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Trajectory-Set Feature for Action Recognition

Kenji MATSUI†, Nonmember, Toru TAMAKI†a), Member, Bisser RAYTCHEV†, Nonmember,
and Kazufumi KANEDA†, Member

SUMMARY We propose a feature for action recognition called
Trajectory-Set (TS), on top of the improved Dense Trajectory (iDT).
The TS feature encodes only trajectories around densely sampled inter-
est points, without any appearance features. Experimental results on the
UCF50 action dataset demonstrates that TS is comparable to state-of-the-
arts, and outperforms iDT; the accuracy of 95.0%, compared to 91.7% by
iDT.
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1. Introduction

Action recognition has been well studied in the computer
vision literature [1] because it is an important and challeng-
ing task. Deep learning approaches have been proposed
recently [2]–[4], however still a hand-crafted feature, im-
proved Dense Trajectory (iDT) [5], [6], is comparable in
performance. Moreover, top performances of deep learn-
ing approaches are obtained by combining the iDT fea-
ture [3], [7], [8].

In this paper, we propose a novel hand-crafted feature
for action recognition, called Trajectory-Set (TS), that en-
codes trajectories in a local region of a video. The con-
tribution of this paper is summarized as follows. We pro-
pose another hand-crafted feature that can be combined with
deep learning approaches. Hand-crafted features are com-
plement to deep learning approaches, however a little effort
has been done in this direction after iDT. Second, the pro-
posed TS feature focuses on the better handling of motions
in the scene. The iDT feature uses trajectories of densely
samples interest points in a simple way, while we explore
here the way to extract a rich information from trajectories.
The proposed TS feature is complement to appearance in-
formation such as HOG and objects in the scene, which can
be computed separately and combined afterward in a late
fusion fashion.

There are two relate works relevant to our work. One
is trajectons [9] that uses a global dictionary of trajectories
in a video to cluster representative trajectories as snippets.
Our TS feature is computed locally, not globally, inspired
by the success of local image descriptors [10]. The other is
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the two-stream CNN [2] that uses a single frame and a opti-
cal flow stack. In their paper stacking trajectories was also
reported but did not perform well, probably the sparseness
of trajectories does not fit to CNN architectures. In contrast,
we take a hand-crafted approach that can be fused later with
CNN outputs.

2. Dense Trajectory

Here we briefly summarize the improved dense trajectory
(iDT) [6] on which we base for the proposed method. First,
the image pyramid for a particular frame at time t in a video
is constructed, and interest points are densely sampled at
each level of the pyramid. Next, interest points are tracked
in the following L frames (L = 15 by default). Then, the
iDT is computed by using local features such as HOG (His-
togram of Oriented Gradient) [10], HOF (Histogram of Op-
tical Flow), and MBH (Motion Boundary Histograms) [11]
along the trajectory tube; a stack of patches centered at the
trajectory in the frames.

For example, between two points in time t0 and tL, a
trajectory Tt0,tL has points pt0 , pt1 , . . . , ptL in frames {t0, t1,
. . . , tL}. In fact, Tt0,tL is a vector of displacement be-
tween frames rather than point coordinates, that is, Tt0,tL =

(v0, v1, . . . , vL−1) where vi = pi−1 − pi. Local features such as
HOGti are computed with a patch centered at pti in frame at
time ti.

To improve the performance, the global motion is re-
moved by computing homography, and background trajec-
tories are removed by using a people detector. The Fisher
vector encoding [12] is used to compute an iDT feature of a
video.

3. Proposed Trajectory-Set Feature

We think that extracted trajectories might have rich informa-
tion discriminative enough for classifying different actions,
even although trajectories have no appearance information.
As shown in Fig. 1, different actions are expected to have
different trajectories, regardless of appearance, texture, or
shape of the video frame contents. However a single trajec-
tory Tt0,tL may be severely affected by inaccurate tracking
results and an irregular motion in the frame.

We instead propose to aggregate nearby trajectories to
form a Trajectory-Set (TS) feature. First, a frame is divided
into non-overlapping cells of M × M pixels as shown in
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Fig. 1 Different actions in UCF50 [13] have different trajectory informa-
tion.

Fig. 2 (a) A block and cells in the starting frame. Starting points of tra-
jectories in each cell are shown in black circles with motion vector arrows.
Cells with no starting points are filled with 0. If there are multiple trajec-
tories starting from the same cell, the average trajectory is used for the cell
(the averaged starting point is shown in red in this figure). (b) A Trajectory-
Set feature consists of K2 trajectories (shown as blue curves) starting from
the same block in the starting frame t and wander across the successive
L frames. Magenta circles are the starting points of trajectories, and blue
circles are corresponding end points. The displacement vectors between
starting and end points are shown as black arrows.

Fig. 2 (a). Next, K × K cells form a block∗. This results
in overlapping blocks of MK × MK pixels with spacing of
M pixels.

The key concept of the TS feature is to collect trajec-
tories that start in a local region (or block) in the starting
frame (see Fig. 2 (a)). In each cell of a block in the starting
frame, we find a trajectory starting from the cell. (If there
are multiple trajectories starting from the cell, the average
trajectory is used. If no trajectory starts from the cell, we
use a zero vector as the trajectory of the cell.) By repeating
this procedure for all K × K cells in the block, we have a
set of trajectories starting from the block. We concatenate
the trajectories to form a TS feature of dimension 2LK2 for
the block. As shown in Fig. 2 (b), the TS feature consists of
trajectories that start in the same block in the starting frame
and wander across frames. Note that the end points of the
trajectories are not necessary close to each other. This im-
plies that we enforce the locality of trajectories only in the
starting frame.

In our default setting, L = 15, M = 10, and K = 5, then
the TS feature is a 750 dimensional vector. Figure 3 shows
examples of TS features for different categories. We can see
different motion patterns appear in each of TS features.

Here we can propose some variations. Instead of
using a trajectory as a series of displacements Tt0,tL =

(v0, v1, . . . , vL−1), we can simply a series of coordinates like
as Tt0,tL = (p0, p1, . . . , pL), but in local coordinate systems

∗Note that we borrow the terms from HOG [10].

Fig. 3 Examples of TS features of (a) BaseballPich, (b) PushUps, and (c)
ThrowDiscus in the UCF50. Each row shows different TS features obtained
from different blocks and different sets of 15 frames. Each plot shows 25
trajectories (in different colors) starting from each of cells in a block. Tra-
jectories are shown with 16 points (some points are overlapped) connected
with lines. The block and cell sizes are 50 × 50 and 10 × 10 pixels, respec-
tively.

instead of the global coordinate system. For further reduc-
ing computation cost, we can skip every two frames by sum-
ming successive two displacement vectors (that is, by skip-
ping one frame in (v0, v1, . . . , vL−1) to generate (v0 + v1, v2 +
v3, . . .)), resulting in feature vectors of dimension 400. We
call these processes “skip2” in the results.

4. Experimental Results and Discussion

Here we describe experimental results of the proposed
method. We used UCF50 [13]. It has 50 action categories.
Videos in each category are divided into 25 groups, and
we evaluate the accuracy with the leave-one-group-out cross
validation. The resolution of videos are 320 × 240 @ 30fps,
and the durations are between 1 and 6 seconds. For TS fea-
ture construction, we use M = 10 pixels, K = 5, and L = 15,
and randomly sample 1% of TS features for encoding with
the Fisher vector with 64 Gaussians. A multi-layer percep-
tron (MLP) of three layers, with a middle hidden layer of
100 nodes, was are trained.

Results are shown in Table 1. We compare the pro-
posed TS feature with the original iDT feature and other
recent methods. Skip 2 version of TS feature doesn’t per-
form well, showing that we need to take care about parame-
ter tuning for a better performance. Exploring the effects of
parameters (skipping, M, K, and L) is an important part of
our future work.

By comparing with other recent methods, our TS fea-
ture outperforms the original iDT, and is better than most
of other methods, even without any appearance information
of the scene. We are now planning to validate how the pro-
posed TS feature can be combined with other methods, in-
cluding deep learning approaches, for improving the perfor-
mance.

Recent work of action recognition uses more larger
datasets, such as UCF101 [24] and HMDB51 [25]. Our pre-
liminary results on UCF101 with the proposed TS feature
is about 30%, which is awful compared to the current base-
line (87% [2]) and the state-of-the-arts (94% [3], [4]). The
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Table 1 Comparison of results on UFC50.
accuracy

Wang+2013 (DT) [14] 83.6
Kataoka+2015 [15] 84.5
Beaudry+2016 [16] 88.3
TS skip2 (ours) 89.4
Li+2016 [17] 90.3
Wang&Schmid 2013 (iDT) [6] 91.7
Peng+2016 [18] 92.3
Yang+2017 [19] 92.4
Lan+2015 [20] 93.8
Lan+2015 [21] 94.4
Xu+2017 [22] 94.8
TS (ours) 95.0
Duta+2016 [23] 97.8

reason is that many categories in UCF101 have videos of
almost static scenes. For example, in “playing piano” cate-
gory, a person plays a piano indoor and only small portion of
the hands move very small amount. This is the limitation of
approaches focusing on motion only, therefore motion and
appearance cues are used to help each other [26], [27]. This
is the direction we will explore in the near future.
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