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SUMMARY In current large-scale IT systems, troubleshooting has be-
come more complicated due to the diversification in the causes of failures,
which has increased operational costs. Thus, clarifying the troubleshoot-
ing process also becomes important, though it is also time-consuming. We
propose a method of automatically extracting a workflow, a graph indicat-
ing a troubleshooting process, using multiple trouble tickets. Our method
extracts an operator’s actions from free-format texts and aligns relative
sentences between multiple trouble tickets. Our method uses a stochas-
tic model to detect a resolution, a frequent action pattern that helps us
understand how to solve a problem. We validated our method using real
trouble-ticket data captured from a real network operation and showed that
it can extract a workflow to identify the cause of a failure.
key words: system management, operation, trouble ticket, workflow, mul-
tiple sequence alignment, hidden markov model

1. Introduction

Recent large-scale IT systems require operations to shorten
system downtime. Such downtime of fundamental IT sys-
tems can seriously disrupt our lives. Therefore, a system-
management method for shorting as much system down-
time as possible is necessary. Avoiding failures and quick
recovery from unavoidable failures are required. However,
recent complications in network systems due to technolog-
ical developments, such as network virtualization, tend to
make downtime of IT systems much longer. Complicated
relations between physical and virtual machines make iden-
tification of failure cause difficult. Quick recovery has tradi-
tionally depended on operator skill and experience. A sys-
tem operation must be restored urgently whenever a system
failure occurs. Therefore, operators’ work has become in-
creasingly difficult.

Stylization, which is clarifying the correct trou-
bleshooting process, enables operators to solve recurring
failures more quickly. Generally, system downtime is domi-
nantly affected by the time it takes to decide the next action.
There can be several cause candidates of a failure. There-
fore, an operator must identify the cause and select the ap-
propriate resolution, which is a series of actions to remove
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the cause of failure. In this paper, a troubleshooting process
is defined as a series of actions an operator should take when
a failure occurs. Since a clarified troubleshooting process
has resolutions and the action to identify the cause, opera-
tors decide the resolution without needless considerations.
It does not matter whether operators had experienced such
failures. In addition, the troubleshooting process can dras-
tically shorten downtime when using Runbook Automation
systems [3] because they can automatically execute prede-
fined routines for network components.

However, stylization of a troubleshooting process is
also time-consuming for the following reasons. First, trou-
bleshooting processes are basically complicated because
they are composed of various actions. Troubleshooting pro-
cesses generally have dozens of actions including unusual
actions such as vendor-specific commands. Moreover, these
actions often require tacit knowledge, which only some ex-
pert operators have. Stylization tasks require continuous
consultations among operators for understanding these diffi-
cult processes. Second, the correct troubleshooting process
depends on domain-specific rules and situations. Judging
whether operators should respond to a failure can be eas-
ily changed by rules and conditions such as a service-level
agreement, frequency of errors, and importance of the fail-
ure component.

Finally, the variety of failures increases incrementally,
so a troubleshooting process corresponding to a new failure
must be stylized continuously. The correct troubleshooting
process depends on the version of the equipment or sys-
tem topology, which can be changed frequently. Therefore,
operators must update the troubleshooting process continu-
ously.

We focus on trouble tickets for stylization. A trouble
ticket is a report providing a complete history of a failure
and operator’s actions. Whenever a failure is detected, an
operator fills out a trouble ticket with the error message that
was reported, details on the failure, operator’s actions, and
so on. A trouble ticket is used mainly for seamlessly taking
over tasks of another operator and for recording the trace of
errors and actions. The advantage for using trouble tickets
is that they contain whole actions of the process, including
actions without using the operating system (e.g. contacts to
the customer). Moreover, trouble tickets have information
on the decisions that strongly depend on the condition (e.g.
the number of alerts required to determine a fatal failure by
operators). Furthermore, they include information about the
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Fig. 1 Example of workflow

latest operation updates.
Despite their value as a knowledge base for trou-

bleshooting processes, trouble tickets are rarely used for
troubleshooting-process analysis. This is because of the fol-
lowing three difficulties with using trouble tickets. First,
a free-format trouble ticket includes information other than
operators’ troubleshooting actions, e.g., detected error mes-
sages, customer’s response, and notes. Second, descriptions
for the actions may differ among trouble tickets, even though
the actions are the same. In addition, operators may omit
recording some actions, which makes it difficult to compare
and identify multiple trouble tickets. Third, the resolution
is not specified in trouble tickets. For a network operator, it
is critical to isolate the cause and choose the correct reso-
lution. However, finding resolutions is difficult because ex-
ecuted actions are always slightly different. The difference
in resolutions and trivial changes of actions cannot be deter-
mined.

In this paper, we propose a method for automatically
extracting a workflow from multiple trouble tickets. A work-
flow is a procedure graph composed of actions that describe
a troubleshooting process. Figure 1 shows an example of a
workflow when a failure occurs. Describing a troubleshoot-
ing process as a workflow enables operators to easily iden-
tify the most appropriate resolution because a workflow has
various resolution candidates and actions for deciding on the
resolution, called isolating actions.

We developed three steps to overcome the difficulties
in extracting useful information from trouble tickets. (i) A
working history contains not only sentences about what the
operator did but also other information. To determine the
information of a sentence, a supervised learning method
is used. (ii) Extracted sentences about actions are not de-

scribed with the same words. For this step, our method in-
cludes an efficient algorithm to align the same actions de-
scribed with different sentences by using multiple-sequence
alignment based on dynamic programming. (iii) For each
action, our method estimates a resolution. Each estimated
resolution indicates a subgroup to which each action be-
longs. This is difficult because we must find only the mean-
ingful change in actions from many fluctuating sequences
of actions. By using a stochastic model, our method deter-
mines a change in actions as a change in resolutions.

Our method has the advantage of streamlining IT sys-
tem operation. It can compare multiple actions written in
trouble tickets, even if they are written in an unstructured
format. This reveals frequent actions executed whenever
the same failure is detected. Using clarified frequent actions
with a Runbook Automation system can shorten the time
required to solve a problem. Moreover, our method finds
actions that can help operators decide the next actions.

The rest of this paper is organized as follows. In Sect. 2,
we describe related work on understanding the knowledge
on operation processes. In Sect. 3, we provide detailed infor-
mation about the input and output of the proposed method,
namely trouble tickets and definition of a workflow. In
Sect. 4, we provide the details of three components compris-
ing of our method to enable automatic workflow extraction.
We conducted several evaluations on our proposed method
and describe an extracted workflow in Sect. 5. We conclude
this paper in Sect. 6 and refer to future work.

2. Related Work

Many studies have proposed methods for extracting valuable
operational knowledge from a trouble-ticket data base [4]–
[11]. A trouble ticket is known to be inaccurate if it is writ-
ten in an emergency. Clustering and annotating methods
have been proposed to solve this problem [4]–[8]. These
studies were mainly focused on obtaining statistical infor-
mation such as trends in system failures. While there are
methods for mainly obtaining trouble tickets related to an in-
cident to shorten resolution time [9]–[11], they are only fo-
cused on extracting related trouble tickets. For operators to
understand extracted texts, they must read massive amounts
of text and decide the next action to take.

The main advantage of our method is that is possible
to use multiple trouble tickets, not just one trouble ticket.
This advantage makes it possible to obtain a summarized
troubleshooting process that has multiple resolutions for one
failure. Moreover, compared with multiple actions in texts,
our method obtains frequent actions for each failure. These
frequent actions enable operators to confidently decide on a
resolution on the basis of several operators’ actions.

These methods for estimating a workflow from
recorded actions, including ours, are called process-mining
methods [12]. Process mining generally involves only au-
tomatically recorded logs [13]. However, our proposed
method is a mining method from the perspective of using
free-format text. It enables the mining of practical work-



1032
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.4 APRIL 2018

flows including actions executed in unmonitored situations,
not only actions input into a monitored system. Using free-
format text as the input poses unique challenges. For ex-
ample, process-analyzing methods have been proposed to
find typical actions by aligning action logs [14], [15]. We
also use a similar approach to that mentioned in Sect. 4.2.
However, our method must obtain alignments of actions be-
cause the descriptions of the actions are not defined. More-
over, some methods have been proposed for mining a sim-
ple workflow from noisy action logs using statistics based
on the largeness of the input [16]. These methods require
that there be a sufficient number of action logs. In the case
of mining troubleshooting processes, a sufficient amount of
trouble tickets are not always recorded. Our method can
discover valuable actions without a large quantity of input
data.

3. Definitions

In this section, we explain the problem definition we attempt
to solve to obtain a workflow. As noted above, data re-
sources to carry out a troubleshooting process are trouble
tickets. Figure 2 shows an example of a trouble ticket. A
trouble ticket is launched whenever a system failure is re-
ported by a monitoring system, operator, or customer. A
trouble ticket generally has structured columns for writing
essential information, e.g., the launch date and time, target
host name, machine type, operator name, incident title, and
cause.

We assume that multiple trouble tickets written when
the same alert occurred are given as input data. This as-
sumption means that a workflow is defined for every alert
message. Note that though one workflow is made for one
alert, there can be multiple resolutions for one alert because
an alert message is just a symptom of a fault, and several
causes can be considered.

Although there are several structured columns, in most
cases, operators write important details on the problem in a
free-format text column [17] called a working history. Thus,
we use the free-format text column of a trouble ticket. To
treat trouble tickets mathematically, we consider a sentence
as representing a set of words. We denote a sentence se-
quence in the i-th trouble ticket as S i = si1si2 . . . si|S i |, where
sil is the l-th sentence in the i-th trouble ticket in the in-
put data. All input data are represented mathematically as
S = {S 1, . . . , S I}, where I represents the number of given
trouble tickets.

Our method extracts sentences only related to opera-
tor’s actions. In a working history, all information related to
a failure is recorded. For example, in the text in Fig. 2, oper-
ator actions (L.3, 4, 8, 9, 10, 11, 12, 13, 20), management
system action (L.1), system error message (L.2), executed
command and results (L.5, 6, 7), and pasted mail messages
(L.15) are written. In addition, even meaningless marks
such as L.14 are also written. We call an execution by an op-
erator or a system described in one sentence in working his-
tories as an ACTION. Neither rules for descriptions nor the

Fig. 2 Example of trouble ticket

order to write this information are defined. These undefined
rules make automatic information mining from the amount
of trouble tickets challenging. Let Xi = xi1, . . . xi|Xi | denote
a sentence sequence, which contains sentences related to an
action in S i. All sentences sequencesX = X1, . . . , XI are ex-
tracted from S = {S 1, . . . , S I} respectively, in the first step
in our method.

A workflow, the generation of which is a goal of our
research, can be defined as a graph W = (V, E), where
V represents actions and E represents transitions to the
next actions. Each node v in V represents an action.
Each edge (vs, vd) in E shows that action vd in V is exe-
cuted after action vs in V is executed. For example, the
workflow corresponding to Fig. 1 can be represented as
W = (V, E), V = {0, 1, 2, 3, 4, 5, 6, 7, 8}, E = {(0, 1), (1, 2),
(2, 3), (2, 5), (3, 4), (3, 8), (4, 7), (5, 6)}.

An output of our method is obtaining action sequences
for each trouble ticket to represent the troubleshooting pro-
cess as a graph. A node set of V in a workflow corresponds
to a set of actions written in given trouble tickets. Simi-
larly, an edge set of E in a workflow corresponds to a set
of successive action pairs in given trouble tickets. There-
fore, if an entire action sequence executed in each trou-
ble ticket is obtained, the corresponding workflow that de-
scribes the troubleshooting process can be obtained. We rep-
resent an action sequence executed in the i-th trouble ticket
as Yi = yi1yi2 . . . yi|Yi |, where yit ∈ A is an ID of an action
in a set of actions A. We show an example of a sequence
of actions in Table 1. An index of an action is added to
each sentence sil if sil describes an action. The output of our
method, i.e., a set of action sequences, can be represented as
Y = {Y1, . . . ,YI}.

Note that the number of actions |A| is not predeter-
mined but determined with our method automatically. Note
also that |S i| is not always equal to |Yi| because each sentence
sil does not always describe an action.

Not only actions but the resolution belonging to each
action are also obtained with our method, as shown in Ta-
ble 1. Even if there are trouble tickets written for the same
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alert, the cause can be different. Therefore, we require the
actions for resolving each cause.

When there are multiple cause candidates to a failure,
we call an action sub-sequence specific to one or multiple
causes a resolution. We explain this definition with the ex-
ample in Fig. 1. There are three streams to different ends.
Let us assume each end has a different cause of a failure.
Then, sub-sequences < 5, 6 >, < 4, 7 >, and < 8 > can be
called resolutions because those actions only appear in the
cases of “(A) Appliance breakdown”, “(B) Module break-
down”, and “(C) Some temporal error”, respectively. How-
ever, we also define sub-sequences < 1, 2 > and < 3 > as
resolutions since those actions only appear in causes (A) (B)
(C) and (B) (C), respectively.

The key advantage to extracting resolutions is that
these resolutions enable us to find isolating actions. We
can consider actions 2 and 3 in Fig. 1 as isolating actions
because those actions have multiple following resolutions.
The most important information that operators need is on a
method for identifying a cause. By extracting resolutions,
we can find the isolating action for determining the cause
and next resolution.

Mathematically, we obtain variables that indicate the
resolutions of each action yit. We represent a resolution ID
to which action yit belongs as zit. This definition means that
every action yit is contained in a corresponding resolution.
A sequence Zi = zi1 . . . zi|Yi | denotes resolutions in the i-th
trouble ticket. Another goal of our research was to obtain
all resolutionsZ = {Z1, . . . ZI}.

Once all Y and Z are obtained, we can make a graph
that represents a troubleshooting process in given trouble
tickets. Since a node set of V is equal to a set of actions in all
trouble tickets, we can consider V =

⋃I
i=1{(vit = (yit, zit); t =

1, . . . , |Yi|}. A tuple vit = (yit, zit) corresponds to a node of
a workflow. This means that actions having the same ac-
tion ID can be different nodes if they have different reso-
lution IDs. For example, “Closing ticket” actions can be
considered different because they have different resolutions,
though these actions are always executed in the workflow
of Fig. 1. Similarly, since an edge of E is equal to a set
of transitions from actions vit to vit+1, we can consider E =
∪I

i=1{(vit, vit+1) = ((yit, zit), (yit+1, zit+1)); t = 1, . . . , |Yi| − 1}.

Table 1 Examples of input and output

i l t description y1t z1t

1 1 - 2017/01/01 - -
1 2 1 Disconnection alert is detected. 1 1
1 3 - 00:00:00 mssn01 disconnected - -
1 4 2 Login mssn01 is possible, 2 1
1 5 3 But there are still some errors. 4 1
1 6 4 Neighbors mssn01,02 are disconnected. 12 1
1 7 5 Addresses haven’t been solved. 13 2
1 8 6 We called host yksk02’s operators. 17 2

. . .

i l t description y2t z2t

2 1 - 02/01 - -
2 2 1 Alert occurred 1 1
2 3 2 Login is OK. 2 1
2 4 3 mssn04 & yksk03 are disconnected. 12 1
2 5 4 We found OSPF routing error. 14 3

. . .

Therefore, the output of our method is obtaining Y and Z,
as mentioned above.

4. Proposed Method

In this section, we explain the three components comprising
our method to extract workflows. An overview of the pro-
posed method is shown in Fig. 3. The three components are
used to solve the corresponding three difficulties caused by
a working history containing unstructured text in the follow-
ing steps.

As mentioned in Sect. 3, our method is aimed at obtain-
ing action sequences Y and resolution sequences Z from
trouble tickets S. However, each sentence sit in a trouble
ticket S i may contain information that is not related to any
operator’s action. Therefore, the first step in our method is
to extract Xi = xi1, . . . , xi|Xi |, which are the sentences that
describe an operator’s actions in S i. This step involves us-
ing a supervised machine-learning approach that learns the
sentences that should be extracted.

The second step involves obtaining action IDs Y for
each sentence. Obtaining an action ID for all sentences is
equal to finding a set of sentences about the same action in
multiple trouble tickets. We formulate this problem as an as-
signment problem and solve it using an efficient algorithm.

The final step involves obtaining resolution IDs Z for
each sentence. We consider the problem of obtaining res-
olutions as a problem of obtaining the action groups that
tend to appear continuously in the same trouble ticket. Our
method estimates resolutions using a hidden Markov model,
which is a stochastic model, by having groups of actions as
hidden states. We discuss each component in the following
sub-sections.

4.1 Action-Sentence Labeling

The first step involves preprocessing to extract the sentences
that describe operator’s actions from each trouble ticket.
Though making workflows requires information only about
an operator’s actions, working histories have miscellaneous
information. The role of this component is to extract only
the action sentences Xi = xi1, . . . xi|Xi | from a sentence se-
quence S i = si1, . . . , si|S i |.

We choose an approach that uses a machine-learning-
based classifier. This extracting problem can be consid-
ered a problem to determine whether each sentence indi-
cates an action. Therefore, this first step assigns labels
Ui = ui1, . . . , ui|S i | indicating the type of information to sen-

Fig. 3 Overview of our method
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Table 2 alignments with similar sentences in line

Action k Ticket 1 Ticket 2 Ticket 3
x1t y1t a1k x2t y2t a2k x3t y3t a3k

1 System detected temporary error. 1 1 Error detected 1 1 Error: Node down 1 1
2 - - −1 We verified connectability. 2 2 - - −1
3 Ping OK 3 2 - - −1 Ping OK 3 2
4 Many errors in log. 4 3 No errors in log. 4 3 Log check, many errors 4 3
5 - - −1 We wait for recurrence. 5 4 - - −1
6 Decided to replace module 6 4 - - −1 We prepared replacement. 6 4
7 Suspend server 7 5 - - −1 - - −1
8 Replaced module 8 6 - - −1 Replacement done. 8 5
9 Reboot 9 7 - - −1 - - −1

10 Reboot detected, repaired 10 8 - - −1 Repair verified. 10 6
11 Closing 11 9 Did not re-occur, close 11 5 close 11 7

tences S i = si1, . . . , si|S i | in each trouble ticket.
A label uil represents the type of information of sil.

Note that a label uit takes only the values {0, 1} because we
only need to classify whether each sentence means an ac-
tion. The uil = 1 signifies that sentence sil describes an ac-
tion, and uil = 0 signifies that xil is not about an action and
not required for making a workflow. Sentence sequences
Xi = < sil; l = 1, . . . |S i|, uil = 1 > are extracted as action-
sentence sequences and used in the following steps.

To estimate all labels of each sentence, we use the naive
Bayes classifier [18], which is a simple supervised learn-
ing classifier. This classifier obtains the label sequence Ũi,
which is defined as follows.

Ũi = arg max
Ui

P(S i|Ui)P(Ui)

= arg max
Ui

∏|S i |
l=1 P(sil|uil)P(uil)

= arg max
Ui

∏|S i |
l=1

∏
w∈sil

P(w|uil)P(uil).

(1)

The above equation implies that each type of label is de-
termined based on the frequency of the observed terms, i.e.,
conditional probability P(w|uil), though this order of appear-
ance is not related to a label. In our observation, sentences
of ACTION tend to have frequently used verbs, e.g. check,
ask, show, and so on. Therefore, we believe that the as-
sumption of Naive Bayes, i.e., only the frequency of words
depends on the label, can work well. In addition, the fre-
quencies of label appearances are also considered through
prior probability P(uil).

The P(w|uil) and P(uil) are learned from pre-labeled
data manually created. We asked operators to manually la-
bel each sentence in several trouble tickets for training. Us-
ing the pair of manually labeled sequences ūi1, . . . ūi|S i | and
sentence sequences s̄i1, . . . s̄i|S i |, we define the probabilities
as follows.

P(w|u) =
c(w ∈ s̄il, ūil = u)

c(ūil = u)
,

P(u = 1) =
c(ūil = 1)

c(ūil = 1) + c(ūil = 0)
,

where c(·) is the number of indices (i, l) satisfying the con-
ditions.

Note that the trouble tickets used in our experiments
were written in Japanese. Since words are not delimited
by space in Japanese, we must define terms as character

2-grams instead of words since a trouble ticket has many
technical words and cannot be applied to common morpho-
logical analysis [19].

4.2 Action Alignment

Multiple trouble tickets are required to obtain workflows
with multiple resolutions. However, trouble tickets cannot
be directly compared because each sentence has different
descriptions, even if they are about the same action. To
identify the sentences of the same action, we can compare
actions in multiple working histories.

When X = {X1, . . . , XI} is obtained as the set of se-
quences written about actions by the first component, the
second component obtains ID sequencesY = {Y1, . . . ,YI} to
identify the sentences that mention the same action. Though
each xit(t = 1, . . . , |Xi|) indicates an actual operation, it is not
known what the action is. Recall thatA represents the total
action IDs corresponding to actions in given trouble tickets.
In this second component, we assign an action ID yit to each
xit. Sentences that have the same action ID are considered
sentences that indicate the same action.

With our method, action-ID sequences Y are obtained
through obtaining sets of indices of sentences that have sim-
ilar terms. For example, three trouble tickets are shown in
Table 2, which are sentences that have similar terms and
lined up in a row. We call a set of sentence indices arrayed
in a row an alignment. With our method, aligned sentences
are regarded as the same action, namely the same action IDs
are given to aligned sentences.

Action-ID sequences can be easily obtained from
alignments. For simplicity, we call an action ID k action
k. To deal with an alignment mathematically, a position of
action k in Yi is represented as aik and defined as follows.

aik =

{
t if yit = k,
−1 if k � Yi.

(2)

Examples of aik are shown in Table 2. With using sentence
indices, the alignment gk for action k is represented as fol-
lows.

gk = {(i, aik); i = 1, . . . , I},
where gk corresponds to the k-th row in Table 2. Note that yit

can be easily translated from aik due to Eq. (2). Therefore,
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by obtaining gk, we can also obtain Y.
The proposed method finds the most appropriate set of

alignments by using a maximization problem. To proceed,
we consider an arbitrary function Sim(gk) (k ∈ A), which
represents the similarities of sentences {xiaik ; (i, aik) ∈ gk}.
A more precise definition of Sim(gk) is given later. Let G =
{gk; k ∈ A} denote the set of alignments, in which all indices
of sentences are contained in any of alignments. The sets of
the alignments that seem to correspond to the same actions
can be obtained by the solution maximizing the following
equation:

G̃ = arg max
G∈G

Score(G) = arg max
G∈G

∑
gk∈G

Sim(gk), (3)

where G represents the set of all possible values of G, as
mentioned below.

A set of alignments are chosen from limited possible
values G. Let D denote all indices of sentences {(i, t); i =
1, . . . , I, t = 1, . . . , |Xi|}. The possible values of G are limited
by the following limitations.

• D ⊆ g1 ∪ · · · ∪ g|A|.
• for any k, k′ ∈ A such that k � k′,
{(i, aik); i = 1, . . . , I, aik � −1} ∩ {(i, aik′ ); i = 1, . . . ,
I, aik′ � −1} = ∅.

• for any k, k′ such that −1 < aik < aik′ , if a jk � −1 and
a jk′ � −1 for some j � i, then a jk < a jk′ .

These three constraints can be easily understood by imag-
ining a matrix of sentences such as Table 2. The first con-
straint above shows that all sentences in trouble tickets must
be contained in either alignment in G. The second constraint
suggests that a sentence that is assigned to multiple align-
ments does not exist.

The third constraint, the key constraint, suggests that
any sentence can be aligned without reordering. In most
cases, trouble resolutions are executed in the same order,
and we consider that this assumption is reasonable. How-
ever, in some operations, their execution order does not mat-
ter, and this assumption causes estimation error. We discuss
this error in Sect. 5.1.3.

We assume that the same actions are represented as
similar sentences in a similar order. In working histories,
the same terms tend to be used because they are written re-
peatedly about the same incidents. Therefore, we define the
similarity function Sim as follows.

Sim(g) =
∑

(i,t),( j,v)∈g
(i,t)�( j,v)

sim((i, t), ( j, v)). (4)

sim((i, t), ( j, v)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dice(xit, x jv), t � −1, v � −1,
0, t = −1, v = −1,
ε, otherwise.

dice(xit, x jv) =
2|xit ∩ x jv|
|xit | + |x jv| .

The function sim has the value of dice(xit, x jv) if both (i, t)
and ( j, v) indicate sentence indices. The character 2-gram

is used to represent each sentence, similar to the action-
sentence labeling in Sect. 4.1. The more similar two sen-
tences are, the larger the dice coefficient can be. Though we
chose the dice coefficient [20] as the similarity between two
sentences, other similarity definitions can also be used.

If either {t, v} has the value −1, i.e., one of them does
not correspond to any sentence, function sim returns a value
ε, called a “gap penalty”. The gap penalty is a given parame-
ter that indicates a threshold to determine that two sentences
should be aligned (see in [23]). By using the gap penalty,
we can compare Sim({(i, t), ( j, v)}) and Sim({(i, t), ( j,−1)}) +
Sim({(i,−1), ( j, v)}) = 2ε. If the latter is larger than the for-
mer, we can avoid aligning dissimilar sentences.

The optimal solution G̃ in Eq. (3) can be obtained effi-
ciently by using sequence alignment [21], which is a method
mainly used for aligning the same elements from multiple
character sequences, such as the deoxyribonucleic acid se-
quence [22]. We now explain an algorithm based on dy-
namic programming widely used in sequence alignment. If
there are three or more sequences, multiple-sequence align-
ment, which is an approach to repeat the aligning of two
sequences, is commonly used to obtain optimal alignments
due to computational complexity. In what follows, we ex-
plain multiple-sequence alignment after referring to pair-
wise alignment.

4.2.1 Pairwise Alignment

We explain pairwise alignment, i.e., the algorithm to obtain
optimal sets of element pairs in two sequences (Xi, Xj). We
used the Needleman-Wunsch algorithm [23] as the efficient
pairwise alignment algorithm based on dynamic program-
ming. Details of the algorithm are given in Algorithm 1.

Algorithm 1 pairwiseAlignment(G(i),G( j))
Sets Φ to the (|G(i)| + 1) × (|G( j)| + 1) zero matrix.
for t = 1 . . . , |G(i)| do

for v = 1 . . . , |G( j)| do
{Finds the best alignment between sub-sequences xi1, . . . xit

and x j1, . . . x jv.}
Φt+1,v+1 = max(t′ ,v′)∈{(t,v),(t,v+1),(t+1,v)} Φt′v′ + Sim(δgt′v′ )

end for
end for
{Obtains the best alignment.}
Sets G̃ to an empty set.
p, q← |G(i)| + 1, |G( j)| + 1
while p > 0 or q > 0 do
{Traces the element that has the highest score.}
(p, q)← arg max

(p′ ,q′)∈{(p−1,q−1),(p−1,q),(p,q−1)}
Φp′q′ + Sim(δgp′q′ )

G̃ ← δgp,q ∪ G̃
end while
{Score(G̃) is stored in Φ|G(i) |+1,|G( j) |+1.}
Return G̃

In this algorithm, input data for a pairwise align-
ment in (Xi, Xj) are given as the sets of alignments G(i) =

{g(i)
1 , . . . , g

(i)
|Xi |} and G( j) = {g( j)

1 , . . . , g
( j)
|Xj |}, where g(i)

t =
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{(i, t)} (t = 1, . . . , |Xi|). This translation is preparation
for the extension to the following multiple-sequence align-
ment. By defining sets of alignments as input of the
function, we can iteratively apply the obtained set of
alignments as input to a pairwise alignment. With us-
ing pairwiseAlignment(G(i),G( j)), all inputs {G(1), . . . ,G(I)}
are assembled into one set of alignments G̃ by multiple-
sequence alignment.

Algorithm 1 efficiently obtains the optimal solution by
using dynamic programming. We represent the optimized
value in Eq. (3) for sub-sequences xi1, . . . xit and x j1, . . . x jv

as Φt+1,v+1. Since the order of aligned sentences does not
change due to the third constraint in Sect. 4.2, Φt+1,v+1 can
be represented by the following recurrence formula.

Φt+1,v+1 = max
(t′,v′)∈{(t,v),(t,v+1),(t+1,v)}

Φt′,v′ + Sim(δgt′,v′),

δgt,v = g
(i)
t ∪ g( j)

v ,

δgt,v+1 = g
(i)
t ∪ {( j,−1); ( j, v) ∈ g( j)

v },
δgt+1,v = {(i,−1); (i, t) ∈ g(i)

t } ∪ g( j)
v .

δgt,v, δgt,v+1 and δgt+1,v are used for deciding whether g(i)
t

and g( j)
v are aligned. As shown in Algorithm 1, one of either

δgt,v, δgt,v+1 or δgt+1,v is chosen as an alignment. If Sim(δgt,v)
is larger than Sim(δgt,v+1) + Sim(δgt+1,v), then δgt,v should
be chosen as an alignment because a score of Eq. (3) be-
comes larger than the score when δgt,v+1 and δgt+1,v are cho-
sen. Φ|G(i) |+1,|G( j) |+1 is equal to the highest score of Eq. (3).
Since Φt+1,v+1 can be calculated with Φt,v, Φt,v+1 and Φt+1,v,
we can obtain the value maximizing Eq. (3) by calculating
Φt,v |G(i)||G( j)| times.

4.2.2 Multiple-Sequence Alignment

When there are three or more sentence sequences, we adopt
the multiple-sequence-alignment algorithm called the MUS-
CLE algorithm [22] shown in Algorithm 2. This algorithm
is comprised of two steps, “hierarchical alignment” and “im-
provement”.

When I ≥ 3, an explosion of combinations can occur
due to computational complexity depending on the infinite
product of the sequence lengths. To avoid this, hierarchi-
cal alignment by repeating pairwise alignment with similar
sequences is commonly used.

In the hierarchical-alignment step, pairwise alignments
are iteratively executed until all sequences are aligned. The
pairwise alignment explained in Sect. 4.2.1 can be used
to align “sequences” and “aligned sequences”. There-
fore, an additional sequence is aligned to the result of
the pairwise alignment in the hierarchical-alignment step.
When aligned sequences are given as Ĝ, the most simi-
lar sentence, namely the sequence Xi that has the highest
Score(pairwiseAlignment(G(i), Ĝ)), is chosen as the next in-
put to pairwise alignment in the MUSCLE algorithm.

After all sequences are aligned into one, that one se-
quence is iteratively split into two sets of sequences and two
sets are aligned again in the improvement step. The results

obtained in the hierarchical-alignment step do not always
become an optimal solution. The role of the improvement
step is to make a solution closer to the optimal solution by
using the hill-climbing approach.

In the improvement step, random splitting and merging
of a G are iteratively executed. In our implementation, in-
dices of a row or column of the current matrix are chosen
randomly in one iteration. If an index of a row is chosen, a
set of sequences is split into a G having only one index cor-
responding to that index. If an index of a column is chosen,
a set of sequences is split into a set of sequences that has
an action corresponding to the index and others that do not
have such an action. This repeated alignment ensures that
the Score(G) increases monotonically. Our method repeats
iterations until there is no improvement for whichever index
is chosen.

Algorithm 2 multipleAlignment

G(i) = {g(i)
1 , . . . , g

(i)
|Xi |}{“Hierarchical-alignment step”}

G← {G(1) . . . ,G(I)}
while |G| > 1 do
{Repeatedly aligns the two alignments, which have the highest score,
until all inputs are aligned.}
G,G

′ ← arg max
G,G′∈G
G�G′

Score(pairwiseAlignment(G,G′))

Ĝ ← pairwiseAlignment(G,G
′
)

G← G ∪ {Ĝ}\{G,G′}
end while
G̃ obtains the remaining element in G.
{“Improvement step”}
while True do
{Separates indices into two sets.}
C ← {{i}; i = 1, . . . , I}
R← {{i; (i, aik) ∈ gk, aik � −1}; gk ∈ G̃}
Θ← {(I+, {1, . . . , I}\I+);I+ ∈ C ∪ R}
{Iterates pairwise alignment.}
S old ← Score(G̃)
while |Θ| > 0 do
{Randomly selects sets of indices.}
choose (I+,I−) ∈ Θ randomly.
Θ← Θ\{(I+,I−)}
G+ ← {{(i, aik); (i, aik) ∈ gk , i ∈ I+}; gk ∈ G̃}
G− ← {{(i, aik); (i, aik) ∈ gk , i ∈ I−}; gk ∈ G̃}
G̃ ← pairwiseAlignment(G+,G−)

end while
{Finishes if the score have never been increased.}
if Score(G̃) ≤ S old then

Return G̃
end if

end while

4.3 Resolution Estimation

In the final step, the resolutions to which each sentence be-
longs are estimated. As mentioned in Sect. 3, our method
obtains Z, the variables representing resolutions to which
each action belongs, since obtaining resolutions is equiva-
lent to obtaining isolating actions. Our method only requires
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action sequences Y obtained using the above algorithm as
input.

Before explaining how to obtain isolating actions, we
explain why it is difficult to obtain such actions. As ex-
plained in Sect. 3, an isolating action is a key action to iden-
tify the cause of a failure and to decide the resolution for
it. In other words, an isolating action is an action that has a
transition branch, namely two or more transitions to differ-
ent actions. For example, in Table 2, actions 5 and 6 were
executed after action 4. Therefore, action 4 can be an iso-
lating action. However, noise and missing actions make a
meaningless branch. Because of the lack of description rules
in working histories, an action sequence can contain noisy
or missing actions. For example, in Table 2, there are transi-
tions to 2 and 3 from action 1. However, action 4 is always
executed at the next time of action 2 or 3. Interpreting action
1 as isolating action is difficult because action 1 does not
change the following actions. We would like to find only
the meaningful action, which enables the determination of
the next resolution.

We adopted a stochastic model to treat noisy se-
quences. The problem of resolution estimation is caused
by fluctuations in actions. Even if the cause of the failure
and resolutions are the same, operators do slightly different
actions. We assume this fluctuation as the change in actions
Yi generated by the true resolution Zi. Therefore, Yi and Zi

are considered random variables. We stochastically model
the relation between Yi and Zi using probability P(Yi,Zi).

To consider the causal relation between Yi and Zi and
infer each resolution for each action, we set the following
three assumptions.

assumption (a): the next resolution zi,t+1 depends on only
the current resolution zit.

e.g.: when the action “checking the connectivity by ping
command” has been executed in the resolution “prob-
lem identification”, the next resolution tends to be “ex-
changing CAT cable”.

assumption (b): the current action yit depends on only zit.

e.g.: actions “shutting down server” and “checking memory
usage” tend to be executed in the resolution “memory
replacement”.

assumption (c): the possible values of the next resolution
zi,t+1 are limited by zit.

e.g.: the resolution “cause identification” is not executed
once the resolution “DNS reconfiguration” is executed.

These assumptions can be represented using a hidden
Markov model (HMM), which a model to infer hidden states
in observed sequences. By using the first assumption (a), we
can formulate the probability that resolution k is executed
when resolution k′ is finished by using the last action w as
P(zit = k|zit−1 = k′). Similarly, by using the second assump-
tion (b), we can formulate the probability that w is executed
when operators are executing k as P(yit = w|zit = k).

Using these definitions, we can consider the joint
probability of Y and Z. For simplicity, we represent

Fig. 4 Causal relations in HMM

Fig. 5 Limitations of transferable hidden states

P(zit |zi,t−1) = azi,t−1 (zit), P(zi1) = π(zi1) and P(yit |zit) =
bzit (yit). When we regard actions in sequences as observed
variables generated by a hidden state, we can represent the
model in which sequences are generated as follows:

P(Y,Z) =
I∏

i=1

π(zi1)
|Zi |∏
t=2

azi,t−1 (zit)
|Zi |∏
t=1

bzit (yit). (5)

Figure 4 graphically shows the relations between variables
in this HMM. Once P(Y,Z) are obtained, our goal becomes
to obtain Z̃ maximizing P(Y, Z̃).

Representing assumption (c), we also add the limitation
to the transition to the next state zit+1. We assume transitions
of hidden states are limited as binary-tree transitions. In this
limitation, hidden states can transfer to only children states
of a binary tree, as shown in Fig. 5. An HMM can easily
prohibit transitions from a k to k′ by setting the transition
probability P(zit = k|zi,t−1 = k′) = ak(k′) to zero. In this
model, we set the transition probabilities as follows;

azit (zi,t+1) = 0 if zi,t+1 � {zit, 2zit, 2zit + 1}.
We chose the Markov chain Monte Carlo approach

as an inference of a joint probability P(Y,Z) in our im-
plementation. We used the forward-filtering backward-
sampling method, which is a blocked Gibbs sampling
method. This method iteratively samples variables Zi =

zi1, . . . , zi|Yi | simultaneously based on the conditional prob-
ability P(Zi|Z−Zi ,Y), where Z−Zi denotes all variables ex-
cept the variables Zi. The obtained samples can be regarded
as those that are sampled from P(Y,Z). Therefore, by us-
ing the obtained samples, P(Y,Z) and Z maximizing the
joint probability can be estimated. Specifically, conditional
probabilities azi,t−1 (zit), π(zi1), and bzit (yit) are calculated us-
ing the current values ofZ−Zi . By using these probabilities,
new samples Zi are obtained based on P(Zi|Z−Zi ,Y). These
sampling steps are repeated for the given times.

By using the above algorithm, our method obtains both
Y and Z. Finally, our method constructs a workflow from
Y andZ, as mentioned in Sect. 3.
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5. Experiments

We evaluated the quantitative accuracy and qualitative effi-
ciency of a workflow obtained with our method. The quan-
titative accuracy was evaluated by comparing the result of
our method with those of the ground truth using the Rand
Index (RI), which is the metric commonly used to indicate
the accuracy of clustering methods. However, it is difficult
to evaluate whether our method is effective because there
has not been similar research for making a workflow from
texts. Therefore, we discuss the benefits of the proposed
method by explaining the obtained results.

We conducted the evaluation using real trouble tickets
obtained from an enterprise service. The dataset of trou-
ble tickets, which was recorded for the same kind of alert
message, was divided into smaller subsets. One subset for
each alert message incident was used in this experiment.
The trouble tickets we used were written in Japanese. We
show all results translated into English after executing our
method with the raw Japanese data. Our proposed method
is not language dependent, though some natural-language
preprocessing dealing with problems peculiar to Japanese,
as mentioned in Sect. 4.1, were executed.

Several suitable parameters for the method were given.
We executed our method several times by slightly changing
the gap penalty ε to determine the best threshold that had
the biggest alignment score. Since the best value remained
almost constant, we used the uniform value for the experi-
ment. Sampling iteration time was set as enough samples
are obtained.

The number of resolutions K was set to the true num-
ber of resolution for each subset. Note that, when we set
K larger than the true number, the number of appeared res-
olutions in the estimation result became similar to the true
value. Thus, we can estimate the true number of resolutions.
We discuss the estimation in Sect. 5.1.2.

5.1 Evaluation of Quantitative Accuracy

We evaluated the accuracy of the proposed method by com-
paring the workflow it generated with that manually gen-
erated by operators. We appended indices to sentences in
given trouble tickets about the same action having the same
index. Manually appended indices are added when the ac-
tion in a sentence is obvious. This means some sentences
have no indices. Though every sentence is used for mak-
ing a workflow, its accuracy is evaluated by sentences that
have indices. We also appended the true resolution for each
sentence by reading all documents carefully.

5.1.1 Evaluation Criteria

(1) Rand Index

We used the RI to evaluate the quantitative accuracy of an
action alignment. The RI, which is a well-known criterion

for indicating the goodness of clustering methods, was suit-
able for the evaluation because an action alignment can be
considered a problem for estimating optimal clustering of
sentences. By defining the ground truth, pairs of sentences
((i, t), ( j, v)) in the result of the action alignment can be sep-
arated into four groups as follows.

True Positive (TP): xit and x jv describe the same action, and the
MUSCLE algorithm assigns them to the same action (yit =
y jv).

False Positive (FP): xit and x jv describe different actions, and the
MUSCLE algorithm assigns them to the same action.

True Negative (TN): xit and x jv describe different actions, and the
MUSCLE algorithm assigns them to different actions (yit �
y jv).

False Negative (FN): xit and x jv describe the same action, and the
MUSCLE algorithm assigns them to different action indices.

The RI is defined as follows:

RI =
#T P + #T N

#T P + #FP + #T N + #FN
,

where #T P, #FP, #T N, and #FN denote the number of pairs
belonging to the above groups, respectively. The RI takes
the range from 0 to 1 and the larger value indicates better
result. Since the calculation of the RI requires the ground
truth for verifying whether a pair of sentences is about the
same action, we examined the input data and added the in-
dices that indicate the action to those generated manually.

The RI was also used for resolution estimation. In this
evaluation, we compared the estimated zit ∈ Zi and the true
resolutions instead of yit ∈ Yi, as mentioned above.

(2) Disappeared Actions

We not only conducted a technical evaluation with the RI,
we also investigated the visibility of actions and resolutions.
Practically, the most fatal error for a workflow is making an
important action or resolution disappear by mixing a sen-
tence of an action in an alignment of another action. We
defined the most contained true action in an alignment as
representing the action of its alignment. We considered the
true actions that were not represented by any alignments
as disappeared. Similarly, we defined the true resolution
on which no estimated resolutions are represented as dis-
appeared. We show the number of disappeared actions and
resolutions to show whether the obtained workflow can be
practically used.

5.1.2 Result of Evaluation

Both action alignments and resolution estimations with our
proposed method increased the RIs compared with the base-
line, respectively. The results are listed in Table 3. The base-
line RIs of alignment calculated by random alignments are
also shown in Table 3. These random alignments were ob-
tained by shuffling the order of the true action-ID sequence.
Although the baselines of alignments had large values be-
cause of #T Ns by large amounts of different action-sentence
pairs, our method indicated the larger RIs.

We emphasize that the obtained workflow has sufficient
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Table 3 datasets for evaluation and results

num. of RI of alignment num. of actions RI of resolution num. of resolutions
set tickets (I) baseline result true disappeared baseline estimated true disappeared estimated (K = 100)
(i) 30 0.85 0.91 21 5 0.74 0.77 4 0 4
(ii) 26 0.92 0.96 37 3 0.59 0.79 3 0 4
(iii) 15 0.68 0.99 17 0 0.62 0.73 5 0 6
(iv) 13 0.85 0.98 16 0 0.72 0.86 7 0 7
(v) 10 0.92 0.96 28 1 0.36 0.67 4 0 4
(vi) 3 0.76 0.99 30 0 N/A N/A† 1 0 1

accuracy for practical use. The number of disappeared ac-
tions and resolutions are shown in Table 3. Since every reso-
lution appeared, we assume that the RIs for resolutions indi-
cate sufficient accuracy. However, some actions disappeared
in the workflows of some datasets. Because these actions
were all executed only once, they were absorbed into other
actions. We believe this problem might be mitigated by in-
creasing the amount of data since an important action must
be executed repeatedly.

Our method requires that the number of resolutions K
is given. However, we can estimate the suitable K because
of the advantage of the HMM. In general, if |{k; k ∈ Zi,Zi ∈
Z}| of Z becomes larger, P(zit = k|zi,t−1 = k′) in Eq. (5)
for each k would become smaller, which result in a lower
likelihood. Therefore, even if a larger K is given, the HMM
does not use unnecessary resolutions in the solution Z̃ such
that maximize Eq. (5). We show the number of resolutions
appeared in the estimation result |{k; k ∈ Zi,Zi ∈ Z̃}| when
K was set to 100 in Table 3. Although the number of esti-
mated resolutions deviated from the true number of resolu-
tions, they became similar values.

Not only its accuracy, we also investigated the calcu-
lation speed of the method. The calculation time depended
on the number of trouble tickets and length of each trou-
ble ticket. The method must execute pairwise alignment by
using Algorithm 1 at least |X| − 1 times. The order of pair-
wise alignment when two inputs G(i) and G( j) are given is
O(|G(i)||G( j)|). However, even in the worst dataset (v), the
method finished the entire calculation within 3 minutes on a
machine with a 3.5 GHz 4 cores CPU and a 32 GB memory.
Therefore, we believe that this method can be practically
used for offline usage.

5.1.3 Error Analysis

Next, we explain about how our method made errors of
alignments and resolutions, by investigating the data and the
result. There were two reasons the action alignment is mis-
taken. One is the change in the order of actions. For ex-
ample, in dataset (i), actions “checking session”, “checking
alert message”, and “checking system log” appeared in dif-
ferent order because they were executed in parallel. This
change in order resulted in redundant nodes in a workflow
because of the third constraint mentioned in Sect. 4.2. How-
ever, in our examination, every dataset had at most four ac-
tions that can change this order. Therefore, we assume that

†Since dataset (vi) has only one resolution, there is no need to
estimate a resolution.

Fig. 6 Workflow obtained with our method

these less redundant nodes do not affect visualization for
practical use.

The other reason is the difference in granularities of
action descriptions. For example, in dataset (ii), there are
two types of hardware-replacement descriptions. Almost all
tickets described the replacement as one line, e.g., “we re-
placed it.” Only one ticket showed the procedure of actions
for replacement in detail. Since our method adopts one-to-
one assignment, it cannot regard such irregular sentences as
the same action.

Not only the miss of the action alignment, but also the
miss of resolution estimation was caused by the difference
in the granularity for action descriptions. The resolution es-
timation with our proposed method also indicated high ac-
curacy, though this accuracy decreased compared with those
of action alignments only. However, the case in which there
is less trouble-ticket data indicated low accuracy, the pro-
posed method estimated whether a difference in actions is
caused by the difference in resolutions or fluctuations with
the frequency of actions. If there were less trouble tickets,
our method regarded a sequence of the same resolution as
different by only a few different actions. Adaptation to less
data is for future work.

5.2 Case Study of Workflow

Finally, we present example results. Figure 6 shows a work-
flow obtained with our method. There are nodes with sen-
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Table 4 Frequent actions in Fig. 6 and description of the following iso-
lating actions

ID description resolution
1 node-down alarm was detected
2 reboot alarm was detected
3 asked field operator to check
4 there is no trace of router power-off.
5 found OSPF-neighbor-down message in log
6 verified ping connection.
7 reported ONU-repair alarm

8 defective cable caused link-down alarm when
cables were swapped for maintenance.

wait until main-
tenance is over

9 we found port failure. wait and see
10 now under investigation, but it is likely

line failure.
replacement

11 failure in relay point has been reported. replacement

tences only related to the explanation of the advantages of
our method. Our method obtained initial reactions to a fail-
ure as frequent actions. Table 4 lists the descriptions of ac-
tions for which sentences were aligned, which was for more
than half the number of trouble tickets. Compared with the
initial actions described in the manual we used, our method
obtained the same initial actions. Moreover, the generated
workflow includes actions that report to a customer that a
system is currently running. The advantage of our method
is that we can extract the actions executed without a man-
agement system.

Our method obtained descriptions on the causes of each
trouble ticket. Actions 8 to 11 in Table 4 show the sen-
tences related to the actions that followed the isolating ac-
tions. The following sentences give details on the failure,
such as defective cable or port failure. We believe this is be-
cause causes were written in the first action of a resolution
description to inform why the resolution was executed. Our
method makes it possible to understand the causes in trouble
tickets and to summarize troubles in a system.

6. Conclusion

We proposed a method of extracting a workflow describ-
ing a troubleshooting process in free-format text in multiple
trouble tickets. To obtain a workflow, we identify the same
messages between documents by using multiple-sequence
alignment. The proposed method consists of an algorithm
to estimate resolutions, i.e., frequent patterns of sequences
of actions, based on an HMM.

Our method clarifies the troubleshooting process to re-
solve problems that require the tacit knowledge of experts.
This enables problems to be solved more efficiently. A uni-
form process that does not require operator skills can pro-
vide high stabilization to system management. It promotes
automatic operation for processes that are known to be com-
plex, which makes it difficult to determine the correct pro-
cess.

Since the estimation algorithm of the proposed method
is not suitable for using huge datasets, we will examine a
more efficient estimation algorithm for future work.
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