IEICE TRANS. INF. & SYST., VOL.E100-D, NO.8 AUGUST 2017

1934
[LETTER
Rapid Generation of the State Codebook in Side Match Vector
Quantization®

Hanhoon PARK™ and Jong-11 PARK™, Members
SUMMARY Side match vector quantization (SMVQ) has been origi- a high hiding capacity without degrading the visual quality

nally developed for image compression and is also useful for steganogra-
phy. SMVQ requires to create its own state codebook for each block in both
encoding and decoding phases. Since the conventional method for the state
codebook generation is extremely time-consuming, this letter proposes a
fast generation method. The proposed method is tens times faster than the
conventional one without loss of perceptual visual quality.

key words: side match vector quantization, state codebook generation,
codeword clustering, steganography

1. Introduction

Vector quantization (VQ) is a lossy compression method for
images. It uses a given codebook (called main codebook)
to compress an image by substituting each block of the im-
age with a similar codeword of the same size in the code-
book, where the codebook can be trained by the LBG algo-
rithm [6]. However, VQ encodes each block independently
and thus tends to cause visible boundaries between neigh-
boring blocks. Side match vector quantization (SMVQ) is
an extension of the VQ [5]. It has been designed to enhance
the visual quality of VQ by reducing the visible boundaries.
It assumes that the correlation between neighboring blocks
is statistically high and employs the previous coded blocks
to help predict the current block so that the visible bound-
aries can be reduced. In addition, SMVQ creates a state
codebook for each encoding block on the fly, where the state
codebook consists of less codewords than the main code-
book. As a result, the index length in SMVQ is reduced
and the compression rate of SMVQ can be higher than that
of VQ. To further improve the visual quality and the com-
pression rate, some variants of SMVQ have also been pro-
posed [2], [7].

Recently, it has been proved that VQ and SMVQ can
also be used for data hiding (or steganography)[8]. Espe-
cially, SMVQ-based steganographic methods have provided

Manuscript received February 14, 2017.
Manuscript revised April 18, 2017.
Manuscript publicized May 16, 2017.

"The author is with the Department of Electronic Engineering,
Pukyong National University, Busan 48513, Korea.

""The author is with the Department of Computer Software,
Hanyang University, Seoul 04763, Korea.

*This work was supported by the research fund of Signal Intel-
ligence Research Center supervised by Defense Acquisition Pro-
gram Administration and Agency for Defense Development of
Korea.

a) E-mail: hanhoon_park @pknu.ac kr
b) E-mail: jipark@hanyang.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2017EDL8029

of cover images [1], [4]. In spite of these advantages and po-
tentials of SMVQ, SMVQ (including the SMVQ-variants)
has a drawback that the generation of the state codebook is
extremely time-consuming. Thus, the main concern of this
letter lies in speeding up the state codebook generation in
SMVQ.

2. Generation of the State Codebook in SMVQ

In SMVQ, the state codebook is generated as follows. All
the blocks in the top row and leftmost column of the image
are encoded in advance using VQ with the main codebook.
Then, SMVQ processes the image blocks in a scanline or-
der. Let x denote the current block, and m, and m; be the
codewords of the upper and left blocks, respectively. The
border vector of x is defined as

v, = {(mabh—l,O) + mgo’b’“l))/Z, m&D

bp—1,b,—1
,m; 0)}.

6]

by—1,b,—1 (Lbw=1)
mi h)’ ml Lo

Here, b, and b, are the width and height of blocks. The
side vector of each codeword (m;, i = 0, 1,2,...,wy) in the
main codebook M is defined as

on

m(.(],bw—l)’
i i

i E}

m"” m0 ... ,mgbh—l,m}_

0,0
Vi, = {m(.). m

2)

Then, the side match distortion is computed between v, and
Vi, @S

by+bp—2

di = ; [vx<k)—vm[<k)]2. 3)

The state codebook of x (denoted by S,) is generated by
choosing wg codewords that have the smallest d; values from
the main codebook. Here, wg indicates the state codebook
size and is preset to the same value (< wy,) for all blocks.

The state codebook generation for each block is not
computationally cheap and it should be repeated across all
blocks. In fact, the state codebook generation is extremely
time-consuming.

There has been a method for reducing the generation
time using principal component analysis (PCA)[3]. In a

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers

LETTER

preprocessing step, it computes the first principal compo-
nent direction (denoted by p;) of v,,, projects v,, onto pi,
and sorts the resulting projection values. For the current
block x, v, is projected onto p; and its nearest one is found
among the projection values of v,, by applying a binary
search. The codewords related to the nearest one and its
neighbors forms the state codebook of x. Therefore, the
method requires a projection operation and a binary search
operation to generate a state codebook and is much fast.
However, the method terribly lowers the dimension of the
border and side vectors, i.e. (b, + by, — 2) to 1, which makes
that the state codebook is roughly approximated. Thus, it
still suffers from the problem with visible boundaries be-
tween neighboring blocks.

3. Proposed Method

In a preprocessing step, we create a codebook (called super-
codebook) for v, and perform clustering of m; using the
distances between v, and the codewords in the super-
codebook. If v,, is closest to the c-th codeword, m; is as-
signed to the c-th cluster. Letting N, be the number of clus-
ters, NV, is determined by dividing the size of M (wy,) by the
size of S (ws). Here, S denotes one of the state codebooks
obtained from each block. For the current block x, a code-
word that is nearest to v, is found from the super-codebook.
Then, the cluster that is related to the found codeword is
composed of m;s whose side vectors are close to v,, and
is designated as the state codebook of x. Since only the
nearest of v, is found among the reduced number of code-
words in the super-codebook, not in the main codebook, the
codebook generation can be much faster. In the proposed
method, the number of the side vectors in each cluster is
varying and thus the encoding performance can be slightly

Table 1
conventional SMVQ

1935

different for different images. This will be shown in Sect. 4.
4. Experimental Results and Discussion

Three methods (conventional SMVQ, one using PCA, and
proposed) were run on a PC (CPU: i17-3770 3.4GHz, RAM:
8GB, OS: Windows 10 Pro). b, and b, were equally set to
4. In Fig. 1, seven images (except lena) with a resolution
of 512 x 512 were used for generating the main codebook,
i.e. 114,688 (128 x 128 x 7) blocks were used for train-
ing the main codebook, and the lena image was compressed
and decompressed. The compression rates, PSNRs of de-
compressed images, and processing times for each method
were computed. The original image has 2,097,152 (512 x
512 x 8) bits and the compression rate was computed by
comparing the number of bits before and after compression
as follows.

N’
Compression rate (%) = (1 — ﬁb) x 100. @
b

Fig.1 Images used in experiments. From left-top, airplane, baboon,
boat, zelda, peppers, goldhill, fruits, and lena. All the images are 512 x
512 and gray-scaled.

Compression rates, PSNRs of decompressed images, and processing times when using the

Size of M: 256

Size of M: 512

Size of M: 1024

Size of S —p te (%) PSNR (dB) Time (ms) Rate (%) PSNR (dB) _ Time (ms) Rate (%) PSNR (dB) _ Time (ms)
8 98.41 24.84 667 98.40 24.30 1492 98.40 23.82 3347
16 98.41 27.19 670 98.40 26.89 1505 98.40 26.06 3273
32 97.64 28.81 679 97.63 28.65 1511 97.63 28.12 3300
64 97.64 29.95 704 97.63 29.84 1521 97.63 29.50 3312
128 96.88 30.34 741 96.86 30.69 1571 96.86 30.67 3358
256 96.86 31.06 1665 96.86 31.36 3440
512 96.09 31.69 3637
Table 2 Compression rates, PSNRs of decompressed images, and processing times when using the
PCA-based method
Size of S Size of M: 256 . Size of M: 512 . Size of M: 1024 .
Rate (%) PSNR (dB) Time (ms) Rate (%) PSNR (dB) Time (ms) Rate (%) PSNR (dB) Time (ms)
8 98.41 23.35 9 98.40 23.41 9 98.40 23.01 12
16 98.41 25.65 13 98.40 25.33 14 98.40 24.89 17
32 97.64 27.59 24 97.63 27.07 24 97.63 26.61 25
64 97.64 29.24 45 97.63 28.68 46 97.63 28.06 46
128 96.88 30.19 79 96.86 30.15 86 96.86 29.52 89
256 96.86 30.96 170 96.86 30.89 173
512 96.09 31.57 345

IEICE TRANS. INF. & SYST., VOL.E100-D, NO.8 AUGUST 2017

1936
Table 3 Compression rates, PSNRs of decompressed images, and processing times when using the
proposed method
Size of § Size of M: 256 Size of M: 512 Size of M: 1024
Rate (%) PSNR (dB) Time (ms) Rate (%) PSNR (dB) Time (ms) Rate (%) PSNR (dB) Time (ms)
~8 98.33 24.66 21 98.17 24.81 33 98.02 23.61 58
~ 16 97.70 26.35 22 97.79 26.10 33 97.70 26.11 57
~32 97.64 27.53 26 97.64 27.41 41 97.63 27.58 62
~ 64 97.38 28.65 39 97.21 28.56 54 96.90 28.58 84
~ 128 96.88 29.72 69 96.86 29.58 76 96.86 29.50 99
~ 256 96.46 30.51 132 96.34 30.14 157
~ 512 96.09 31.19 258
Table4 Variation of the subcodebook size when using the proposed method
Size of § Si.ze of M: 256 Sige of M: 512 Si.ze of M: 1024
Min Max Min Max Min Max
~ 8* 2 23 1 21 1 29
~ 16 7 34 4 33 3 42
~ 32 22 53 15 56 7 63
~ 64 46 89 49 89 15 120
~ 128 109 147 101 158 67 185
~ 256 245 267 193 325
~ 512 480 544

* In the proposed method, the size of S is not fixed. As mentioned in Sect. 3, we
set the number of clusters in the v,,;’s clustering to a fixed value. Since each cluster
usually have different numbers of codewords, the size of S can be varying for each
block, with its mean value close to what we want (i.e. that of the conventional or
PCA-based method). Therefore, “~ 8” indicates that the size of S ranges from 2 and

23 and their mean across all blocks is 8.

Here, N, and N,; are the number of bits before and after
compression, respectively. The PSNR was computed as

2552
PSNR (dB) = 10 x logjy . (5)

Here, e represents the mean square error between the pixel
values of the original image and those of its SMVQ-
decompressed image. The processing time indicates the to-
tal time taken for compression and decompression.

Tables 1, 2, and 3 show the results. There was no
noticeable difference in the compression rates. Since the
size of S in the conventional method and the PCA-based
method are fixed by a given value, the compression rates
of both methods were always the same. However, in the
proposed method, since the size of S was varying accord-
ing to the cardinality of each cluster as shown in Table 4,
the compression rates were different for different conditions
or images (sometimes higher but usually slightly lower than
those of the other methods). The PSNRs of the PCA-based
method and the proposed method were lower than those of
the conventional method but the difference was mostly lower
than 1dB (less perceptible in the decompressed images, es-
pecially with PSNRs higher than 27dB as shown in Fig. 2).
In contrast, both methods were much faster (tens or hun-
dreds times) than the conventional method. There was a
tendency that the proposed method had higher PSNRs but
was slower than the PCA-based method when the difference
between the sizes of M and S was large. However, when
the difference between the sizes of M and S was small, the
proposed method had lower PSNRs but was faster than the
PCA-based method. This will be because the process of

(c) When the sizes of M and S were 1024 and 64

Fig.2 Decompressed images with different sizes of M and S. Left: con-
ventional, middle: PCA-based, right: proposed.

finding the nearest codeword from the super-codebook in the
proposed method has a linear time complexity to the super-
codebook size (= wys/ws), while the process of finding the
nearest codeword by the vector projection and binary search

LETTER

: ¥
-
Fig.3 Decompressed images when using the PCA-based method and the
proposed method. Left: PCA-based, right: proposed. Images in the bottom
row are the enlargement of the delineated regions in the upper images. The
sizes of M and S were 1024 and 16, respectively.

Fig.4 Decompressed images when applying PCA to the proposed
method. Left: the sizes of M and S were 256 and 16, right: 256 and 64,
respectively.

in the PCA-based method has a constant time complexity.
Therefore, one may think that both methods can be alterna-
tively used, depending on the point he/she places priority to.
However, it should be noted that the PSNR, a quantitative
measure, cannot fully describe the difference in the percep-
tual visual quality of images. In practice, the perceptual vi-
sual quality of the proposed method was much better than
that of the PCA-based method. This is because the PCA-
based method cannot completely resolve the problem with
the boundary artifacts (especially, prominent in low PSNRs

1937

and edge regions) as explained in the end of Sect.2 (also
see Fig.3). Therefore, we can conclude that the proposed
method is always more useful than the PCA-based method.

To further reduce the state codebook generation time
of the proposed method, one can consider to apply PCA
to the proposed method. In other words, by computing the
first principal component direction of the codewords in the
super-codebook and preparing their sorted projections onto
the direction vector, a codeword that is nearest to v, can
be found by binary search. However, in our experiments,
a further reduction was not observed. Furthermore, the vi-
sual quality of decoded images has become much worse as
shown in Fig. 4.

5. Conclusion

In this letter, a fast method for state codebook generation
in SMVQ was proposed. It was based on the generation
of super-codebook and the clustering of the main code-
words. The proposed method outperformed the conven-
tional method and the PCA-based method in terms of the
generation speed and the perceptual visual quality of decom-
pressed images.

References

[1] C.-C. Chang, W.-L. Tai, and C.-C. Lin, “A reversible data hiding
scheme based on side match vector quantization,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol.16, no.10, pp.1301-1308, 2006.

[2] R.-F. Chang and W.-M. Chen, “Adaptive edge-based side-match
finite-state classified vector quantization with quadtree map,” IEEE
Trans. Image Process., vol.5, no.2, pp.378-383, 1996.

[3] T.-S. Chen and C.-C. Chang, “A new image coding algorithm using
variable-rate side-match finite-state vector quantization,” IEEE Trans.
Image Process., vol.6, no.8, pp.1185-1187, 1997.

[4] L.S.-T. Chen and J.-C. Lin, “Steganography scheme based on
side match vector quantization,” Optical Engineering, vol.49, no.3,
037008, 2010.

[5] T.Kim, “Side match and overlap match vector quantizers for images,”
IEEE Trans. Image Process., vol.1, no.4, pp.170-185, 1992.

[6] Y.Linde, A. Buzo, and R.M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol.28, no.1, pp.84-95, 1980.

[71 X. Ma, Z. Pan, S. Hu, and L. Wang, “Enhanced side match vector
quantisation based on constructing complementary state codebook,”
IET Image Processing, vol.9, no.4, pp.290-299, 2015.

[8] W.-J. Wang, C.-T. Huang, and S.-J. Wang, “VQ applications in
steganographic data hiding upon multimedia images,” IEEE Syst. J.,
vol.5, no.4, pp.528-537, 2011.

http://dx.doi.org/10.1109/tcsvt.2006.882380
http://dx.doi.org/10.1109/83.480774
http://dx.doi.org/10.1109/83.605415
http://dx.doi.org/10.1117/1.3366654
http://dx.doi.org/10.1109/83.136594
http://dx.doi.org/10.1109/tcom.1980.1094577
http://dx.doi.org/10.1049/iet-ipr.2014.0125
http://dx.doi.org/10.1109/jsyst.2011.2165603

