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SUMMARY This paper aims to improve the domain robustness of lan-
guage modeling for automatic speech recognition (ASR). To this end, we
focus on applying the latent words language model (LWLM) to ASR.
LWLMs are generative models whose structure is based on Bayesian soft
class-based modeling with vast latent variable space. Their flexible at-
tributes help us to efficiently realize the effects of smoothing and dimen-
sionality reduction and so address the data sparseness problem; LWLMs
constructed from limited domain data are expected to robustly cover un-
known multiple domains in ASR. However, the attribute flexibility seri-
ously increases computation complexity. If we rigorously compute the gen-
erative probability for an observed word sequence, we must consider the
huge quantities of all possible latent word assignments. Since this is com-
putationally impractical, some approximation is inevitable for ASR imple-
mentation. To solve the problem and apply this approach to ASR, this paper
presents an n-gram approximation of LWLM. The n-gram approximation is
a method that approximates LWLM as a simple back-off n-gram structure,
and offers LWLM-based robust one-pass ASR decoding. Our experiments
verify the effectiveness of our approach by evaluating perplexity and ASR
performance in not only in-domain data sets but also out-of-domain data
sets.
key words: language models, domain robustness, latent words language
models, n-gram approximation, automatic speech recognition

1. Introduction

Language models (LMs) are necessary for modern auto-
matic speech recognition (ASR) systems. One of main goals
of language modeling research is domain robustness [1].
For example, academic lectures, call center recordings and
meeting domains have different linguistic properties. In fact,
LM performance strongly depends on the quantity and qual-
ity of the training data. In practical ASR systems, LMs are
often required to robustly predict the probability of unob-
served linguistic phenomena even though the target training
data is limited. Also, LMs constructed from out-of-domain
data are required to robustly work for unknown domains
since ideal training data is seldom available. This paper,
therefore, aims to improve the domain robustness of lan-
guage modeling for ASR.

For domain robust language modeling, it is neces-
sary to tackle the data sparseness problem for which there
are two representative approaches; smoothing and dimen-
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sionality reduction. Smoothing is a fundamental technique
to mitigate the data sparseness problem in n-gram model-
ing [2]. Various smoothing methods have been proposed
and Kneser-Ney smoothing is known to be one of the
most accurate methods [3]. The hierarchal Pitman-Yor LMs
(HPYLMs), whose smoothing is based on the Pitman-Yor
process, can slightly outperform the Kneser-Ney method
in ASR [4], [5]. The other solution to the data sparseness
problem is based on dimensionality reduction. Instances in-
clude class-based n-gram modeling [6]. Similar ideas have
been employed in decision tree LMs [7] and random forest
LMs [8], in which context information is clustered into some
groups. Also, neural network LMs and recurrent neural net-
work LMs (RNNLMs) can reduce dimensionality on the ba-
sis of learning the distributed representation of words [9]–
[11].

To further advance towards domain robust ASR, this
paper focuses on the latent words LMs (LWLMs) recently
proposed in the machine learning area [12]. LWLMs are
generative models that have latent variables called latent
words. LMLMs can employ a smoothing effect based
on Bayesian modeling as well as HPYLMs. In addition,
LWLMs share a soft clustering structure with Bayesian hid-
den Markov models (HMMs) [13], [14] and the Bayesian
class-based LMs [15], [16]. However, in contrast to those
models, LWLMs have vast latent variable space about as
large as the vocabulary of the training data. Thus, LWLMs
are trained by taking into account the latent words and it is
this advance that allows LWLMs to tackle the data sparse-
ness problem. These flexible attributes help us to efficiently
realize smoothing and dimensionality reduction simultane-
ously, so LWLMs are expected to robustly cover multiple
domains in ASR.

However, an LWLM is difficult to directly use for ASR
because of its soft clustering structure and vast latent vari-
able space. In the case of a hard clustering structure such
as standard class-based n-gram models [6], class assignment
can be identified uniquely. The use of the soft clustering
structure, however, forces us to consider all possible class
assignments. In fact, all words can be generated from all la-
tent variables in the LWLM approach. Additionally, the pos-
sible class assignments are innumerable because the number
of latent variables corresponds to vocabulary size. Thus, if
the length of an observed word sequence is L and the num-
ber of latent words is |V|, the number of possible class as-
signments is |V|L. It is impractical for modern ASR systems
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to rigorously compute the generative probability of a word
sequence. Also, one-pass ASR decoding is impossible even
though the computation is possible.

To overcome these problems, this paper presents an n-
gram approximation of LWLMs. Our idea is to use a sim-
ple back-off n-gram structure to approximate an LWLM and
to use the approximated model for realizing one-pass ASR
decoding. As LWLMs are generative models, a lot of ob-
served word sequences can be generated on the basis of the
generative process without calculating definitive generative
probabilities. The generated word sequences include mul-
tiple phrases that are not included in the original training
data. Therefore the n-gram model trained from them would
be able to accurately perform over multiple domains, while
that is the approximation model. Furthermore, the criterion
for training an LWLM greatly differs from that for a stan-
dard word n-grams model, so interpolating both the approx-
imated n-gram model and the standard n-gram model would
effectively improve ASR performance.

Our approach is related to technologies that recast
LMs, whose structure is complex, as back-off n-gram vari-
ants [17]–[23]. Complex LMs are difficult to use in ASR
due to their computation complexity and poor compatibil-
ity with ASR decoding. Recent ASR decoders are based
on the weighted finite state transducer (WFST). Although
back-off n-gram models can be converted into WFST, most
LMs are too complex to suit WFST decoding. The exist-
ing solution is to use them for rescoring recognition hy-
potheses (n-best lists or confusion networks) generated in
WFST-based decoding. However, rescoring is sensitive to
the performance of the generated recognition hypotheses.
Therefore, to implement WFST-based decoding, techniques
are needed that can convert complex LMs into back-off n-
gram structures. The previous studies report that ASR per-
formance can be improved by applying the converted mod-
els to WFST-based decoding although the converted models
are inferior to the original models. This paper also uses the
n-gram approximation approach since LWLMs cannot even
calculate definitive generative probabilities.

In fact, this paper is an extended study of our previ-
ous work [24], which showed preliminary results of our ap-
proach. In this paper, we extend our evaluation in which
n-gram approximation approaches based on RNNLMs and
HPYLMs are also examined [21]–[23]. In addition, we also
reveal detailed properties for investigating the number of n-
gram entries and the n-gram hit rates of each approximated
model. Additionally, we can use the entropy pruning tech-
nique to reduce model size of the approximated model al-
though the model size becomes excessive as many words are
sampled to realize an adequate approximation. Therefore,
this paper also investigates the relationship between model
size and the performance of the pruned model variants.

This paper is organized as follows. First, Sect. 2 briefly
describes LWLMs. Section 3 explains our approach. Sec-
tions 4 and 5 describe a perplexity evaluation and an ASR
evaluation, respectively. Section 6 concludes this paper.

Fig. 1 Model structure of LWLMs.

2. Latent Words Language Models

2.1 Definition

LWLMs are generative models that set a latent variable for
every observed word. A graphic rendering of LWLM is
shown in Fig. 1. The gray circles denote observed words
and the white circles denote latent variables. In the genera-
tive process of LWLM, a latent variable, called latent word
ht, is generated depending on the transition probability dis-
tribution given context lt = ht−n+1, . . . , ht−1 where n is an n-
gram order. Next, observed word wt is generated depending
on the emission probability distribution given latent word ht,
i.e.,

ht ∼ P(ht |lt,Θlw), (1)

wt ∼ P(wt |ht,Θlw), (2)

where Θlw is a model parameter of LWLM. P(ht |lt,Θlw)
is expressed as an n-gram model for latent words, and
P(wt |ht,Θlw) models the dependency between the observed
word and the latent word.

An important property of LWLMs is that the latent
word is expressed as a specific word that can be selected
from an entire vocabulary V. Thus, the number of latent
words is the same as the vocabulary size |V|. This is the
reason the latent variable is called as a latent word.

2.2 Bayesian LWLMs

In the Bayesian approach, LWLM produces the following
generative probability for observed words w = w1, · · · ,wN :

P(w) =
∫ ∑

h

P(w|h,Θlw)P(h|Θlw)P(Θlw)dΘlw,

=

∫ N∏
t=1

∑
ht∈V

P(wt |ht,Θlw)P(ht |lt,Θlw)P(Θlw)dΘlw,

(3)

where h = h1, · · · , hN is a latent word assignment. The
Bayesian approach takes account of all possible model pa-
rameters. As the integral with respect to Θlw is analytically
intractable, a sampling technique is used as a feasible ap-
proximation. Eq. (3) is approximated as:
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P(w) � 1
M

M∑
m=1

P(w|Θm
lw)

=
1
M

M∑
m=1

N∏
t=1

∑
ht∈V

P(wt |ht,Θ
m
lw)P(ht |lt,Θm

lw), (4)

where Θm
lw

means m-th point estimated model parameter.
The generative probability can be approximated using M in-
stances of Θm

lw
. Although we can only use one instance for

the approximation, we conduct ensemble modeling (M >
1). In fact, the ensemble of several models is effective for
LMs such as random class-based LMs [25] and random for-
est LMs [8].

LWLM has a similar structure to the standard class-
based n-gram model. The latent word corresponds, ap-
proximately, to the class of the standard class-based n-gram
model [6]. LWLM has a soft word clustering structure that
differs from a simple hard word clustering structure in the
standard class-based n-gram model. In the hard word clus-
tering structure, one word belongs to only one class. In the
soft word clustering structure, on the other hand, one word
belongs to multiple classes. Strictly speaking, each word
belongs to all classes in LWLM. In addition, LWLM has
vast class space about as large as the vocabulary while the
number of class in the standard class-based n-gram model is
often defined as several hundreds or thousands.

2.3 Training

LWLM is trained using word sequence w = w1, · · · ,wN . In
LWLM training, we have to infer the latent word assignment
h = h1, · · · , hN behind w. In fact, we infer latent word as-
signments h1, · · · , hM . Once a latent word assignment hm is
defined, P(wt |ht,Θ

m
lw

) and P(ht |lt,Θm
lw

) can be calculated.
To estimate the latent word assignments, Gibbs sam-

pling is suitable. Gibbs sampling samples a new value for
the latent word in accordance with its distribution and places
it at position k in h. The conditional probability distribution
of possible values for latent word ht is given by:

P(ht |w, h−t) ∝ P(wt |ht,Θlw,−t)
t+n−1∏

j=t

P(h j|l j,Θlw,−t), (5)

where h−t represents all latent words except for ht. In the
sampling procedure, P(ht |lt,Θlw,−t) and P(wt |ht,Θlw,−t) can
be calculated from w and h−t.

The transition probability distribution and the emis-
sion probability distribution are calculated on the basis of
their prior distributions. For the transition probability dis-
tribution, this paper uses a hierarchical Pitman-Yor prior.
P(ht |lt,Θlw) is given as:

P(ht |lt,Θlw) = P(ht |lt, h), (6)

P(ht |lt, h) =
c(ht, lt) − d|lt |s(ht, lt)

θ|lt | + c(lt)

+
θ|lt | + d|lt |s(lt)
θ|lt | + c(lt)

P(ht |π(lt), h), (7)

Algorithm 1 : Random sampling based on trained LWLM.
Input: Model parameters Θ1

lw
, · · · ,ΘM

lw
,

number of sampled words N
Output: Sampled words w
1: l1 = <s>
2: for t = 1 to N do
3: m ∼ P(m) = 1

M
4: ht ∼ P(ht |lt ,Θm

lw
)

5: wt ∼ P(wt |ht ,Θ
m
lw

)
6: end for
7: return w = w1, · · · ,wN

where π(lt) is the shortened context obtained by removing
the earliest word from lt. c(ht, lt) and c(lt) are counts calcu-
lated from a latent word assignment h. s(ht, lt) and s(lt) are
calculated from a seating arrangement defined by the Chi-
nese restaurant franchise representation of the Pitman-Yor
process [26]. d|lt | and θ|lt | are discount and strength parame-
ters of the Pitman-Yor process, respectively. Moreover, we
use a Dirichlet prior for the emission probability distribu-
tion [27]. P(wt |ht,Θlw) is given as:

P(wt |ht,Θlw) = P(wt |ht,w, h), (8)

P(wt |ht,w, h) =
c(wt, ht) + αP(wt)

c(ht) + α
, (9)

where P(wt) is the maximum likelihood estimation value of
unigram probability in the training data w. c(wt, ht) and c(ht)
are counts calculated from w and latent word assignment h.
A hyper parameter α can be optimized via a validation set.

3. N-gram Approximation of LWLMs

3.1 Sampling Based Approximation

Our idea is to convert trained LWLMs into the back-off
n-gram structure. The n-gram approximation of a trained
LWLM is based on random sampling of observed words. As
LWLM is a generative model, it can generate latent words
and observed words. Therefore, we can easily sample a lot
of observed words and construct a back-off n-gram model
from them. The random sampling is based on Algorithm 1.

In line 1, l1 is initialized as sentence head symbol <s>.
Through iterations of lines 2-6, we can obtain a large num-
ber of word sequences. With N iterations, we can generate
N latent words, and N observed words. The N observed
words are used only for back-off n-gram model estimation.
We define the probability distribution of the approximated
model as P(wt |ut,Θlwng) where ut means context informa-
tion wt−n+1, . . . ,wt−1, n is n-gram order, andΘlwng represents
the model parameter. In fact, any back-off n-gram structure,
including HPYLMs, can be used for the approximation.

3.2 Linear Interpolation

It can be considered that the approximated model has prop-
erties that differ from the equivalent n-gram model directly
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constructed from training data because the sampled data de-
rived from the trained LWLM includes various linguistic
phenomena that are not present in the original training data.
Therefore, we can expect that interpolating both LMs will
effectively improve ASR performance. The probability dis-
tribution of interpolated n-gram model P(wt |ut,Θmix) is de-
fined as:

P(wt |ut,Θmix) = λP(wt |ut,Θng)

+ (1 − λ)P(wt |ut,Θlwng), (10)

where P(wt |ut,Θng) means the probability distribution of the
n-gram model constructed from the original training data.
Interpolation weight λ can be optimized by using a vali-
dation data set. In fact, the interpolated model can be ap-
proximately represented as a single back-off n-gram struc-
ture [28]. The calculation can be conducted by adding both
smoothed n-gram probabilities with mixture weights and re-
computing back-off probabilities.

3.3 Entropy Pruning for Reducing Model Size

Our approach has a weakness in that the approximated
model size becomes excessive as many words are sampled
to realize an adequate approximation. To reduce model size,
the entropy pruning technique can be used [29]. The en-
tropy pruning can efficiently reduce the n-gram entries in the
back-off n-gram structure. The decision as to whether the n-
gram entry (ut,wt) should be retained or pruned is based on
the relative entropy between non-pruned model P(wt |ut,Θ)
and pruned model (wt |ut,Θ

′
). Relative entropy D(Θ||Θ′ ) is

calculated by:

D(Θ||Θ′ )=P(ut)
∑
wt

P(wt |ut,Θ) log
P(wt |ut,Θ

′
)

P(wt |ut,Θ)
, (11)

where P(ut) is computed using the chain rule and lower
order n-gram model. A threshold for the relative entropy
should be defined in accordance with the actual use case.

4. Experiment 1: Perplexity Evaluation

4.1 Setups

First, we conducted experiments using the Penn Treebank
corpus, one of the most widely used sources for evaluating
LMs [30]. Sections 0-20 were used as a training set (Train),
sections 21 and 22 were used as a validation set (Valid), and
Sect. s 23 and 24 were used as a test set (Test A). This se-
lection matches those of many previous works. In addition,
we prepared human-human discussion text data (Test B) for
evaluations in a domain different from the training set. Each
vocabulary was limited to 10K words and there were no out-
of-vocabulary words. Table 1 shows details.

In this evaluation, we constructed the following LMs.

• MKN5: Word-based 5-gram LM with interpolated
Kneser-Ney smoothing constructed from training

Table 1 Data sets in Experiment 1.

Domain # of words

Train Penn Treebank 929,589
Valid Penn Treebank 70,390
Test A Penn Treebank 78,669
Test B Human-Human Discussion 50,507

set [3].
• HPY5: Word-based 5-gram HPYLM constructed from

the training set [5]. For the training, we used 200 itera-
tions for burn-in, and collected 10 sets of samples.
• C-HPY5: Hard class-based 5-gram HPYLM con-

structed from training set. Brown clustering was used
for deciding word class [6]. The class size was 1K.
• RNN: Word-based RNNLM [10]. The hidden layer size

was set as 200 by referring to a preliminary experiment.
• A-HPY5: Word-based 5-gram HPYLM constructed

from data generated on the basis of HPY5.
• RNN5: Word-based 5-gram HPYLM constructed from

data generated on the basis of RNN [21].
• LW5: Word-based 5-gram HPYLM constructed from

data generated on the basis of 5-gram LWLM con-
structed from training set. For training LWLM, we
used 500 iterations for burn-in, and collected 10 sam-
ples.

In addition, we employed several mixed models constructed
by linearly interpolating the above LMs. For example,
HPY5+LW5 is a mixed model constructed from HPY5 and
LW5. The mixture weights were optimized using a validation
set on the basis of the EM algorithm. Other hyper parame-
ters were also optimized using the validation set.

4.2 Results

For the n-gram approximation approaches (A-HPY5, RNN5,
LW5), the generated data size is related to the performance of
the approximated models. Therefore, we investigated the re-
lationship between the data size generated by random sam-
pling and perplexity (PPL) reduction in the validation set
and each test set. We constructed each approximated model,
and mixed models (RNN5+HPY5, LW5+HPY5) by varying the
generated data size and computed the corresponding PPL.
We plot the results along with the results of HPY5 and RNN
in Fig. 2, where the horizontal axis is in log-scale.

Figure 2 shows that the PPL of each model was re-
duced as the generated data increased. In A-HPY5, PPL con-
verged with just a small amount of generated data because
HPYLM has a simple model structure. A-HPY5matched the
performance of HPY5 in each data set when a lot of data
was generated. On the other hand, in RNN5 and LW5, more
generated data was necessary for PPL convergence than in
A-HPY5. LW5 outperformed A-HPY5 and RNN5 when a lot
of data was generated. RNN5 could not match the perfor-
mance of the original RNN. This is because the back-off n-
gram structure cannot take into account long-range context
although RNNLM can consider the long-range context dis-
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Fig. 2 Relations between data size generated by random sampling and perplexity in Experiment 1.

Table 2 Perplexity results in Experiment 1.

Valid Test A Test B

1. MKN5 148.0 141.2 238.6
2. HPY5 145.1 139.3 232.7
3. C-HPY5 150.8 142.2 237.0
4. A-HPY5 147.1 141.1 233.3
5. RNN5 160.4 150.4 286.4
6. LW5 138.7 131.7 205.5

7. HPY5+RNN5 130.5 124.5 226.7
8. HPY5+LW5 128.6 123.1 200.8

9. RNN 134.4 128.9 212.9
10. HPY5+RNN 111.4 107.9 180.6
11. HPY5+RNN5+RNN 113.4 109.2 186.8
12. HPY5+LW5+RNN 109.8 105.4 175.8

tributed representation of words.
In addition, both mixed models also experienced im-

provements in PPL performance as the generated data size
increased. Although the isolated use of RNN5 was not effec-
tive, its combination with HPY5 yielded improved PPL per-
formance. Also, LW5 performance was improved through
combination with HPY5. This combination was effective be-
cause the data generated on the basis of RNN or LW have
different attributes from the original training data. The
combination of HPY5 and A-HPY5 did not improve perfor-
mance because they were almost the same (the results are
not shown in Fig. 2).

Next, we investigated PPL performance for all LMs;
the generated data size was set to 1 giga (1.E+09) words for
A-HPY5, RNN5 and LW5. The results are shown in Table 2.

Lines 1-6 show the results for the back-off n-gram
structure. In each data set, LW5 achieved the best results.
Note that C-HPY5 could not achieve better results than LW5.
Thus, the simple hard clustering structure does not im-

prove PPL performance for either in-domain data or out-of-
domain data, and LWLM structure (soft clustering with vast
class size) seems to be effective for domain robustness.

Lines 7 and 8 show the results for the mixed n-gram
models that can also be expressed as simple back-off n-gram
structures. The combination of HPY5 and RNN5 or LW5 could
improve PPL performance more than their isolated use. In
each data set, HPY5+LW5 was superior to HPY5+RNN5. It can
be considered that the performance was improved because
LW5 had different attributes from HPY5.

Lines 9-12 show the results for RNN and its combination
with the back-off n-gram structure. RNN outperformed other
isolated models (lines 1-6) for the validation set and test set
A. On the other hand, LW5 was superior to RNN for test set B
although LW5 has a back-off n-gram structure. The combi-
nations of RNN with the models with back-off n-gram struc-
ture were effective. In each data set, the best results were
obtained by HPY5+LW5+RNN. This shows that performance
can be improved by n-gram approximation of LWLM even
if RNNLM is also used.

Additionally, we investigated the properties of each ap-
proximated model to reveal that LW5was more effective than
A-HPY5 and RNN5. Table 3 shows the number of 3- and
5-gram entries in each model and n-gram hit rate for the
validation set and each test set. The hit rate represents the
percentage of n-gram entries in the reference data that are
explicitly listed in the LMs. We calculated 3-gram hit rate
(N ≥ 3), which includes the high order (4-gram and 5-gram)
hit rate and 5-gram hit rate (N = 5); the generated data sizes
of each model were set to 10M, 100M and 1000M.

Table 3 shows that LW5 had a lot more n-gram entries
than A-HPY5 and RNN5 for the same generated data size.
This means that random sampling based on LWLM can gen-
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Table 3 Number of n-gram entries and n-gram hit rate [%] results in Experiment 1.

Data size # of 3-gram # of 5-gram Valid Test A Test B
N ≥ 3 N = 5 N ≥ 3 N = 5 N ≥ 3 N = 5

HPY5 930K 586558 737952 39.58 8.62 40.26 7.43 29.01 0.81

A-HPY5 10M 5663883 8848534 49.33 9.80 50.51 8.77 44.62 1.84
100M 40649386 83207920 62.53 14.40 64.28 13.71 61.06 4.91

1000M 274813830 760971607 74.83 19.83 76.61 20.68 75.61 10.54

RNN5 10M 4905245 7768561 47.75 8.75 48.86 7.92 37.49 1.07
100M 33458232 72434311 62.30 13.54 64.02 12.92 55.24 3.18

1000M 219833882 665415678 74.77 19.98 76.75 19.83 71.62 7.62

LW5 10M 6608797 9409511 50.40 9.33 51.62 8.27 46.22 1.69
100M 48464818 90136805 65.28 14.16 67.45 13.58 64.77 4.74

1000M 319956811 841974035 77.45 20.98 79.41 21.14 78.84 10.82

erate a greater variety of linguistic phenomena than HPYLM
or RNNLM. In addition, the 3-gram hit rate and 5-gram hit
rate of LW5 were superior to those of A-HPY5 and RNN5 for
each data set. This means that random sampling based on
LWLM can generate words that are actually in the data set.
These results show that an approximated model based on
effective random sampling can perform robustly in multiple
domains.

5. Experiment 2: ASR Evaluation

5.1 Setups

The second experiments used the Corpus of Spontaneous
Japanese (CSJ) for ASR evaluation [31]. We divided CSJ
into a training set (Train), a small validation set (Valid), and
a test set (Test A). Vocabulary size of the training set was
83,536. The validation set was used in optimizing the hy-
per parameters of the LMs. In addition, a contact center
dialog task (Test B) and a voice mail task (Test C) were pre-
pared for evaluation in out-of-domain environments. In the
contact center dialogue task, two speakers, an operator and
a customer, talked to each other as in call center dialogs.
Twenty four phone calls (24 operator channels and 24 cus-
tomer channels) were used in the evaluation. In the voice
mail task, a person left small voice messages using a smart
phone, and 237 messages were used in the evaluation. Ta-
ble 4 shows details.

For speech recognition evaluation, we prepared an
acoustic model on the basis of hidden Markov models with
deep neural networks (DNN-HMM) [32]. The DNN-HMM
had eight hidden layers with 2048 nodes and was trained us-
ing the CSJ training set. The speech recognition decoder
was VoiceRex, a WFST-based decoder [33], [34]. JTAG
was used as the morpheme analyzer to split sentences into
words [35].

In this evaluation, we constructed the following LMs.

• MKN3: Word-based 3-gram LM with interpolated
Kneser-Ney smoothing constructed from training
set [3].
• HPY3: Word-based 3-gram HPYLM constructed from

the training set [5]. For the training, we used 200 itera-
tions for burn-in, and collected 10 samples.

Table 4 Data sets in Experiment 2.

Domain # of words

Train Lecture 7,317,392
Valid Lecture 28,046
Test A Lecture 27,907
Test B Contact center 24,665
Test C Voice mail 21,044

• C-HPY3: Hard class-based 3-gram HPYLM con-
structed from training set. Brown clustering was used
for deciding word class. The class size was 5K [6].
• RNN: Class-based RNNLM with 500 hidden nodes and

500 classes [11].
• A-HPY3: Word-based 3-gram HPYLM constructed

from 1000M data generated on the basis of HPY3.
• RNN3: Word-based 3-gram HPYLM constructed from

1000M data generated on the basis of RNN.
• LW3: Word-based 3-gram HPYLM constructed from

data generated on the basis of 3-gram LWLM con-
structed from training set. For the training of LWLM,
we used 500 iterations for burn-in and collected 10
samples.

In addition, we examined several mixed models constructed
from the above LMs by linear interpolation. The mixture
weights were optimized using the validation set and the EM
algorithm. Other hyper parameters were also optimized us-
ing the validation set. These LMs, except for RNN, can be
represented using ARPA format, a standard back-off n-gram
format, and they can be directly introduced to WFST de-
coders. RNN can be used as a rescoring model that is intro-
duced after decoding. For rescoring, we generated 1000-
best lists in the decoding pass. For example, HPY3+LW3 was
used for decoding to generate the recognition hypotheses
when we examined HPY3+LW3+RNN.

5.2 Results

Table 5 shows the PPL and word error rate (WER) results
for each condition. PPL was only evaluated in RNN since
RNNLMs cannot be applied to ASR directly.

Lines 1-6 show the results for the back-off n-gram
structure. HPY3 outperformed MKN3 and C-HPY3 in terms
of PPL and WER. Although C-HPY3 yielded dimensionality
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Table 5 Perplexity and word error rate [%] results in Experiment 2.

Valid Test A Test B Test C
(In-Domain) (In-Domain) (Out-Of-Domain) (Out-Of-Domain)
PPL WER PPL WER PPL WER PPL WER

1. MKN3 81.38 19.98 69.36 24.79 167.61 38.67 189.93 32.00
2. HPY3 79.32 19.74 67.50 24.67 158.13 38.29 175.63 31.69
3. C-HPY3 82.97 19.91 69.36 24.59 158.92 38.39 180.89 32.17
4. A-HPY3 82.69 20.20 70.43 25.23 161.56 38.82 177.61 32.04
5. RNN3 98.65 21.63 82.23 26.24 153.89 39.32 163.99 31.96
6. LW3 79.57 19.61 66.93 24.54 141.34 36.93 147.87 30.42

7. HPY3+RNN3 77.96 19.53 66.09 24.26 143.88 37.60 149.81 30.18
8. HPY3+LW3 72.86 18.65 62.05 23.58 134.65 35.99 141.23 28.74

9. RNN 69.49 - 60.78 - 145.05 - 158.57 -
10. HPY3+RNN 64.01 18.53 55.84 23.45 122.52 37.45 142.62 30.89
11. HPY3+RNN3+RNN 63.76 18.41 55.77 23.12 119.00 36.85 138.54 29.24
12. HPY3+LW3+RNN 61.56 17.85 53.36 22.68 114.71 35.36 133.09 28.06

Table 6 Perplexity and word error rate [%] results of pruned models in Experiment 2.

Size Valid Test A Test B Test C
(In-Domain) (In-Domain) (Out-Of-Domain) (Out-Of-Domain)
PPL WER PPL WER PPL WER PPL WER

HPY3 322 M 79.32 19.74 67.50 24.67 158.13 38.29 175.63 31.69

HPY3+LW3 22.0 G 72.86 18.65 62.05 23.58 134.65 35.99 141.23 28.74
9.8 G 73.39 18.70 62.86 23.56 135.02 36.01 143.05 28.63
3.9 G 73.74 18.53 63.21 23.60 135.47 36.05 143.91 28.76
2.2 G 74.09 18.58 63.51 23.67 136.02 36.13 144.44 28.81

563 M 75.41 18.75 64.69 23.87 137.86 36.50 147.66 28.91
353 M 76.39 18.81 65.46 23.78 138.95 36.49 149.08 28.78

reduction and smoothing, C-HPY3 performed comparably or
inferiorly to HPY3. Among approximated models, LW3 per-
formed the best in terms of PPL and WER. For the valida-
tion set and test set A, LW3 was comparable to HPY3. On the
other hand, for test sets B and C, LW3 performed remarkably
better than HPY3. This result shows that LWLM robustly
handles speech domains different from that of the training
data. It seems that the learning criteria, which identify re-
lated words, are effective in expanding the application range
of LMs. These results correspond to those in Experiment 1.

Lines 7 and 8 show the results of mixed n-gram models
that can be also used for WFST-based one-pass decoding.
HPY3+LW3 was superior to HPY3+RNN3 in all data sets. We
obtained better WER reduction from HPY3+LW3 than HPY3
or LW3. Although the mixture weight of HPY3+LW3 was op-
timized for the validation data, the mixed model performed
robustly in out-of-domain data sets.

Lines 9-12 show the results of RNN and the combi-
nation with back-off n-gram structure. RNN was superior
to HPY3 and LW3 in the validation set and test set A. On
the other hand, in test sets B and C, RNN was inferior to
LW3. LW3 seems to be robust at supporting multiple do-
mains. Lines 10-12 compare rescored results using RNN af-
ter WFST-based decoding with back-off n-gram structure in
terms of ASR performance. For example, in line 12, decod-
ing was based on HPY3+LW3 and 1000-best rescoring was
based on HPY3+LW3+RNN. Combining RNN with the back-
off n-gram structure improved PPL and WER. The high-
est result was obtained by HPY3+LW3+RNN in all data sets.
These results suggest that WFST-based decoding perfor-

mance must be improved for utilizing an intelligent rescor-
ing model such as RNNLM.

Next, we applied entropy pruning to HPY3+LW3, the
combination with the highest performance among the back-
off n-gram structures [29]. We investigated the relation-
ship between model size and the performance of the pruned
model variants. Model size is taken to be ARPA file size
with ASCII format.

The results in Table 6 show that entropy pruning could
reduce model size efficiently. Even if we reduced the model
size of HPY3+LW3 such that it was comparable to that of
HPY3, HPY3+LW3 was superior to HPY3 in terms of PPL and
WER. Especially, in out-of-domain data, the pruned models
outperformed HPY3. These results show that entropy prun-
ing is suitable for introducing our approach to practical ASR
systems.

6. Conclusions

In this paper, we proposed an n-gram approximation of
LWLM for improving ASR performance in multiple do-
mains. Our approach allows LWLM to support one-pass
ASR decoding by converting it into the back-off n-gram
structure. We revealed that random sampling based on
LWLM can generate various linguistic phenomena and that
the back-off n-gram model constructed from the generated
data performs robustly in not only in-domain data but also
out-of-domain data. We also showed that the interpolation
of approximated model and standard n-gram model effec-
tively improves ASR performance. Moreover, we revealed
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that entropy pruning is useful in reducing constructed model
size even though a lot of data is needed to adequately ap-
proximate LWLM.
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