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Pre-Processing for Fine-Grained Image Classification

Hao GE†a), Nonmember, Feng YANG††, Member, Xiaoguang TU†, Mei XIE†††, and Zheng MA†, Nonmembers

SUMMARY Recently, numerous methods have been proposed to tackle
the problem of fine-grained image classification. However, rare of them
focus on the pre-processing step of image alignment. In this paper, we pro-
pose a new pre-processing method with the aim of reducing the variance
of objects among the same class. As a result, the variance of objects be-
tween different classes will be more significant. The proposed approach
consists of four procedures. The “parts” of the objects are firstly located.
After that, the rotation angle and the bounding box could be obtained based
on the spatial relationship of the “parts”. Finally, all the images are re-
sized to similar sizes. The objects in the images possess the properties of
translation, scale and rotation invariance after processed by the proposed
method. Experiments on the CUB-200-2011 and CUB-200-2010 datasets
have demonstrated that the proposed method could boost the recognition
performance by serving as a pre-processing step of several popular classi-
fication algorithms.
key words: fine-grained classification, object detection, neural network

1. Introduction

Fine-grained image classification (FGIC) aims to find dif-
ferences among subordinate classes, such as discriminat-
ing different models of cars, species of animals, and types
of food. For instance, in fine-grained flower classification,
it’s very difficult for human to recognize whether the tar-
get flower is “pincushion”, “sweet william” or “artichok”
because of the small inter-class variance. However, it’s pos-
sible to get a quick and precise classification result with the
help of a well trained fine-grained classification model. That
is to say, the FGIC is helpful.

As is well known, FGIC is a challenging problem be-
cause of the small inter-class variance and high intra-class
variance, which may confuse the computer to make deci-
sions. Meanwhile, the undertraining may be triggered due
to the small size of training data. In generic image classi-
fication tasks, the IMAGENET, which contains millions of
images, can be used. However, in Fine-grained classifica-
tion tasks, we can only use CUB [9], [10], which contains
only ten thousands of images. On account of the small mag-
nitude and less annotations of this dataset, we have to make
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full use of these images and their annotations. That is the
reason why we don’t treat FGIC as a big data problem. In
contrast, we construct our framework refer to the methods of
small data problems. We believe that data mining and pre-
processing will play a more important role than adjusting
the network structure.

In most existing FGIC methods, there are two main
steps, i.e., feature extraction and classification. It has been
proven in many literatures [3], [6] that using the features au-
tomatically extracted from CNN and classifying with SVM
is a good scheme for classification task. Recently, a new
framework, which is called “end to end system” [1], has
been proposed. In this system, a Neural Network is con-
structed and trained. The images of the dataset are directly
feeded into the network, and the labels could be automat-
ically obtained by a training strategy. However, compared
with the face recognition on small datasets [5], it seems that
an important step, the pre-processing step, has been forgot-
ten. In most face recognition frameworks, the frontalization
are implemented first, to normalize the faces to similar view-
points. Inspired by this, we propose to use the spatial rela-
tionships of the “parts” to align the images in FGIC. Spatial
relationships of the “parts” can be used to obtain more in-
formation. In this way, images in the dataset can be aligned
so that the influence of different poses and viewpoints can
be avoided.

In this paper, we propose a new pre-processing method
to align the images in CUB, which is a famous bird clas-
sification dataset in the field of FGIC. Our alignment is
independent to the other steps, and can be used as a pre-
processing step for all the existing fine-grained bird classi-
fication frameworks. In addition, it may evolve into a gen-
eral step for fine-grained classification frameworks in the
future. The proposed pre-processing strategy is composed
of four independent steps, i.e., location, rotation, cropping
and resizing. With these four steps, objects in the images
can be presented in similar fashion, such as locations, view-
points and sizes. The proposed method could make full use
of the information of the images as well as reducing the
variation of objects among the same class. The experiments
demonstrate that our method could achieve promising per-
formance.

2. Our Method

As discussed above, our pre-processing framework consists
of four procedures, i.e., location, rotation, cropping and re-
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Fig. 1 Parts annotation (left: bird with part centers marked by red circles;
right: 1

4 W × 1
4 H region for each part (W and H is the width and height of

the left image). Black image means this “part” doesn’t appear in the left
image.)

sizing. The details of these four procedures will be de-
scribed in this section.

2.1 Location

As center of the bird should be located first, we propose
to take the average of the “part” as the “Center” of the
bird. However, there remains some difficulties. As shown
in Fig. 1, the “parts” around the “Head” are so dense. If we
use the traditional 1

4 Height× 1
4 Width regions [8] to represent

these “parts” (where Height and Width represents the height
and width of the bounding box, respectively), these regions
will be highly overlapping. Therefore, we integrate these 7
parts (beak, forehead, crown, nape, throat, left eyes and right
eyes) into one “part”, which is called “Head”, and an iden-
tical label is assigned to the pair of legs and wings, respec-
tively. We obtain 7 “parts”, i.e., Head, Back, Belly, Breast,
Leg, Wing and Tail, which is similar with [1]. We use the
average of 6 “parts” (except the “Wings”, as the result can
be significantly influenced by the pose of the “Wings”) as
“Center” as the following function,

Cx =
1
N

N∑
i=1

P(i)x, Cy =
1
N

N∑
i=1

P(i)y (1)

where Cx and Cy indicates the coordinates of the “Center”
of the bird, P(i)x and P(i)y indicates the X-coordinate and Y-
coordinate of the “parts” respectively, and N is the number
of the “parts” which appear in the image. On the other hand,
as illustrated in the state-of-the-art methods [1], [3], [6], [7],
bounding boxes are used in both training and testing phase,
but part annotation is only used in training. In order to con-
trol variables, the part annotation should not be used in the
testing step, so the “parts” should be detected first. After
comparison with the other algorithms, we choose the algo-
rithm proposed by H. Zhang [1] to implement the part de-
tection. However, different “part” has different detection
accuracy, so we can’t treat them equally. We find the per-
formance of the detection of “head” and “legs” are pretty
good (more than 90%), so they are used independently in
our work, and the other 5 “parts” are mainly used for locat-
ing the center of the bird. Therefore, our algorithm is insen-
sitive to the location errors in the step of part detection.

2.2 Rotation

Rotation is the most important step in our framework, as it
determines the viewpoints of the birds in the images. Our
target is to align the images in both training and testing
phase with the same rules. Observing from the images, we
found that it is inappropriate to align all of the images with
one rule, so we separate the images into three subsets first,
images with only bird head, images with the front view of
face and the remaining images.

2.2.1 Images with Only Bird Head

The first subset contains images with only bird head, which
can be distinguished from the others by Eq. (2).

7∑
i=2

P(i)x = 0 and
7∑

i=2

P(i)y = 0 (2)

where P(i)x and P(i)y indicates the coordinates of the 6
“parts”, i.e., “Back”, “Belly”, “Breast”, “Leg”, “Wing” and
“Tail”, which are calculated in the step of location. To this
kind of images, we tried to align them, but we find that more
detailed parts must be used. For example, we can use the
spatial relationship between “Beak” and “Head” to align this
kind of images. However, in testing phase, we can only
detect 7 “parts”, which means we don’t have these more
detailed “parts” to align the images in testing. The align-
ment should be performed simultaneously in both phases,
so this kind of images should not be aligned in training ei-
ther. Therefore, the rotation angle of this kind of images is
zero, that is θ = 0.

2.2.2 Images with the Front View of Face

The second subset contains images with the front view of
face. We distinguish this kind of images from the others
with the following functions.

θH = arctan(−(Hy −Cy),Hx −Cx) (3)

θP(i) = arctan(−(P(i)y −Cy), P(i)x −Cx) (4)

where Hx and Hy indicates the coordinates of the “Head”,
P(i)x and P(i)y indicates the coordinates of the 5 “parts”, i.e.,
“Back”, “Belly”, “Breast”, “Leg” and “Tail”. The ranges of
θH and θP(i) are both from −π to π. In this kind of images, all
P(i) should be in a line, which means all P(i) should follow
either Eq. (5) or Eq. (6).

|θH − θP(i)| < M0 or 2π − M0 < |θH − θP(i)| < 2π

(5)∣∣∣∣∣∣
(
− θH|θH | (π − |θH |)

)
− θP(i)

∣∣∣∣∣∣ < M0 (6)

where M0 is a threshold variable. The experiments show that
best result is achieved when M0 =

1
16π. Equations (5) and

(6) ensure the “parts” in this kind of images are in the same
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or reverse direction with “Head”, respectively. As a special
case, if θH = 0, Eq. (6) should be |π − |θP(i)|| < M0. In most
of this kind of images, birds are standing in the ground and
facing us, so θH = π2 is quite common. Therefore, we rotate
all this kind of images to make sure θH = π2 , so the rotation
angle of this kind of image is calculated by the following
function.

θ =
π

2
− θH (7)

2.2.3 The Remaining Images

The remaining images are in the third subset. Different from
the previous two kinds of images, birds in this subset all con-
tain head and body, and are pictured from the side. There-
fore, we can rotate this kind of images to the similar view-
points. We calculate the angle of rotation base on the spatial
relationship of “Head” and “Center” according to the fol-
lowing function.

θ =
3
4
π − θH (8)

2.2.4 Flipping

With the previous steps, all images have been rotated. How-
ever, we find that some rotated images look unnatural, as is
illustrated in the left picture of Fig. 2. Images in this case
will enhance the intra-class invariance, so a discriminant
conditions should be proposed to flip those mis-rotated im-
ages. Through some comparisons, we realize that whether
an image should be flipped depends on the spatial relation-
ships between the “Head”, “Center” and “Legs”. If an image
looks natural after the rotation step, the vector from “Cen-
ter” to “Legs” should be within the range of certain angle,
which is described as Eq. (9).

M3 < arctan(−(L′y −C′y), L
′
x −C′x) < M4 (9)

where L′x and L′y indicate the coordinates of the “Legs” after
the rotation step, C′x and C′y indicate the coordinates of the
“Center”, M3 and M4 are the threshold variables. After a lot
of experiments and comparisons, we find that M3 = −π and
M4 = − 1

12π have the best performance. If the spatial relation
between “Legs” and “Center” isn’t satisfied with Eq. (9) for
an image, this image should be flipped.

However, “Legs” may not included in an image. In
this condition, the spatial relationships between “Head” and

Fig. 2 Middle: original image. Left: processed image without the step
of flip. Right: processed image.

“Center” can be used to determine whether an image should
be flipped according to the following function:

M5 < θH < M6 (10)

θH can be calculated by Eq. (3). M5 = − 1
2π and M6 =

1
2π

have the best performance. Therefore, if “Legs” is not in-
cluded in an image and the spatial relationship between
“Head” and “Center” isn’t satisfied with Eq. (10) for this
image, it should be flipped. The right picture in Fig. 2 is
flipped and rotated, which looks much more natural than the
left one.

2.3 Cropping

After location and rotation, birds are presented in similar
viewpoints. The next step is to locate the bounding box.
To the images which contain only bird head, we adopt the
bounding box provided by the dataset directly. To the re-
maining images, the center of the “parts” should be 1

8 width
and 1

8 height far from the bounding box, as most experiments
use 1

4 width × 1
4 height as the part region [8]. Therefore, the

bounding box is located by finding a smallest possible rect-
angle to contain all of the “parts”, and then symmetrically
enlarging the rectangle to its four thirds. However, this may
cause mistakes to some of the images with the front view
of face. To solve this problem, we set the short edge of the
bounding box to 1/2 of the long edge if it’s smaller than that.

This bounding box is different with the bounding box
provided by the dataset, for example, we can see that not
all of the birds are contained in the bounding box in Fig. 3
(some of the wings or tail has been cut). However, con-
sidering that the size of the “part” region is only 1

4 height ×
1
4 width of the bounding box, so all the “part” regions can
be included by this bounding box. Meanwhile, “part” re-
gions contain almost all of the information of an image, so
this bounding box also contains almost all of the information
which can be used.

2.4 Resizing

The images got translation invariance in the step of location,
and rotation invariance in the step of rotation. To obtain
the scale invariance, we keep the aspect ratio of the images
unchanged and resize the image to make sure the long edge

Fig. 3 Processed images with the long edge of 800 pixels.
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Fig. 4 Original images.

Table 1 Comparison with the original method on CUB-200-2011.

Method Original Accuracy After Alignment
Lee et al. [4] 41.01% 51.73%

Göering et al. [8] 57.84% 64.59%
Gravves et al. [2] 62.70% 65.32%
Zhang et al. [7] 64.96% 68.40%
Zhang et al. [6] 76.37% 78.29%

Lin et al. [3] 80.26% 81.23%

is 800. As is shown in Fig. 4, the birds in the original images
are facing different directions, and the sizes of them are also
different. By comparison, the processed images in Fig. 3
have similar viewpoints and sizes.

3. Experiments

3.1 Caltech-UCSD Bird-200-2011 Dataset

We test our method on the well known fine-grained dataset,
CUB-200-2011 [10]. CUB-200-2011 contains 200 bird
species, each species with about 60 images. The default
training/test split is used, therefore we can obtain about 30
training images with its species label and the bounding box
per category. Meanwhile, it also provides the coordinates of
15 “parts”. As mentioned in Sect. 2, we replace the original
15 “parts” with 7 “parts”, namely “Head”, “Back”, “Belly”,
“Breast”, “Legs”, “Wings” and “Tail”.

Just like some previous methods [1]–[3], bounding box
is used in both training and testing phase, but the part an-
notations are only used in training. Therefore, we follow
the detection network proposed in [1] to do the part detec-
tion in testing, and the detected “part” information helps us
doing the pre-processing. Our pre-processing framework is
tested in several FGIC algorithms, and the results are listed
in Table 1.

3.2 Caltech-UCSD Bird-200-2010 Dataset

We also evaluate our algorithm on CUB-200-2010 [9].
CUB-200-2010 contains 200 bird species, each species with
about 30 images, which is smaller than CUB-200-2011. The
main difference is that there’s no part annotation in this
dataset, which means we can’t locate the position of the 7
“parts”. So the part detection network [1], which we used to

Table 2 Comparison with the original method on CUB-200-2010.

Method Original Accuracy After Alignment
Zhang et al. [7] 34.50% 42.13%

Göering et al. [8] 35.94% 40.68%
Chai et al. [11] 47.30% 51.04%

Lin et al. [3] 65.25% 66.89%

align the images in the testing phase of the previous experi-
ment, is applied in this dataset. We train this part detection
network in CUB-200-2011, and use it in CUB-200-2010 to
locate the 7 “parts”. With the coordinates of the 7 “parts”,
the pre-processing could be conducted. The performance of
our pre-processing framework is evaluated in several FGIC
algorithms, and the comparison results are listed in Table 2,
which indicates that our pre-processing framework can be
well generalized to other datasets.

4. Conclusion

In this paper, we propose a new and efficient pre-processing
method for fine-grained classification to reduce the intra-
class variance for fine-grained classification. The proposed
method can extract the objects from the original images and
normalize them to similar viewpoints and sizes. We pro-
pose to use the spatial relationships of the part annotations
to align the images, which can make full use of the annota-
tions. As far as we know, this is the first attempt to focus on
the issue of pre-processing for fine-grained image classifi-
cation. Experimental results on CUB-200-2011 (Table 1)
and CUB-200-2010 (Table 2) have demonstrated that the
proposed pre-processing algorithm could achieve promising
performance by serving as the pre-processing step of several
popular classification frameworks.
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