
1526
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

LETTER

A Toolset for Validation and Verification of Automotive Control
Software Using Formal Patterns∗

Yunja CHOI†a), Member and Dongwoo KIM†, Nonmember

SUMMARY An automotive control system is a typical safety-critical
embedded software, which requires extensive verification and validation
(V&V) activities. This article introduces a toolset for automated V&V
of automotive control system, including a test generator for automotive
operating systems, a task simulator for validating task design of control
software, and an API-call constraint checker to check emergent properties
when composing control software with its underlying operating system.
To the best of our knowledge, it is the first integrated toolset that supports
V&V activities for both control software and operating systems in the same
framework.
key words: validation, verification, OSEK/VDX, patterns

1. Introduction

Automotive systems are controlled by numerous Electrical
Control Units (ECUs). A controller on each ECU is a re-
sult of configuration-dependent compilation of an operating
system and application logic implemented by a sequence of
collaborating tasks. In such a situation, rigorous V&V ac-
tivities need to check various aspects to fulfill several goals,
including

G1. To validate that a given operating system complies in-
ternational standards,

G2. To verify that a given operating system is code safe,
i.e., does not include software faults which may lead to
system failure,

G3. To verify that a given application code complies the
constraints of underlying operating system, and

G4. To validate that a given application logic implements
the designed task sequence.

There are several tools for supporting V&V activities
in this domain [1]–[3]. Most of them considers applica-
tion programs separately from underlying operating sys-
tems, enabling only local reasoning of the V&V activities,
or addressing only specific problems, such as schedulability,
without giving much thought on checking emergent proper-
ties from integrating application software with underlying
operating systems. Our previous work identified that a mis-
use of API functions (provided by operating systems) in ap-
plication code can be a source of system failure [4].

We present a prototype toolset AutoCheckFP to support

Manuscript received February 27, 2017.
Manuscript publicized April 19, 2017.
†The authors are with School of Computer Science and Engi-

neering, Kyungpook National University, South Korea.
∗The work was supported by the National Research Founda-

tion of Korea Grant funded by the Korean Government (NRF-
2016R1D1A3B01011685).

a) E-mail: yuchoi76@knu.ac.kr
DOI: 10.1587/transinf.2017EDL8042

the overall V&V activities for automotive control systems,
aiming at achieving above mentioned goals in one frame-
work. The tool is a result of several years of our collabora-
tive efforts [5]–[7], intended to support (1) auto-generation
of formal models for an easy access to formal verification
techniques, and (2) an integrated V&V framework for vari-
ous needs.

The toolset consists of a test generator for checking OS
implementations to support the goals G1 and G2, an API-
call constraint checker to support the goal G3, and a task
simulator to support the goal G4. In the core of the toolset
lies a pattern repository, analyzed from the international
standard for automotive operating systems, OSEK/VDX [8]
and formally modeled as a set of parameterized statema-
chines [6]. This pattern repository includes both functional
behavioral patterns of OSEK/VDX OS and constraint pat-
terns that model prohibited behaviors of application logic
defined in the standard. A formal model of an operating sys-
tem is auto-generated from this pattern repository by instan-
tiating behavioral patterns depending on system configura-
tions, which acts as a core engine to achieve various V&V
goals.

The remainder of this paper is organized as follows:
Section 2 explains the overall approaches with a motivating
example. Section 3 briefly explains the patterns and their
usage in the tool. Three major features of the toolset is ex-
plained in Sect. 4 followed by a brief discussion in Sect. 5.

2. Motivation and Approach

Figure 1 is a fragment of an application code (left side) to-
gether with its configuration (right side). This software con-
sists of two tasks t1 and t2, one resource r1, and two events
e1 and e2. The two tasks defined in the application code in-
teract with underlying operating system through API func-
tion calls (lines 03, 05, 09 - 11) and collaborate with each

Fig. 1 A code fragment

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

LETTER
1527

Fig. 2 Overview of AutoCheckFP

other to achieve a required functionality.
An operating system provides major services, such

as task management, resource management, event man-
agement, and communications, to an application program
through API functions. However, interactions between them
are not well protected in general so that ill-designed tasks
or human mistakes introduced in coding time may lead to
unanticipated behavior of the system, including system fail-
ure.

For example, line 03 of Task t1 activates Task t2, but
whether t2 will preempt t1 or not depends on the priority
of tasks given by system configurations and the scheduling
policy of underlying operating system. Furthermore, the call
WaitEvent(e1) from Task t1 may or may not result in tran-
siting t1 into waiting state depending on whether t1 is an
extended task, which owns an event, or not. Checking such
behavioral issues and system failures requires considering
multiple layers of the ECU software: the application code
itself, interfaces between application code and the underly-
ing operating system, and the OS implementation, etc. A
software fault from any of these layers can be directly con-
nected to system-level failures.

Motivated by failure cases identified from our previous
case studies [4], [6], we have developed a prototype toolset
AutoCheckFP based on a pattern-based model generation
framework [9]. Figure 2 is an overview of the toolset. The
base part of the toolset is a pattern repository, pre-defined
for modeling OSEK/VDX operating system kernel and for
operational constraints on application programs identified
from the OSEK/VDX international standard and formalized
in the input language of the model checker NuSMV. These
OS patterns and constraint patterns are composed depending
on system configurations to generate a test model or verifi-
cation model. The toolset performs model-based test gener-
ation, task simulation, or code-level API-call safety check-
ing from these models using model checker NuSMV and
CBMC as backend V&V engines. AutoCheckFP provides
configurable multi-layer verification framework, from op-
erating systems to control software, fully utilizing formal
models and formal verification engines.

3. Pattern-Based Model Construction

This section briefly summarizes two representative patterns

Fig. 3 Sample patterns

and their models in NuSMV to help readers to understand
the formal model construction process.

3.1 Patterns for OSEK/VDX OS

Figure 3 (a) illustrates a statemachine representation of a
task with four states and eight transitions. Each transition is
triggered by an API function call from application software
under specific conditions and may perform a set of actions
as the result of transition. Specific conditions for a transition
may be determined by states of other OS constructs and sys-
tem configuration which become parameters of the pattern.
Below is the declaration part of the Task pattern in NuSMV,
illustrating how it is parameterized:

MODULE Task(env, tid, ptiv, pri, autostart,

extended, rq, e_run, res, evt)

VAR state : { SUS, RDY, WIT, RUN};

In the declaration, tid, ptiv, prio, autostart, extended
are parameters from system configuration and env, rq, res,
evt are parameters from other statemachines, representing
Application, Scheduler, Resource, and Event, respectively.
The VAR statement declares variables in the statemachine,
representing the four states of a Task in this case. Each tran-
sition of Task pattern is specified with ASSIGN statements in
the MODULE as follows:

// initialize the state variable

init(state) := case autostart : RDY;

TRUE : SUS;

esac;

// transition r2

next(state):= case

(state = RDY & !e_run & prio >=rq.max_prio) ||

(state = RDY & (env.nSC | env.nRR | env.nSE) &

rq.pq[prio][0]= 1 & prio >= rq.max_prio : RUN;

...

esac;

API function calls are encoded with abbreviations,
e.g., nSC, nRR, and nSE, representing Schedule,

ReleaseResource, and GetResource, respectively. The
r2 transition specifies that there are two cases a task tran-
sits from Ready state to Running state: (1) if the task is
in Ready state, no other task is in running currently, and

1528
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

the priority of the task is greater than or equal to the max-
imum priority of tasks in the ready queue, or (2) if the
task is in Ready state, other task calls one of Schedule,
ReleaseResource, SetEvent, and there is a task in the
queue head whose priority is the largest among all the tasks
in the ready queue.

Our pattern repository includes patterns for basic con-
structs of OSEK/VDX OS, such as Tasks, Schedulers, Re-
sources, Events, and Alarms, formalized as parameterized
statemachines, MT [CT], MS [CS], MR[CR], ME[CE], and
MA[CA], where Cx denotes a set of configuration-dependent
parameters for each statemachine. Given system configura-
tion C = CT ∪ CS ∪ CR ∪ CE ∪ CA, a formal OS model is
generated as a synchronous parallel composition of a set of
parameterized statemachines:

OS [C] = MT [CT]||MS [CS]||MR[CR]||ME[CE]||MA[CA]

The number of each type of statemachine to be com-
posed is also dependent on the system configuration. For
example, if two tasks are declared, two instances of MT are
to be composed in the OS model.

3.2 Constraint Patterns

AutoCheckFP innovatively models operational constraints
identified from the OSEK/VDX standard in formal patterns.
The purpose is to formally specify prohibited behaviors of
application software and use the patterns to rigorously ver-
ify the interactions between any application software and its
underlying operating system. Table 1 is a selected list of
constraint patterns among a total of 13 constraint patterns
we have defined. For example, the InPairs constraint pat-
tern abstracts constraints that impose pairwise calls to API
functions, such as InPairs(GetResource, ReleaseResource).
A representative example of the OwnerOnly constraint is
WaitEvent(e), where the caller of the function must own
the event e.

Figure 3 (b) illustrates a formal representation of
InPairs(f1, f2) constraint; s0 is the initial and the final
states, where f1 and f2 are paired, s1 represents a state where

Table 1 Sample constraint patterns

Patterns Constraint Description category

InPairs(f1, f2) f1 and f2 shall be called in
pairs in the order of f1 fol-
lowed by f2.

call seq.

NotInBetween(A,
f1, f2)

A call in a set A shall not be
called in between calls to f1
and f2.

call seq.

MustEndWith(A) A call in a set A shall be
called eventually and no calls
shall be followed afterwards.

call seq.

CallerMode(f, m) If the API call is f, the the
mode of the caller task shall
be m.

config.

OwnerOnly(f) The caller task of f should
own the object referenced by
f.

config.

the number of calls to f1 is greater than that of calls to f2,
and s2 is a state where the number of calls to f2 exceeds that
of calls to f1 which is an error state.

4. Features of the Toolset

4.1 Task Simulator

It is important to be able to validate that the application
code truthfully implements the expected task execution se-
quences designed for performing a specific functionality.
Currently available commercial tools do not provide means
to validate such task sequences at the software level as they
do not take underlying operating systems into account.

The task simulator in AutoCheckFP supports early val-
idation of task sequences before the code is compiled with
operating system. The application code is abstracted w.r.t.
the API function call sequence and is translated into a
NuSMV module Mapp which is then composed with the
configuration-dependent OS model generated from the tool
to construct a simulation model: Msim[C] = OS [C]||Mapp.

The toolset uses the model checker NuSMV as the
simulation engine and visualizes task sequences. Figure 4
shows the visualization of a task sequence of the code frag-
ment in Fig. 1.

4.2 Test Generator

To achieve the goals G1 and G2, the toolset includes a
pattern-based test generator. The test generator constructs
a test model for given system configuration and test option
which is a selection of constraint patterns. A test model is a
synchronous parallel composition of an OS model and a set
of selected constraint patterns.

Mt[C] = OS [C]||Mp1 ||Mp2 || . . . ||Mpn

Once the test model is constructed, the tool uses the
typical model-based test generation strategy: It generates a
set of trap properties stating that each state of the test model
is not reachable. For a test model with a task and InPairs
constraint as shown in Fig. 3, for example, various trap prop-
erties can be set;

TR1. The InPairs pattern never reaches to the state s1

(Constraint Cover), or
TR2. The task and constraint statemachines can never be

running and s1 states at the same time (Task & Con-
straint Cover).

These trap properties are generated in temporal logic LTL

Fig. 4 A visualized task simulation

LETTER
1529

Table 2 Performance of test generation

Constraint Cover Constraint & Task Cover
(T, C) Time #P(#S) Time #P(#S)
(2, 2) 4.63 64(24) 16.24 128(45)
(2, 3) 39.46 88 (31) 28.32 176(53)
(2, 4) 40.48 104(34) 32.15 208(58)
(3, 2) 21.24 132(50) 226.24 704(218)
(3, 3) 56.28 144(59) 370.71 896(253)
(3, 4) 33.63 192(65) 412.69 1024(265)
(4, 2) 64.42 224(92) 6289.91 3584(817)
(4, 3) 103.97 272(109) 3766.22 4352(1102)
(4, 4) 105.31 304(116) 4266.78 4864(1152)

and are either verified (if they are not reachable indeed) or
refuted with counterexamples using NuSMV as a backend
verification engine. The tool converts counterexamples into
test drivers for testing actual OS implementations.

Table 2 shows the performance of test generation in
seconds as the numbers of tasks and constraints increase
from 2 to 4. (T, C) represents the combination of numbers of
tasks and constraints, #P and #S represent the number of trap
properties generated and the number of final test sequences,
respectively.

Test efficiency of the tool is compared with the state-of-
art test generator using concolic testing on an open source
operating system Trampoline; Testing using the test cases
generated from AutoCheckFP could identify more failure
types (four vs. one) and does not include infeasible test se-
quences or false alarms. On the other hand, concolic test-
ing using the tool CREST generates many infeasible test se-
quences (28.3%) and false alarms (11%), identifying only
one type of failure cases [4].

4.3 API-Call Constraint Checker

The API-call constraint checker is to ensure the correctness
of the interaction behavior between the OS and application
software as stated in the goal G3. For a given application
code, the checker verifies whether the code complies opera-
tional constraints of OSEK/VDX OS w.r.t. the 13 constraint
patterns in the pattern repository.

The tool provides two options, one for checking local
constraints, which applies within a task, and the other for
checking global constraints, which involves multiple tasks.
For checking local constraints, AutoCheckFP annotates each
task with calls to monitoring code which is a pre-declared
constraint automaton as a C-library function. The C code
model checker CBMC is then used to check whether the
task terminates while the constraint automaton is in unsafe
(non-terminal) state. For checking global constraints, the
toolset extracts statemachine representation of the applica-
tion code and constructs a synchronous parallel composi-
tion of a configuration-dependent OS model, the statema-
chine representation of application code, and a constraint
pattern: MAPI[C] = OS [C]||Mapp||Mp. NuSMV is used to
check whether unsafe state of the constraint model can be
reached in MAPI .

Table 3 shows the performance of constraint checking

Table 3 Performance of API-call constraint checking

Constraint ID 1 2 3 4 5

Global Checker 39.61 11.90 37.72 11.80 15.01
Local Checker 0.011 0.011 0.008 0.017 N/A

when 15 application programs are checked against 5 differ-
ent local/global constraints [7]. Local constraint checking is
much faster, but misses violations of global constraint 5.

5. Conclusion

We have presented a prototype toolset AutoCheckFP imple-
mented using formal pattern repository. The toolset has
been developed to demonstrate that formal approaches can
be practical and beneficial in multiple ways. Major benefits
of our approach include that (1) configurable formal models
can be auto-generated, (2) formal patterns can be reused in
other similar domains, (3) it supports multi-layer V&V ac-
tivities, including task simulation, test generation, and for-
mal verification, within an integrated framework, (4) it in-
creases the accuracy of V&V by taking underlying OS be-
havior into account, and (5) the pattern-based nature of the
tool makes it flexible and extensible to support other V&V
activities than those presented in this work.

Though the toolset is not in public space, demonstra-
tions are available at [10], [11].

References

[1] C. O’Halloran, “Automated verification of code automatically gen-
erated from Simulink,” Automated Software Engineering, vol.20,
no.2, pp.237–264, June 2013.

[2] T. Arts, J. Hughes, U. Norell, and H. Svensson, “Testing AUTOSAR
software with QuickCheck,” IEEE 8th International Conference on
Software Testing, Verification and Validation Workshops, 2015.

[3] E. Technologies, “Scade suite,” http://www.esterel-technologies.
com.

[4] T. Byun and Y. Choi, “Automated system-level safety testing using
constraint patterns for automotive operating systems,” Proceedings
of the 30th Annual ACM Symposium on Applied Computing, SAC
’15, pp.1815–1822, 2015.

[5] Y. Choi, M. Park, T. Byun, and D. Kim, “Efficient safety check-
ing for automotive operating systems using property-based slicing
and constraint-based environment generation,” Science of Computer
Programming, vol.103, pp.51–70, 2015.

[6] Y. Choi and T. Byun, “Constraint-based test generation for automo-
tive operating systems,” Software and Systems Modeling, vol.16,
no.1, pp.7–24, Feb. 2017.

[7] D. Kim, Y. Chung, and Y. Choi, “Model-based API-call constraint
checking for automotive control software,” Asia-Pacific Software
Engineering Conference, 2016.

[8] OSEK/VDX operating system specification 2.2.3.
[9] Y. Choi, “A configurable V&V framework using formal behavioral

patterns for automotive control software,” Journal of Systems and
Software, submitted.

[10] SSELAB, AutoCheckFP, Available at http://sselab.dothome.co.kr/
wordpress/index.php/tool-demo-autocheck-fp/.

[11] SSELAB, “A tool demonstration of NuSek test generation,” Avail-
able at http://sselab.dothome.co.kr/wordpress/index.php/tool-demo-
nusek.

http://dx.doi.org/10.1007/s10515-012-0116-5
http://dx.doi.org/10.1109/icstw.2015.7107466
http://dx.doi.org/10.1145/2695664.2695935
http://dx.doi.org/10.1016/j.scico.2014.10.006
http://dx.doi.org/10.1007/s10270-014-0449-6
http://dx.doi.org/10.1109/apsec.2016.039

