Problems

2.1 Back-Off N-gram LMs

The back-off n-gram modeling is the most popular and
practical LM [17]. Back-off n-gram LMs are widely used
because of their compactness, power, and suitability for
ordinary decoder such as weighted finite state transducer
(WFST) based decoder [18], [19]. Back-off n-gram LMs
calculate the generative probability of word wk given context
information uk using n− 1 words behind wk. The generative
probability is defined as:

P(wk |uk,Θ1) ≈ P(wk |wk−n+1, . . . , wk−1,Θ1), (1)

where n is the n-gram order and Θ1 is the model parameter.
We note that smoothing techniques are usually used for tack-
ling the zero frequency problem in n-gram modeling [20].

This paper starts with manual transcriptions of a tar-
get speech recognition task and develops a baseline system
consists of back-off n-gram LMs trained from the transcrip-
tions. A hierarchical Pitman-Yor LM (HPYLM) is used for
the back-off n-gram structure [21]. HPYLM is a theoreti-
cally elegant Bayesian n-gram model that has demonstrated
top performance among several smoothing methods [22].

2.2 Problems

There are obvious problems with back-off n-gram LMs
given the limited availability of manual transcriptions of the
target speech recognition task [4]. Fundamental problems
can summarized as follows although these problems are not

clearly independent of each other.

• Data sparseness:
If the manual transcriptions of the target speech recog-
nition task are only used for training data, the data
size is insufficient to construct robust back-off n-gram
LMs to the target tasks. (even though the back-off
n-gram LM can assign generative probabilities to lin-
guistic phenomena that are not included in the training
data). In addition, OOV words that are not included in
the vocabulary have zero probability. For the precise
probability estimation, a huge amount of training data
is needed.

• Context limitation:
A back-off n-gram LM can consider only n − 1 words
behind the target word. n is usually set to 3-5. Thus,
only short context information is used for calculating
generative probabilities in back-off n-gram modeling.
It can be expected that long-range context information
would yield more precise probability estimation.

• Domain dependency:
The performance of a back-off n-gram LM depends
on the properties of its training data. In fact, an LM
constructed using data drawn from many domains is
not versatile. It is important to construct domain-
dependent LMs to improve LM performance.

• Unawareness of recognition errors:
Back-off n-gram LMs are usually constructed from
text data that does not include mis-recognized words.
Therefore, the concept of recognition error is not con-
sidered at all. We can expect performance improve-
ments by explicitly modeling recognition errors.

3. Combinations of Various LM Technologies

3.1 Categorization of LM Technologies

This paper introduces the key kinds of LM technologies. For
combining them, it is important to take account of the appli-
cable scope of each technology. In this paper, we consider
the following three categories of the situations where a spe-
cific LM technology is used.

• Direct decoding:
This category is referred to as back-off n-gram LM-
based methods that can be used in direct (one-pass) de-
coding. Direct decoding is the ideal form of speech
recognition. It basically demands the use of a back-
off n-gram LM suitable for WFST decoders; along
this line, we can introduce n-gram approximation tech-
niques or data expansion techniques to tackle the data
sparseness problem.

• Unsupervised adaptation:
This category is referred to as back-off n-gram LM-
based methods that require multi-pass decoding for do-
main adaptation. Unsupervised adaptation can con-
struct LMs dependent on the processing input speech
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Table 1 Summarization of major LM technologies for each category.

Method Category Data Context Domain Unawareness of
sparseness limitation dependency recognition errors

1. Back-off n-gram LM using limited manual transcriptions Baseline - - - -
2. Back-off n-gram LM as approximation of other LMs Direct decoding

√
- - -

3. Back-off n-gram LM using external language resources Direct decoding
√

- - -
4. Topic model based adaptation Unsupervised adaptation -

√ √
-

5. Document retrieval based adaptation Unsupervised adaptation
√ √ √

-
6. Advanced LM Rescoring

√ √
- -

7. Discriminative LM Rescoring - - -
√

using recognition hypothesis generated in first decod-
ing pass. It can also reflect long-range information
through the consideration of overarching recognition
hypotheses. The adapted LM is also used in WFST-
based decoder.

• Rescoring:
This category is referred to as more complicated
model-based methods that cannot be directly intro-
duced to decoding process. Rescoring is performed af-
ter recognition hypotheses are obtained, which makes
it easy to apply complicated techniques with remark-
able properties.

This paper draws several technologies from each cate-
gory, see Table 1. It is clear that each technology can solve
different problems posed by back-off n-gram LMs. The de-
tails of each technology are given in the following subsec-
tions.

3.2 Technologies for Direct Decoding

3.2.1 Back-Off N-gram LM as Approximation of Other
LMs

To construct robust back-off n-gram LMs, we can introduce
techniques that convert different kinds of LMs into back-off
n-gram structures [23], [24]. In this framework, an LM is
constructed from training data for text generation, and texts
are then generated by the model via random sampling. Next,
a back-off n-gram LM is trained using the generated data.

In this paper, we use latent words LMs (LWLMs)
for text generation [23]. LWLMs are generative models,
where each latent variable is associated with an observed
word [25]. It is expected that the generated data contains
various linguistic expressions that are not contained in the
original training data. In constructing a back-off n-gram LM
from generated data, entropy pruning can be used to reduce
the model size [26]. A probability of the resulting back-off
n-gram LM is denoted as P(wk |uk,Θ2).

3.2.2 Back-Off N-gram LM Using External Text Re-
sources

To construct back-off n-gram LM with voluminous training
data, we can employ data expansion techniques from exter-
nal text resources such as Web data [9]–[12].

As the data expansion method, this paper uses the dif-
ference in entropy between in-domain and out-of-domain
models [12]. In this framework, the in-domain LM is con-
structed from training data, while the out-of-domain LM is
constructed from data randomly extracted from external text
resources. The back-off n-gram LM can be also used as each
LM. HI(s) is the entropy of sentence s in the in-domain LM,
HO(s) is the entropy of s in the out-of-domain LM; sentence
score D(s) is defined as:

D(s) = HI(s) − HO(s). (2)

We collect sentences whose score is less than threshold T
as training data to construct the back-off n-gram LM. In this
paper we set T to 0, which is equivalent to using the Bayes
classifier for sentence selection [11]. A probability of the
resulting back-off n-gram LM is denoted as P(wk |uk,Θ3).

3.2.3 Combination of Technologies for Direct Decoding

In direct decoding, each technology generates a back-off n-
gram LM as well as a baseline back-off n-gram LM, so we
can combine the technologies by using the n-gram mixture
model approach. The generative probability is calculated as:

P(wk |uk,Θ1+2+3) =
∑

t∈1,2,3
λtP(wk |uk,Θt), (3)

where λt is a mixture weight that is preliminarily optimized
using a validation set and the EM algorithm. Θ1+2+3 is the
model parameter of the n-gram mixture model. The result-
ing model can be also used in direct decoding since it can be
approximated as a single back-off n-gram structure.

3.3 Technologies for Unsupervised Adaptation

3.3.1 Topic Model Based Adaptation

For unsupervised adaptation of back-off n-gram LM, topic
models can be used. In unsupervised adaptation with topic
models, the entire topic information of the processing target
speech is determined by the recognition hypothesis gener-
ated in the first pass, and the n-gram model is adapted using
the estimated topic. This paper uses the unigram marginal
technique since it allows back-off probabilities in the n-gram
model to be considered [27], [28]. We use latent Dirichlet
allocation (LDA) as the topic model [29].
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In this framework, the topic probability is estimated us-
ing a recognition hypothesis of the target speech, and next,
the n-gram model is adapted using the estimated unigram
probability. When the baseline model is used in the first
pass, adapted n-gram model P(wk |uk,Θ1+4) is given by:

P(wk |uk,Θ1+4) =(∑
z P(wk |z,Θ4)P(z|d,Θ4)

P(wk |Θ1)

)μ P(wk |uk,Θ1)
Z(uk)

, (4)

where z is a topic, and d is a recognition hypothesis.
P(wk |z,Θ4) and P(z|d,Θ4) are calculated based on LDA. μ
is a tuning parameter and Z(uk) is a normalization term. If
P(wk |uk,Θ1+2+3) is used in the first pass, “1” in Eq. (4) is
replaced by “1 + 2 + 3”.

3.3.2 Document Retrieval Based Adaptation

Relevant documents to a target speech can be utilized
for constructing domain-dependent LM. Document retrieval
based unsupervised adaptation can be split into the follow-
ing steps. First, relevant data is selected from external
text resources using a recognition hypothesis of the target
speech. Next, the back-off n-gram model is adapted us-
ing relevant documents [13], [14], [30], [31]. Various meth-
ods have been proposed for document retrieval. One study
uses several document retrieval techniques [32]. In this pa-
per, we use vector space models (VSMs) for document re-
trieval [13], [14], [30].

Document retrieval based on VSMs uses the cosine
similarity between the recognition hypothesis and a text in
the external resources. After retrieval, unsupervised adapta-
tion is conducted by mixing the baseline n-gram model with
the n-gram model constructed from the relevant documents.
When the baseline model is used in the first pass, adapted
n-gram model P(wk |uk,Θ1+5) is given by:

P(wk |uk,Θ1+5) =

λ5P(wk |uk,Θ1) + (1 − λ5)P(wk |uk,Θ5), (5)

where P(wk |uk,Θ5) is the back-off n-gram model con-
structed from relevant documents. λ5 is a mixture weight
that is automatically optimized using the recognition hy-
pothesis [33]. If P(wk |uk,Θ1+2+3) is used in the first pass,
“1” in Eq. (5) is replaced by “1 + 2 + 3”.

3.3.3 Combination of Technologies for Unsupervised
Adaptation

In unsupervised adaptation, adapted models based on each
technique are expressed as n-gram models, so we can also
combine the techniques as n-gram mixture models. The
adapted n-gram model that uses both unsupervised adapta-
tion technologies is expressed as:

P(wk |uk,Θ1+4+5) =

λaP(wk |uk,Θ1+4) + (1 − λa)P(wk |uk,Θ1+5), (6)

where Θ1+4+5 is the model parameter. In contrast to di-
rect decoding, mixture weight λa is optimized using the
recognition hypothesis generated in the first pass. Also, if
P(wk |uk,Θ1+2+3) is used in the first pass, “1” in Eq. (6) is
replaced by “1 + 2 + 3”.

3.4 Technologies for Rescoring

3.4.1 Advanced LMs

Beyond the back-off n-gram structure, various model struc-
tures such as neural networks and random forests have been
proposed [34], [35]. Of particular interest, recurrent neu-
ral network LMs (RNNLMs) have attracted significant at-
tention in recent years [36]. RNNLMs have two character-
istics: one is that the word space can be represented as a
continuous space vector based on neural networks, and the
other is that long-range information can be flexibly taken
into consideration based on its recurrent structure. Since
using an RNN makes the cost of computing the probabil-
ity estimation proportional to the lexical size of the output
layer, class-based RNNLMs are most commonly used [37].
The resulting probability estimation is defined as:

P(wk |uk,Θ6) = P(wk |sk, ck,Θ6)P(ck |sk,Θ6), (7)

where s is context information, which includes the previ-
ous word and previous output in the hidden layer, and c is
word class. Θ6 denotes the model parameter of RNNLM.
In rescoring, we use the probability obtained by linearly in-
terpolating RNNLM and the back-off n-gram model that is
employed in the decoding part. When the baseline model is
used in the decoding part, the mixed probability is given by:

P(wk |uk,Θ1+6) =

λ6P(wk |uk,Θ1) + (1 − λ6)P(wk |uk,Θ6), (8)

where λ6 is a mixture weight which is preliminarily de-
fined by processing the validation set. If the adapted model
P(wk |uk,Θ1+2+3+4+5) is used in decoding part, “1” in Eq. (8)
is replaced by “1 + 2 + 3 + 4 + 5”.

3.4.2 Discriminative LMs

Discriminative LMs (DLMs) are constructed from pairs of
reference and error words while standard LMs consider
correct word sequences. DLMs, also called error correc-
tive models or re-ranking models, can evaluate whether a
recognition hypothesis is correct or incorrect [38]. The n-
best list generated from a speech recognizer is denoted as
L = {d j| j = 1, · · · ,m} where d j is the j-th hypothesis in the
n-best list. Error correction using a DLM is realized as:

d∗ = arg max
d∈L

{a0 f0(d) + a� f (d)}, (9)

where f (d) is the feature vector of d and f0(d) is the speech
recognition score of d. a0 and a denote a scaling factor and
model parameter of DLM, respectively. The scaling factor is
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preliminarily defined by processing the validation set. There
are several methods to estimate the model parameter [39].
We use round-robin duel discrimination (R2D2) for this es-
timation [40] as it outperforms other methods under many
conditions.

3.4.3 Combination of Technologies for Rescoring

In rescoring, RNNLM has a different structure from DLM,
so the techniques are introduced in sequence. In fact, DLM
must be introduced at the end because it is used for er-
ror correction. Therefore, RNNLM-based rescoring is con-
ducted first based on the mixed score yielded by back-off n-
gram LM and RNNLM. After adding RNNLM, DLM-based
rescoring is conducted. In this case, the speech recognition
score contains the RNNLM-based score.

4. Experiments

4.1 Setups

Our experiments used the Corpus of Spontaneous Japanese
(CSJ) [41]. CSJ was divided into a training set (Train), train-
ing set for DLM (Train DLM), validation set (Valid), and
test set A (Test A) and B (Test B). The validation set was
used for optimizing several hyper parameters. In addition,
we also employed the Corpus of spoken Japanese Lecture
Contents (CJLC) as test set C (Test C) for evaluations in
out-of-domain environments [42]. Details of the data sets
are shown in Table 2.

We also prepared text data of about 50 billion mor-
phemes drawn from the web as the external text resource.
We used an acoustic model based on hidden Markov models
with DNN (DNN-HMM) [2], [3]. The trained DNN-HMM
had 8 hidden layers with 2048 nodes and 3072 outputs. The
speech recognition decoder was VoiceRex, a WFST-based
decoder [19], [43]. JTAG was used as the morpheme ana-
lyzer to split sentences into words [44].

Our evaluation examined the following methods.
These methods and the numbers correspond to Table 1 en-
tries. We combined these methods category-wise and then
all of them.

1. Back-off n-gram LM using limited manual tran-
scriptions: word-based 3-gram HPYLM constructed
from the training set. For the training, we used 200
iterations for burn-in, and collected 10 samples. No
pruning technique was used. Vocabulary size was 78K
words.

Table 2 Experimental data set.

Domain # of documents # of morphemes

Train CSJ 2,472 6,752,588
Train DLM CSJ 200 542,215
Valid CSJ 10 28,547
Test A CSJ 10 28,504
Test B CSJ 10 18,426
Test C CJLC 6 53,828

2. Back-off n-gram LM as approximation of other
LMs: word-based 3-gram HPYLM constructed from 1
billion morphemes generated based on LWLM. LWLM
was constructed from the training set. For the train-
ing of HPYLM, we used 200 iterations for burn-in, and
collected 10 samples. Entropy based pruning was con-
ducted to reduce the model size. Vocabulary size was
78K words, which corresponds to the baseline.

3. Back-off n-gram LM using external language re-
sources: word-based 3-gram HPYLM constructed
from 2 billion morphemes selected from the external
text resources. For the training of HPYLM, we used
200 iterations for burn-in, and collected 10 samples.
Entropy based pruning was used. As a limited vocabu-
lary setup, we used vocabulary consisted of 78K words,
which corresponds to the baseline. As an expanded vo-
cabulary setup, we selected top 600K words based on
word frequency. The expanded vocabulary setup is de-
noted as 3�.

4. Topic model based adaptation: unsupervised adapta-
tion using the unigram marginal technique and LDA.
LDA was constructed from a training set containing 50
topics. Tuning parameter was set to 0.5. The vocabu-
lary size of the adapted model was 78K.

5. Document retrieval based adaptation: unsupervised
adaptation based on document retrieval using a vec-
tor space model. We selected top 1K documents from
external text resources and constructed word-based 3-
gram HPYLM from them. As a limited vocabulary
setup, the vocabulary size of the adapted model was
restricted to 78K, which corresponds to the baseline.
Moreover, a vocabulary-limitation-free model, which
uses all of words in retrieved documents for the do-
main adaptation, was also prepared as an expanded vo-
cabulary setup 5�. Note that the vocabulary size is not
constant because retrieved documents are different ac-
cording to target speech.

6. Advanced LM: class-based RNNLM constructed
from the training set. It used 500 hidden neurons, 1000
classes. Vocabulary size was 78K words, which corre-
sponds to the baseline.

7. Discriminative LM: DLM with word features con-
structed from training data for DLM. R2D2 method
was used for training. To generate recognition hypothe-
ses about the training data, we used two kinds of mod-
els. One is the baseline system and the other is a system
that combined all techniques except DLM. The latter is
denoted as 7∗.

Note that the expanded vocabulary setups (3� and 5�) can
be conducted when external text resources were used. Also,
setups that combined 3� or 5� with other methods mean the
expanded vocabulary setups. When we used the methods for
rescoring (6 and 7), we generated 1000-best lists in decod-
ing part. Several hyper parameters for each method and the
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Table 3 Experimental results on validation set: PPL, WER [%], OOV rate [%], and RTF. (a)-(q)
are limited vocabulary setups and (r)-(z) are expanded vocabulary setups. No PPL comparison is
possible among setups with different vocabulary size.

Setup Mixture weights Vocabulary Number of Valid
(optimized using validation set) size parameters (CSJ)

PPL WER OOV rate RTF

Limited vocabulary setups
(a) 1. - 78K 26M 83.18 20.01 0.73 0.75
(b) 2. - 78K 80M 85.45 20.15 0.73 0.77
(c) 1+2. λ1 = 0.53, λ2 = 0.47 78K 103M 77.86 19.16 0.73 0.85
(d) 3. - 78K 254M 140.86 22.95 0.73 0.90
(e) 1+3. λ1 = 0.77, λ3 = 0.23 78K 272M 77.77 18.84 0.73 0.92
(f) 1+2+3. λ1 = 0.47, λ2 = 0.35, λ3 = 0.18 78K 320M 74.89 18.45 0.73 0.90
(g) 1+4. - 78K 31M 71.87 19.29 0.73 1.45
(h) 1+5. - 78K 88M 71.47 18.38 0.73 5.66
(i) 1+4+5. - 78K 92M 65.24 18.07 0.73 5.74
(j) 6. - 78K 780M 77.50 - 0.73 -
(k) 1+6. λ6 = 0.42 78K 806M 71.70 19.01 0.73 1.28
(l) 1+7. 78K 33M - 19.28 0.73 0.79
(m) (1+6)+7. - 78K 813M - 18.25 0.73 1.32
(n) (1+2+3)+4+5. - 78K 365M 64.53 17.49 0.73 6.14
(o) (1+2+3+4+5)+6. λ6 = 0.64 78K 1145M 61.32 17.23 0.73 6.57
(p) (1+2+3+4+5+6)+7. - 78K 1152M - 16.51 0.73 6.61
(q) (1+2+3+4+5+6)+7∗. - 78K 1152M - 16.45 0.73 6.61

Expanded vocabulary setups
(r) 3�. - 600K 340M 149.79 22.95 0.37 1.01
(s) 1+3�. λ1 = 0.74, λ3 = 0.26 657K 355M 83.98 18.45 0.05 1.02
(t) 1+2+3�. λ1 = 0.45, λ2 = 0.34, λ3 = 0.21 657K 410M 81.12 18.12 0.05 1.04
(u) 1+5�. - 254K 113M 75.45 18.26 0.13 6.81
(v) 1+4+5�. - 254K 117M 69.01 17.88 0.13 6.90
(w) (1+2+3�)+4+5�. - 688K 470M 69.93 17.26 0.05 7.48
(x) (1+2+3�+4+5�)+6. λ6 = 0.67 688K 1250M 67.32 17.08 0.05 8.01
(y) (1+2+3�+4+5�+6)+7. - 688K 1254M - 16.25 0.05 8.05
(z) (1+2+3�+4+5�+6)+7∗. - 688K 1254M - 16.20 0.05 8.05

combined methods were optimized using validation set.

4.2 Results

Table 3 and Table 4 show the perplexity (PPL), word error
rate (WER), and OOV rate results for each setup in vali-
dation set and test sets. We labeled the experimental con-
ditions from (a) to (z) where each number corresponds
to our experimental setup and Table 1. We evaluated both
limited vocabulary setups (a)-(q) and expanded vocabu-
lary setups (r)-(z). No PPL comparison is possible for the
expanded vocabulary setups as they have different vocabu-
lary sizes from the baseline vocabulary. In addition, Table 3
shows real time factor (RTF) results which include not only
decoding time but also adaptation and rescoring time for the
validation set. Also, Table 3 displays number of parameters
and mixture weights (λ1, λ2, λ3, λ6) that were preliminarily
optimized using the validation set. Note that other mixture
weights (λ5, λa) are dynamically determined by a recogni-
tion hypothesis of a target speech. There are no WER results
in (j) since RNNLM cannot be applied to ASR directly.
On the other hand, there are no PPL results in introducing
DLM, (l), (m), (p), (q), (y), (z), because DLM is not a
probabilistic model.

Task difficulties can be shown in Table 3 and Table 4.
They show that test set C was more difficult than the valida-
tion set and test sets A and B. WER in Test C was about 40

% while WER in the others was about 20 %. This is because
test set C is a different domain from that of the training data.

First, we evaluated RTF results and number of parame-
ters of each setup. From the viewpoint of RTF, direct decod-
ing methods such as (c) or (e) had time efficiency com-
pared to the other setups. Unsupervised adaptation meth-
ods such as (g) or (h) took much time because they con-
ducted LM adaptation and second pass decoding. In rescor-
ing methods, DLM took less time than RNNLM. From the
viewpoint of number of parameters, RNNLM required much
more parameters than other conditions. Also, use of external
text resources increased number of parameters. In compari-
son to the baseline (a), RTF was increased to about 11-fold,
and number of parameters was increased to about 48-fold
when we used all of LM technologies (z).

Next, we evaluated the performance of combining var-
ious LM technologies under the constraint of limited vo-
cabulary setups (a)-(q). We could achieve performance
improvements by combining technologies compared to the
baseline (a). For instance, (c) and (e) are more effec-
tive than (a). Moreover, we could obtain further improve-
ments by combining LM technologies in each category com-
pared to using only a single technique in each category. For
instance, (f) is more effective than (c) or (e). This re-
sult shows that individual technologies in each category can
complement each other. The best performance was obtained
when all technologies were combined and matched DLM



2458
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.10 OCTOBER 2016

Table 4 Experimental results on test sets: PPL, WER [%], and OOV rate [%]. (a)-(z) are corre-
sponds to Table 3. Test A and Test B are in-domain tasks, and Test C is out-of-domain task. No PPL
comparison is possible among setups with different vocabulary size.

Setup Test A Test B Test C
(CSJ) (CSJ) (CJLC)

PPL WER OOV rate PPL WER OOV rate PPL WER OOV rate

Limited vocabulary setups
(a) 1. 70.72 24.46 0.54 102.44 23.03 1.08 169.03 43.97 3.67
(b) 2. 74.36 24.58 0.54 107.16 22.94 1.08 149.61 43.12 3.67
(c) 1+2. 67.42 23.49 0.54 96.79 22.27 1.08 143.78 42.40 3.67
(d) 3. 135.34 27.90 0.54 129.15 23.46 1.08 179.81 46.27 3.67
(e) 1+3. 67.09 23.04 0.54 88.91 21.06 1.08 132.21 42.37 3.67
(f) 1+2+3. 64.92 22.70 0.54 87.43 20.80 1.08 126.93 42.11 3.67
(g) 1+4. 64.87 23.80 0.54 95.12 22.66 1.08 162.95 43.50 3.67
(h) 1+5. 64.82 22.74 0.54 87.37 21.23 1.08 154.07 42.19 3.67
(i) 1+4+5. 60.60 22.61 0.54 82.82 21.03 1.08 149.33 42.00 3.67
(j) 6. 68.10 - 0.54 98.23 - 1.08 172.48 - 3.67
(k) 1+6. 63.29 23.34 0.54 93.96 22.05 1.08 151.13 43.41 3.67
(l) 1+7. - 23.22 0.54 - 21.96 1.08 - 42.91 3.67
(m) (1+6)+7. - 22.32 0.54 - 20.92 1.08 - 42.61 3.67
(n) (1+2+3)+4+5. 59.89 21.56 0.54 81.69 20.12 1.08 122.78 41.37 3.67
(o) (1+2+3+4+5)+6. 56.74 21.34 0.54 77.56 19.96 1.08 119.32 41.34 3.67
(p) (1+2+3+4+5+6)+7. - 20.47 0.54 - 18.84 1.08 - 40.54 3.67
(q) (1+2+3+4+5+6)+7∗. - 20.38 0.54 - 18.70 1.08 - 40.33 3.67

Expanded vocabulary setups
(r) 3�. 141.39 28.38 0.57 141.45 22.75 0.48 211.61 45.66 0.72
(s) 1+3�. 70.17 22.45 0.10 99.43 19.71 0.07 168.72 41.85 0.19
(t) 1+2+3�. 68.58 21.96 0.10 97.35 19.34 0.07 159.81 41.36 0.19
(u) 1+5�. 67.26 22.62 0.18 99.94 20.03 0.13 176.12 41.36 0.53
(v) 1+4+5�. 63.97 22.45 0.09 90.11 19.89 0.03 173.06 41.06 0.18
(w) (1+2+3�)+4+5�. 62.85 21.44 0.09 91.57 18.91 0.03 155.53 40.51 0.18
(x) (1+2+3�+4+5�)+6. 60.62 21.27 0.09 89.14 18.75 0.03 152.42 40.45 0.18
(y) (1+2+3�+4+5�+6)+7. - 20.32 0.09 - 17.95 0.03 - 39.78 0.18
(z) (1+2+3�+4+5�+6)+7∗. - 20.17 0.09 - 17.92 0.03 - 39.66 0.18

was used. In terms of WER, statistically significant per-
formance improvements (p < 0.001) were achieved by (n)
compared to the baseline (a) in each test set.

In addition, we evaluated the expanded vocabulary se-
tups (r)-(z). Tables 3 and 4 show that the vocabulary ex-
pansion can improve OOV rate compared to the limited vo-
cabulary setups. In direct decoding, the WER differences
between (f) and (t) in each test sets were statistically sig-
nificant (p < 0.05). Also, in unsupervised adaptation, the
WER differences between (i) and (v) in test sets B and C
were statistically significant (p < 0.01) although the WER
difference in test set A was no statistically significant (p >
0.05). It seems that these improvements were induced by
OOV rate improvements. In test set A, OOV rate of the
baseline vocabulary was comparatively small, so vocabu-
lary expansion was not so effective. The highest perfor-
mance was attained by (z) that combined all techniques
with vocabulary expansion. In terms of WER, it yielded
4-5 point error reduction compared to the baseline (a) in
each test sets. The improvements were statistically signifi-
cant (p < 0.001). These results suggested that remarkable
performance improvements are possible by simultaneously
tackling multiple LM problems.

4.3 Discussions

We discuss relationships between the technologies. Four

Table 5 First notable point in experimental results: WER [%] and RER
[%]. The RER results with a dagger † are statistically significant (p < 0.01).

Test A Test B Test C
(CSJ) (CSJ) (CJLC)

WER RER WER RER WER RER

(a) 24.46 - 23.03 - 43.97 -
→ (c) 23.49 † 3.96 22.27 3.30 42.40 † 3.57
→ (s) 22.45 † 8.21 19.71 † 14.45 41.85 † 4.82
→ (t) 21.96 † 10.22 19.34 † 16.02 41.36 † 5.93

notable points can be extracted from Tables 3 and 4.
First, Table 5 summarized the WER and relative error

reduction (RER) results to reveal characteristics of direct de-
coding based on n-gram modeling. The result shows that
building a back-off n-gram LM with combining technolo-
gies for direct decoding showed substantial performance im-
provements. The WER differences between (a) and (t)
were statistically significant (p < 0.01) in each test set. In
particular, (s) was effective for test set B. This is because
OOV words were decreased by using external text resources.
These results show that significant performance improve-
ments are possible by solving a data sparseness problem
even if the model structure is a back-off n-gram LM.

Second, Table 6 summarizes the WER and RER re-
sults to reveal characteristics of unsupervised adaptation
for back-off n-gram modeling. The result shows that there
was only a slight improvement in performing unsupervised



MASUMURA et al.: INVESTIGATION OF COMBINING VARIOUS MAJOR LANGUAGE MODEL TECHNOLOGIES INCLUDING DATA EXPANSION
2459

Table 6 Second notable point in experimental results: WER [%] and
RER [%]. The RER results with a dagger † are statistically significant
(p < 0.01).

Test A Test B Test C
(CSJ) (CSJ) (CJLC)

WER RER WER RER WER RER

(a) 24.46 - 23.03 - 43.97 -
→ (v) 22.45 † 8.21 19.89 † 13.63 41.06 † 6.61

(t) 21.96 - 19.34 - 41.36 -
→ (w) 21.44 2.36 18.91 2.22 40.51 †2.05

Table 7 Third notable point in experimental results: WER [%] and RER
[%]. The RER results with a dagger † and an asterisk ∗ are statistically
significant (p < 0.01 and p < 0.05, respectively).

Test A Test B Test C
(CSJ) (CSJ) (CJLC)

WER RER WER RER WER RER

(a) 24.46 - 23.03 - 43.97 -
→ (k) 23.34 † 4.57 22.05 ∗ 4.25 43.41 1.27

(w) 21.44 - 18.91 - 40.51 -
→ (x) 21.27 0.79 18.75 0.85 40.45 0.15

adaptation after constructing the back-off n-gram LM with
combining technologies for direct decoding for in-domain
tasks. In test sets A and B, the WER differences between
(t) and (w) were no statistically significant (p > 0.05)
while the WER differences between (a) and (v) were sta-
tistically significant (p < 0.01). Even if we use the technolo-
gies for direct decoding, a context limitation problem cannot
be solved. This result shows that using long-range informa-
tion offers comparatively small benefit. On the other hand,
unsupervised adaptation was significantly effective (p <
0.01) for our-of-domain task even if we use LM with tech-
nologies for direct decoding. This is because the back-off
n-gram LM used in the first pass did not well match the test
set C. It suggests that LM adaptation is necessary to solve a
domain dependency problem.

Third, Table 7 summarizes the WER and RER results
to reveal relationships between RNNLM and back-off n-
gram modeling. The result shows that the improvements
offered by RNNLM were small after performing technolo-
gies for direct decoding and unsupervised adaptation. In
test sets A and B, the WER differences between (w) and
(x) were no statistically significant (p > 0.05) while the
WER differences between (a) and (k) were statistically
significant (p < 0.05). While it can be expected to solve a
data sparseness problem and a context limitation problem by
introducing RNNLM, it suggests that back-off n-gram LM
can offer similar effect by raising the robustness through the
use of technologies for direct decoding and by reflecting the
long-range information based on unsupervised adaptation.
In addition, RNNLM was comparatively ineffective for out-
of-domain task. There was no statistically significance (p >
0.05) between (a) and (k) in test set C. The main reason is
that RNNLM is weak against the domain dependency prob-
lem as is standard back-off n-gram modeling.

Fourth, Table 8 summarizes the WER and RER
results to reveal relationships between DLM and other

Table 8 Fourth notable point in experimental results: WER [%] and
RER [%]. The RER results with a dagger † and an asterisk ∗ are statis-
tically significant (p < 0.01 and p < 0.05, respectively).

Test A Test B Test C
(CSJ) (CSJ) (CJLC)

WER RER WER RER WER RER

(a) 24.46 - 23.03 - 43.97 -
→ (l) 23.22 † 5.06 21.96 ∗4.64 42.91 † 2.41

(x) 21.27 - 18.75 - 40.45 -
→ (y) 20.32 † 4.46 17.95 ∗ 4.26 39.78 ∗ 1.65
→ (z) 20.17 † 5.17 17.92 ∗ 4.42 39.66 † 1.95

technologies. The result shows that DLM always demon-
strated a fixed improvement even if used at the end. In fact,
the WER differences between (a) and (l), and those be-
tween (x) and (y) or (z) were individually statistically
significant (p < 0.05) in each test set. This attributed to the
fact that DLMs have a different aspect from other modeling
techniques. It is clear that the input may not fully resolved
if only correct word sequences are modeled, so the frame-
work of modeling the speech recognition error directly is
an effective solution. On the other hand, the WER differ-
ences between (y) to (z) were statistically no significant
(p > 0.05) even though DLM was trained using the recogni-
tion hypothesis generated from a matched system. It can be
also considered that recognition errors that can be improved
by DLMs have similar patterns between the baseline system
and the matched system. Also, DLM was effective for not
only in-domain tasks but also out-of-domain tasks. It can
be considered that DLMs with R2D2 method can perform
robustly with multiple domains.

5. Conclusions

In this paper, we examined the combination of various LM
technologies including data expansion via external language
resources and unsupervised adaptation in the spontaneous
speech recognition task. To this end, We redefined prob-
lems posed by traditional back-off n-gram modeling and
employed the major LM technologies with consideration of
their applicable scope in the actual use of speech recognition
system. We demonstrated that significant performance im-
provements were possible by combining various technolo-
gies, compared to using each technology in isolation. Com-
bining all technologies yielded 4-5 point error reduction in
WER. Furthermore, our investigation revealed several re-
markable facts: the power of a back-off n-gram modeling
with combining technologies for direct decoding including
vocabulary expansion, the relationship between RNNLM
rescoring or unsupervised adaptation and other technolo-
gies, and the uniqueness of DLM.
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