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A Statistical Sample-Based Approach to GMM-Based Voice
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SUMMARY This paper presents a novel statistical sample-based ap-
proach for Gaussian Mixture Model (GMM)-based Voice Conversion (VC).
Although GMM-based VC has the promising flexibility of model adapta-
tion, quality in converted speech is significantly worse than that of natural
speech. This paper addresses the problem of inaccurate modeling, which
is one of the main reasons causing the quality degradation. Recently, we
have proposed statistical sample-based speech synthesis using rich context
models for high-quality and flexible Hidden Markov Model (HMM)-based
Text-To-Speech (TTS) synthesis. This method makes it possible not only to
produce high-quality speech by introducing ideas from unit selection syn-
thesis, but also to preserve flexibility of the original HMM-based TTS. In
this paper, we apply this idea to GMM-based VC. The rich context mod-
els are first trained for individual joint speech feature vectors, and then we
gather them mixture by mixture to form a Rich context-GMM (R-GMM).
In conversion, an iterative generation algorithm using R-GMMs is used to
convert speech parameters, after initialization using over-trained probabil-
ity distributions. Because the proposed method utilizes individual speech
features, and its formulation is the same as that of conventional GMM-
based VC, it makes it possible to produce high-quality speech while keep-
ing flexibility of the original GMM-based VC. The experimental results
demonstrate that the proposed method yields significant improvements in
term of speech quality and speaker individuality in converted speech.
key words: GMM-based voice conversion, sample-based speech synthesis,
speech parameter conversion, rich context model

1. Introduction

Statistical Voice Conversion (VC) is an effective tech-
nique for modifying speech parameters to convert non-
/para-linguistic information while keeping linguistic infor-
mation unchanged, making it possible to enhance various
speech-based systems [1]–[4]. While a variety of meth-
ods exist for VC [5]–[7], Gaussian Mixture Model (GMM)-
based VC [8], [9] is still popular thanks to its stability and
flexibility such as model adaptation [10]∗.

In GMM-based VC, a GMM is used to jointly model
the source and target speech features in order to convert
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the speech parameters. One of the biggest issues in GMM-
based VC is poor quality in converted speech. The reasons
causing the quality degradation are classified into analysis-
synthesis errors [14], the over-smoothing effect [15], [16],
and inaccurate modeling, the latter of which we handle in
this paper. For example, as previous work has noted [5], [9],
within each mixture component, the conversion function is
linear which is a poor match for VC.

Inaccurate modeling is a common issue among statis-
tical approaches for speech synthesis. One promising ap-
proach that has been proposed for Text-To-Speech (TTS) is
to introduce ideas of unit selection synthesis (sample-based
speech synthesis) [17], [18] which has excellent speech
quality compared to statistical approaches. For Hidden
Markov Model (HMM)-based TTS [19], Maximum Likeli-
hood (ML)-based unit selection [20] has been proposed to
guide speech parameter segments to maximize HMM like-
lihoods. Although the use of individual speech segments
significantly improves quality in synthetic speech, it loses
the flexibility of the original HMM-based TTS. Recently,
we have proposed a statistical sample-based approach using
tied-covariance acoustic models called rich context models
for TTS that is not only high-quality but also flexible [21],
as shown in Fig. 1. In conventional HMM-based TTS, be-
cause parameters of an acoustic model are estimated using
some speech segments, this approach loses information of
individual speech segments. On the other hand, our pre-
vious work in TTS [21] has modeled the individual speech
segments with rich context models [22]. We have built the
mixture model using the rich context models, and synthetic
speech parameters are generated from the selected rich con-
text models of the mixture model. By reformulating the sta-
tistical models in the same form as in HMM-based TTS, this
method makes it possible to preserve the original flexibility.

In this paper, we apply this idea to GMM-based VC re-
viewed in Sect. 2. In Sect. 3, we construct rich context mod-
els∗∗ corresponding to individual joint speech features, then,
construct a mixture model called a Rich context-GMM (R-
GMM) using the trained rich context models belonging to
the same mixture component of the conventional GMM. An

∗Also, GMM-based frameworks can be combined with deep
neural nets-based speech synthesis [11]–[13].
∗∗The defined name “rich context model” is not strictly accu-

rate for GMM-based VC because no context labels are used. How-
ever, we use this name to maintain consistency with our previous
work [21].
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Fig. 1 Comparison of approaches, unit selection synthesis, conventional
statistical approaches (e.g., HMM-based TTS and GMM-based VC), and
the proposed statistical sample-based approach. Whereas an acoustic
model corresponds to some speech segments in the conventional statisti-
cal approaches, it corresponds to just one speech segment in the statistical
sample-based approach. Note that the individual acoustic models are cal-
culated using individual speech segments, but their covariance matrices are
the same to those of averaged acoustic models.

iterative algorithm is used to convert speech parameters us-
ing the rich context models selected from the R-GMMs. For
initialization of the iteration, we further build over-trained
acoustic models to generate a less-averaged initial parame-
ter sequence. Discontinuous transitions are observed in the
initial parameters, but it can be alleviated by the iterative
parameter conversion. The experimental results in Sect. 4
demonstrate that the proposed method yields significant im-
provements in speech quality and speaker individuality in
converted speech.

2. Conventional GMM-Based Voice Conversion

2.1 Acoustic Modeling

A joint probability density function of speech parameters
of the source and target speakers is modeled with a GMM
using parallel data as follows:

P (Zt |λ) =
Q∑

q=1

w(Z)
q P (Zt |q, λ), (1)
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where, Zt =
[
X�t ,Y

�
t
]� is the joint vector of the input spec-

tral features Xt and the output spectral features Yt at frame t,
and Yt is given by 2D-dimensional joint static and dynamic
feature vectors,

[
y�t ,Δy�t

]�, where yt is represented as a D-
dimensional static feature vector. The source feature vector

Xt is also given by the same form in this paper. A GMM
parameter set λ consists of the Q mixture components, and
each component has the mixture weight w(Z)

q , the mean vec-
tor μ(Z)

q , and the covariance matrix Σ(Z)
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2.2 Speech Parameter Conversion

Given the T -frame source speech feature sequence X =[
X�1 , · · · , X�T

]�
, we determine an optimal GMM mixture se-

quence q̂ =
[
q̂1, · · · , q̂t, · · · , q̂T

]
as follows:

q̂t = argmax
q

P (q|Xt, λ) , (4)

where q̂t is the optimal GMM mixture component at frame
t. The speech parameters are converted by maximizing an
objective function using a GMM likelihood as follows:

ŷq̂ = argmax
y

P (Wy|X, q̂, λ) (5)

=

(
W�D−1

q̂ W
)−1

W�D−1
q̂ Eq̂, (6)

where ŷq̂ =
[
ŷ�1 , · · · , ŷ�t , · · · , ŷ�T

]�
is the converted

speech parameter sequence, and ŷt is the D-dimensional
converted speech parameters at frame t. The com-
ponents of the 2DT -dimensional mean vector, Eq̂ =[
μ�q̂1,1
, · · · ,μ�q̂t ,t

, · · · ,μ�q̂T ,T

]�
, and 2DT -by-2DT covariance

matrix, Dq̂ = diag2D
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]
, are given as:
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bq̂ = μ
(Y)
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(X)
q̂ , (10)

where the notation diag2D denotes the construction of a
block diagonal matrix that has the 2D-by-2D diagonal el-
ements. W is the weighting matrix to calculate the dynamic
features [23]. As shown in Eq. (7), the conventional GMM
performs linear conversion within one mixture component.

3. Statistical Sample-Based Voice Conversion Using
Rich Context Models

3.1 Acoustic Modeling

After conventional training, rich context models are trained
for individual joint speech features, Zt, by updating the
mean vector of the GMM mixture components while tying
its covariance matrix. The m-th rich context model of the
q-th GMM mixture component is

P (Zt |q,m, λ) = N
(
Zt;μ

(Z)
q,m,Σ

(Z)
q

)
, (11)
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μ(Z)
q,m =

[
μ(X)

q,m

μ(Y)
q,m

]
, (12)

where the mean vector μ(Z)
q,m consists of the individual input

and output mean vectors, μ(X)
q,m and μ(Y)

q,m. The individual mean
vectors are estimated based on the ML criterion, and each
of them is equal to one joint feature vector. The mixture
component that Zt belongs to is determined as follows:

q̂t = argmax
q

P (q|Zt, λ) . (13)

In this paper, we perform discriminative GMM training [24]
between conventional training and rich context model train-
ing in order to alleviate mismatch between Eq. (13) and
Eq. (4)†. As described in Sect. 3.2, the rich context models
are selected from the mixture component determined with
Eq. (4) in speech parameter conversion. Therefore, we ex-
pect that the discriminative training is effective to select the
better rich context models.

After training rich context models, the output probabil-
ity density for each GMM mixture component is given as a
R-GMM constructed with all rich context models belonging
to the same mixture component. The R-GMM of the q-th
mixture component is

P (Zt |q, λ) =
Mq∑

m=1

w(Z)
q,mP (Zt |q,m, λ) (14)

=
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(Z)
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)
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where w(Z)
q,m is the weight of the m-th rich context model of

the q-th mixture component. Mq is the total number of the
rich context models of the q-th mixture component, and is
equal to the number of speech features belonging to the mix-
ture component. We can calculate the ML estimate of w(Z)

q,m

based on the occupancy counts†† but we set it to an equiva-
lent value, w(Z)

q,m = 1/Mq for each component, following [21].
These procedures are shown in Fig. 2.

3.2 Speech Parameter Conversion

3.2.1 Iterative Conversion

After determining q̂ in the standard manner with Eq. (4),
we calculate the output probability density function
P (Wy|q̂, X, λ) as follows:

P (Wy|q̂, X, λ)
=
∑

all m
P (Wy|q̂,m, X, λ) P (m|q̂, X, λ) , (16)

†Whereas P (q|Zt, λ) is used in the training stage, P (q|Xt, λ)
is used in the conversion stage. The discriminative training algo-
rithm [24] trains the GMM parameters to alleviate this inconsis-
tency.
††There are basically no duplicated joint speech features, but

such features are included in the training data because we employ
Dynamic Time Warping (DTW) to make joint feature vectors.

Fig. 2 Procedure to create Rich context-GMMs (R-GMMs) using the
rich context models belonging to the same mixture component of the con-
ventional GMM.

where m = [m1, · · · ,mt, · · · ,mT ] is a rich context model
sequence, and mt is the rich context model at frame t.
P (m|q̂, X, λ) is given as:

P (m|q̂, X, λ) =
T∏

t=1

P (m|q̂t, Xt, λ) , (17)

P (m|q̂t, Xt, λ) ≡ 1
Mq̂t

. (18)

Traditionally, the posterior probability P (m|q̂t, Xt, λ) is cal-
culated as the similar as Eq. (4), but we set it constant among
rich context models belonging to the same mixture compo-
nent, following [21]. In practice, there are enormous num-
bers of candidates for rich context models in speech param-
eter conversion†††. Therefore, we calculate P (m|q̂t, Xt, λ)
in a similar fashion to Eq. (4), then, we set P (m|q̂t, Xt, λ) =
1/Mq̂t ,t for the rich context models having the Mq̂t ,t-best pos-
terior probability, and P (m|q̂t, Xt, λ) = 0 otherwise, where
Mq̂t ,t (1 ≤ Mq̂t ,t ≤ Mq̂t ) is the number of candidates at frame
t.

The output probability density function is approxi-
mated with the single rich context model sequence m̂ as fol-
lows:

P (Wy|q̂, X, λ)�P (Wy|q̂, m̂, X, λ) P (m̂|q̂, X, λ) . (19)

After determining the initial speech parameter sequence
y(0)

q̂,m̂
, the converted speech parameter sequence ŷq̂,m̂ is de-

termined by iteratively maximizing the likelihood as fol-
lows:

m̂(i+1) = argmax
m

P
(
m|Wŷ(i)

q̂,m̂
, q̂, X, λ

)
, (20)

ŷ(i+1)

q̂,m̂
= argmax

y
P
(
Wy|q̂, m̂(i+1), X, λ

)
, (21)

where i is the iteration index. P (Wy|q̂, m̂, X, λ) is given as:
†††Even if the training data size of the proposed method is the

same to that of [21], the number of the candidates becomes bigger.
This is because one rich context model corresponds to one speech
feature vector in this study whereas it corresponds to one speech
segment in [21].



TAKAMICHI et al.: A STATISTICAL SAMPLE-BASED APPROACH TO GMM-BASED VOICE CONVERSION USING TIED-COVARIANCE ACOUSTIC MODELS
2493

P (Wy|q̂, m̂, X, λ) = N
(
Wy; Eq̂,m̂, Dq̂

)
, (22)

Eq̂,m̂ =
[
μ�q̂1,m̂1,1, · · · ,μ�q̂T ,m̂T ,T

]
, (23)

μq̂,m̂,t = Aq̂Xt + bq̂,m̂, (24)

bq̂,m̂ = μ
(Y)
q̂,m̂ − Aq̂μ

(X)
q̂,m̂. (25)

Comparing Eq. (7) and Eq. (24), while the bias component
is constant in the conventional GMM, it varies depending on
the selected rich context models in the proposed method.

3.2.2 Initialization

For initialization of the speech parameter conversion, one
reasonable way is to use the parameter sequence generated
from conventional GMMs. However, as noted in [21], [25],
it is inappropriate to initialize using the conventional GMM.
Also, we have reported in [21] that the speech parame-
ter sequence generated from the over-trained acoustic mod-
els provides better initialization. The over-trained acous-
tic models efficiently avoid an averaging effect in the initial
speech parameters. Though the over-trained models cause
the discontinuous transitions in the initial parameters, the
discontinuity can be alleviated by the iterative conversion
process considering delta features. Also, we have reported
that the number of the over-trained models can be deter-
mined to maximize a Global Variance (GV) likelihood [9]
of the finally generated speech parameters.

In this paper, we train the over-trained acoustic mod-
els for each sub-region as shown in Fig. 3. The acoustic
space is divided into Q sub-regions by Eq. (13) first, then
an acoustic models are trained to fit the training data of the
each sub-region. This over-trained acoustic model is given
as a GMM for each sub-region, and is trained in the standard
manner. The total number of the over-trained models is the
sum of the number of mixture components of the GMMs.
The Minimum Description Length (MDL) criterion [26] can
be utilized to determine the number of over-trained models,
but we determine it by the Linde-Buzo-Gray (LBG) algo-
rithm [27]. After determining q̂, the over-trained models are
selected as the similar as Eq. (4), and the initial parameter
sequence is generated in the standard manner using the over-

Fig. 3 Proposed initialization for iterative speech parameter conver-
sion. The over-trained models are trained for each sub-region divided by
Eq. (13).

trained models.

3.3 Discussion

Because one rich context model corresponds to one joint
feature vector, the proposed processes are related to sample-
based voice conversion [28]. The target cost and concatena-
tion cost of the sample-based approach are regarded as the
likelihoods for the static and dynamic parameters [29], [30].

From the perspective of utilizing information of in-
dividual speech features, the conversion process of the
proposed method is the similar to that of kernel-based
speech synthesis [31], [32], and exemplar-based voice con-
version [33], [34]. One of the comparable advantages is that
the individual acoustic models can be re-selected by the it-
erative conversion process.

From the perspective of the conversion function,
whereas the conventional GMM performs linear conversion
within one mixture component, the proposed method can
perform piece-wise linear conversion as shown in Fig. 4.

As described in Sect. 3.2.2, the iterative conversion
process is done to refine the discontinuity of the initial
speech parameters. Figure 5 shows the objective function
given by Eq. (19) in each iteration. Because the value is al-
most converge at the 1st iteration, only a few iterations are
required.

Compared with conventional GMM-based VC, the pro-
posed framework increases the number of model param-
eters because we need (1) a conventional GMM for mix-
ture selection, (2) over-trained models for initialization, and
(3) rich context models for conversion. As shown in Ta-
ble 1, the number of the mean vectors notably increases as
increasing the training data size. Similarly, the computa-
tion cost in conversion increases by the proposed method
as shown in Table 2, and is proportional to the training
data size. On the other hand, compared with the conven-

Fig. 4 An example of the conversion function within one GMM mixture
component. Whereas a conversion function of the conventional GMM-
based VC is given by a linear function Aq Xt + bq, that by the rich context
models is given by a piece-wise linear function Aq Xt + bq,m, where a bias
term varies depending on individual rich context models.
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Fig. 5 Proposed objective functions in each iteration step. “0” of the x-
axis indicates the objective function just after the initialization. We can see
that the value is significantly increased at the 1st iteration, and is converged
at the 4th iteration.

Table 1 The numbers of model parameters for the conventional GMM-
based VC and proposed statistical sample-based VC. M(init)

q is the number
of over-trained models belonging to the q-th GMM mixture component. In

our evaluation in Sect. 4, we set Q,
Q∑

q=1
M(init)

q , and
Q∑

q=1
Mq to 128, 3616, and

590,745, respectively.

Conventional Proposed

Mixture weights Q 2Q +
Q∑

q=1
M(init)

q

Mean vectors Q Q +
Q∑

q=1

(
M(init)

q + Mq

)

Covariance matrices Q Q +
Q∑

q=1
M(init)

q

Table 2 The numbers of model combinations for the conventional
GMM-based VC and proposed statistical sample-based VC. The computa-
tion cost during the model selection is proportional to these values, but that
during the speech parameter conversion is the same between the conven-
tional GMM-based VC, proposed initialization, and proposed conversion
(for one iteration). For simplicity, the Mq̂t ,t-best approximation method
used in Sect. 3.2.1 is not applied here.

Conventional
Proposed

Mix. selection Initialization Conversion

QT QT
T∑

t=1
M(init)

qt

T∑
t=1

Mqt

tional GMM-based VC, the model complexity in the pro-
posed method linearly increases according to an increase of
the training data size as in unit selection synthesis. We ex-
pect that the speech quality in the proposed method tends
to be significantly improved by increasing the training data
size as in unit selection synthesis [35].

4. Experimental Evaluation

4.1 Experimental Condition

We selected the 450 parallel sentences of subsets A-through-
I from the 503 phonetically balanced sentences included in
the ATR Japanese speech database [36] for training, and the
53 sentences of subset J for evaluation. We trained female-
to-male GMMs. Speech signals were sampled at 16 kHz.
The shift length was set to 5 ms. The 0th-through-24th

Fig. 6 Misclassification rate for the training data to confirm the effect of
the discriminative GMM training.

mel-cepstral coefficients were extracted as spectral param-
eters and log-scaled F0 and 5-band aperiodicity [37], [38]
were extracted as excitation parameters. The STRAIGHT
analysis-synthesis system [39] was employed for parame-
ter extraction and waveform generation. The feature vec-
tor consisted of spectral and excitation parameters and their
delta and features. We built a 128-mixture GMM for spec-
tral parameter conversion and a 16-mixture GMM for band-
aperiodicity conversion. The proposed method was applied
to spectral parameters. The log-scaled F0 was linearly con-
verted. The band-aperiodicity was converted using the con-
ventional GMM. The total number of rich context models
were 590, 745. In the parameter conversion, we selected the
128-best candidates for each frame. GV [9] and modulation
spectra [40] were not considered in speech parameter con-
version.

We compared the following approaches:

Conventional: conventional GMM-based VC†
Proposed: proposed approach using rich context models
Target: rich context models selected by reference data

In initialization for “Target,” the best rich context models
were selected using target reference speech parameters. We
first calculated misclassification rate for the training data to
confirm the effect of the discriminative training [24]. Then,
after determining the number of over-trained models, sub-
jective evaluations were conducted to confirm effectiveness
of the proposed method.

4.2 Effect of Discriminative Training

We evaluated the effect of the discriminative training done
after the conventional joint density model training. The mis-
classification error rates were calculated for these training
algorithms. The error rate was calculated as the number of
the misclassified training data divided by the number of the
training data. Here “misclassified data” indicates the joint
speech feature that the mixture component determined with
Eq. (13) is different from that determined with Eq. (4).

The error rates are shown in Fig. 6. Because we can see
the 1.4% reduction of the error rates, it is expected that the
discriminative training [41] makes it possible to select better
rich context models.

†The discriminative training [24] was performed.
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Fig. 7 GV likelihoods for the finally converted speech parameter se-
quence. A compression ratio (x-axis) is the number of over-trained models
divided by that of the training data.

Fig. 8 Preference scores on speech quality in converted speech with 95%
confidence intervals.

4.3 The Number of the Over-Trained Models

We calculated GV likelihoods for the finally converted
speech parameters in order to determine the number of the
over-trained models. In each sub-region, We increased the
number with the LBG algorithm until we cannot estimate
the model parameters. Although we can change the number
sub-region by sub-region, the number was the same among
the sub-regions†.

The GV likelihood is shown in Fig. 7. We can find that
the GV likelihood of “Proposed” is the biggest around the
compression ratio of 0.6 (3616 over-trained models). There-
fore, we determine the number of over-trained models to be
3616.

4.4 Evaluation in Speech Quality and Speaker Individual-
ity

In the perceptual evaluation, a preference test (AB test) was
conducted. We presented every pair of converted speech of 3
algorithms in random order, and we forced listeners to select
the better-quality speech sample. Similarly, an XAB test
on speaker individuality was conducted using the analysis-
synthesized speech as a reference X.8 listeners participated
in each evaluation.

The results of the preference tests on speech quality
and speaker individuality are shown in Fig. 8 and Fig. 9, re-
spectively. We can find that the proposed method achieves

†Except we cannot estimate the GMM parameters of the sub-
region.

Fig. 9 Preference scores on speaker individuality in converted speech
with 95% confidence intervals.

better scores in both speech quality and speaker individual-
ity, compared to the conventional GMM-based VC. There-
fore, we have demonstrated the effectiveness of the proposed
method. The score of “Target” is lower than that of “Pro-
posed” in speech quality. We found some speech samples of
“Target” sounds discontinuous, and it is expected that small
training data size caused this phenomenon. Whereas “Pro-
posed” can alleviate the discontinuity by using slightly aver-
aged initial speech parameters, “Target” uses non-averaged
initial speech parameters††. We expect that this degradation
using non-averaged parameters can be avoided by increas-
ing the size of the training data†††. The alternative solution
is to perform the iterative conversion after “Target” initial-
ization, but this is not an aim of this study.

5. Conclusion

This paper has proposed a novel statistical sample-based
approach using rich context models for Gaussian Mixture
Model (GMM)-based voice conversion. Rich context mod-
els are trained for the individual joint speech features, and
they are gathered to build a novel acoustic model called
Rich context-GMM (R-GMM). After initialization using the
over-trained acoustic models, speech parameters are itera-
tively converted using the selected rich context models. Ex-
perimental evaluation has demonstrated that the proposed
method achieves better scores in both speech quality and
speaker individuality. we will further integrate the GV and
modulation spectra modeling techniques to the rich context
models, and also investigate an adaptation method using rich
context models.
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