
3018
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.12 DECEMBER 2017

LETTER

DiSC: A Distributed In-Storage Computing Platform Using
Cost-Effective Hardware Devices

Jaehwan LEE†a), Member, Joohwan KIM†, and Ji Sun SHIN††b), Nonmembers

SUMMARY The ability to efficiently process exponentially increasing
data remains a challenging issue for computer platforms. In legacy com-
puting platforms, large amounts of data can cause performance bottlenecks
at the I/O interfaces between CPUs and storage devices. To overcome this
problem, the in-storage computing (ISC) technique is introduced, which
offloads some of the computations from the CPUs to the storage devices.
In this paper, we propose DiSC, a distributed in-storage computing platform
using cost-effective hardware. First, we designed a general-purpose ISC de-
vice, a so-called DiSC endpoint, by combining an inexpensive single-board
computer (SBC) and a hard disk. Second, a Mesos-based resource manager
is adapted into the DiSC platform to schedule the DiSC endpoint tasks. To
draw comparisons to a general CPU-based platform, a DiSC testbed is con-
structed and experiments are carried out using essential applications. The
experimental results show that DiSC attains cost-efficient performance ad-
vantages over a desktop, particularly for searching and filtering workloads.
key words: distributed data processing, in-storage computing, Mesos,
single-board computer

1. Introduction

Big data applications are increasingly accounting for a
greater percentage of the workloads being placed on general
computing systems. As such, a shift has occurred in com-
puting platform cores from CPU-intensive arithmetic com-
putations to I/O intensive processes that efficiently transfer
large amounts of data from storage to memory. However,
when an application requires the transfer of a large amount
of data, the I/O interface between the CPU and storage de-
vice becomes a performance bottleneck, which degrades the
performance of the total system. Therefore, there is a need
for a new storage technique that can overcome these I/O bot-
tlenecks. One of approach to mitigate the I/O bottleneck can
be to increase I/O bandwidth using high-performance stor-
age interface like Non-volatile memory express (NVMe).
However, hardware performance improvement has limita-
tion such as scalability to deal with large amount of data.
Of note, although big data applications need to scan a large
amount of data in storage systems, it is common that only
a small amount of target data needs to be processed. If un-
necessary data can be filtered out within the storage system,

Manuscript received May 11, 2017.
Manuscript revised July 31, 2017.
Manuscript publicized August 23, 2017.
†The authors are with the School of Electronics and Informa-

tion Engineering, Korea Aerospace University, Goyang-city, Ko-
rea.
††The author is with the Department of Computer and Informa-

tion Security, Sejong University, Seoul, Korea.
a) E-mail: jlee@kau.ac.kr
b) E-mail: jsshin@sejong.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2017EDL8104

the amount of data transmitted over the I/O interface from
storage to main memory can be significantly reduced. The
in-storage computing (ISC) technique has been proposed by
several studies [1]–[3] as a way to solve the performance
bottleneck caused by differences in I/O interface speeds.
ISC uses a separate computing processor added to the stor-
age to offload the work that can be performed before sending
the data.

This paper proposes a distributed in-storage comput-
ing (DiSC) platform using cost-effective hardware. First,
we model a general-purpose ISC device, called a DiSC end-
point, using an inexpensive single-board computer (SBC)
and a hard disk to increase data transmission efficiency in an
I/O interface by adding intelligence inside storage device.
Because previous ISC devices [4] are company-dependent
and closed to the public, this study proposes an open ISC
architecture using cost-efficient hardware and commodity
operating systems. Second, DiSC adapts a Mesos-based re-
source manager to schedule tasks and assign them to the
DiSC endpoints [5]. To cover extensive applications, Mesos,
an open-source based distributed scheduler, is employed.
We built a testbed cluster using DiSC endpoints and a Mesos
resource manager for evaluation. Extensive experiments are
conducted on the DiSC testbed, and the performance results
are compared to the results from a legacy desktop machine.

The contributions in this paper are as follows. First, a
new open-architecture, open-source platform is suggested
for distributed ISC using cost-effective hardware. Using
DiSC endpoints and a Mesos-based scheduler, users can
execute ISC applications without modifying source codes.
Thus far, it supports C, C++, and Python-based applica-
tions on DiSC endpoints. Second, extensive experiments are
conducted on a real DiSC testbed, and the cost-efficiency of
DiSC is verified. For example, the Egrep application shows
better performance in DiSC than on a desktop machine by
up to two times in terms of the price-performance ratio. Ac-
cording to the experimental results, DiSC shows excellent
performance depending on the offloaded workload type; the
search and filtering applications show the best performance
on the DiSC platform, which corresponds to ISC’s original
purpose.

2. DiSC Cluster Architecture

2.1 DiSC Endpoint Hardware Architecture

The DiSC testbed cluster, which implements the distributed

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



LETTER
3019

Fig. 1 DiSC cluster diagram.

Fig. 2 DiSC cluster testbed.

in-storage processing system, consists of a single main pro-
cessing machine (desktop) and four DiSC endpoints, as
shown in Fig. 1. Each DiSC endpoint is composed of Ba-
nana Pi, an SBC equipped with a SATA interface and 1GB
Ethernet, and an HDD. Banana PI can serve as a processing
unit in a storage device to handle offloaded computations. A
single DiSC endpoint does not offer improved internal I/O
bandwidth, but we can move computation to DiSC endpoint
to achieve optimized total system performance.

Lubuntu 3.1.1, a limited-resource computer OS, is in-
stalled on the Banana Pi to build a cluster environment. The
Ubuntu 14.04 LTS version is installed on the desktop. In-
stead of directly attaching HDDs via the SATA interface to
the main machine, DiSC endpoints are attached to the main
machine over the 1GB Ethernet network. Since the band-
width of the 1GB Ethernet is sufficiently large compared to
the throughput of an HDD, DiSC can be modeled over Eth-
ernet as an active ISC device with storage. Banana PI with
Lubuntu is a small-size computing device, so all application
types can be offloaded without modifying source codes in
the storage device. Figure 2 shows the testbed DiSC cluster.

2.2 Distributed Processing Frameworks

2.2.1 Mesos

Mesos [5], [6] is a framework for distributed systems used
in data centers and cloud environments. The Mesos kernel
runs in each machine and supports resource management,
fault tolerance, and scheduling functions in conjunction with
applications such as Hadoop, Spark, Kafka, Elastic Search,
Zookeeper, and Marathon. The architecture of Mesos is
shown in Fig. 3. Mesos consists of a master daemon that
controls each cluster node, and Mesos frameworks that ex-

Fig. 3 Mesos architecture diagram, showing two running
frameworks [6].

ecute actual tasks on these nodes. A Mesos framework is
composed of two parts: a resource scheduler to manage re-
sources and a process executor to run the tasks.

2.2.2 Marathon

Marathon [7] is a container-integrated Mesos framework. It
creates an application and provides a resource scheduling
function to the slave. Marathon also provides Web UI. Af-
ter creating several configurations, the application is cre-
ated and each slave node starts executing the task after job
scheduling.

3. Experiments

3.1 Experiment Environments

The configuration of the cluster used in the experiment con-
sists of four DiSC endpoints, which serve as slave nodes,
and a desktop machine, which is the master node. The desk-
top has an Intel (R) Core (TM) i5-3470 CPU @ 3.20GHz
CPU and a 4GB memory. The Banana Pi in each DiSC end-
point has an A20 ARM Cortex-A7 Dual-Core CPU and a
1GB memory. Desktop node and Banana Pi node have a sin-
gle HDD via SATA interface. Performance is compared for
three cases: (1) the DiSC cluster, (2) the desktop machine
(denoted as CPU processing), and (3) Distributed Storage.
For the CPU processing, the available memory in the desk-
top is set to 2800MB, and the applications are only executed
on the CPU in the desktop. For the DiSC case, the available
memory is set to 700MB in Banana Pi, and the applications
are run on Banana Pi. 700MB is selected after consider-
ing the available memory in each case. In this experiment,
Marathon is used as a scheduler. When DiSC creates an ap-
plication in Marathon, the memory is set to 700MB, and the
instance is set to 4. Distributed Storage is the case that the
HDDs in DiSC Endpoint is mounted to the Desktop machine
via Networked File System (NFS), so DiSC Endpoint works
as a dummy storage device case. In this case, all processing
is done in CPU in the desktop.

3.2 Wordcount Result

Wordcount is an I/O intensive workload, but it also needs a
lot of memory and a significant number of computations. In
this experiment, four different input data file sizes are used



3020
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.12 DECEMBER 2017

Fig. 4 Execution times of Wordcount application.

Fig. 5 Execution times of Egrep application.

- 128MB×4, 600MB×4, and 1GB×4. The experimental re-
sults are shown in Fig. 4. It shows that the overall perfor-
mance of CPU processing and Distributed storage exceeds
that of DiSC. There are two reasons for this. First, Word-
count applications require a large amount of memory to
store the intermediate results, and it also requires a number
of computations to match words. ARM CPU in Banana PI
does not have sufficient computing power compared to the
Intel CPU in the desktop, and the available memory in Ba-
nana PI is limited to the desktop environment. Second, even
though Wordcount summarizes raw input data, its output
size is not significantly reduced. Typically, an ISC model
benefits from reduced transfer times at the I/O interface de-
spite the additional CPU cycles in ISC devices. However,
Wordcount is not an application with a small output-input
ratio, so the reduced data amount is not large compared to
the processing time in the ISC device.

3.3 Egrep Result

In the Egrep experiment, measurements are taken for the ex-
ecution time needed to scan keywords in a 1GB XML file.
The experiment varies the keywords, which have different
populations in the input file. As shown in Fig. 5, the exper-
iment is divided into six cases - 0.2%, 0.5%, 1%, 2%, 5%,
and 10% of the keyword populations. The results show sim-
ilar execution times when the word population ratio is less
than 2%. However, when the ratio increases (5% and 10%),
the execution times increase. This indicates that the DiSC
cluster consistently outperforms the CPU processing and the

Distributed storage. In contrast to Wordcount, Egrep is a
search algorithm. It is not influenced as much as Wordcount
by memory size, cache memory, or CPU performance. The
results demonstrate that DiSC can overcome the difference
in CPU performance and turn out a well-scaled distributed
processing system with excellent performance levels. Thus,
DiSC can perform well in applications that do not overload
the CPU and RAM usage and reduce output significantly.

3.4 Cost Efficiency

Because DiSC endpoints have limited resources based on
inexpensive hardware, the DiSC and CPU processing price-
performance ratios are compared. The price-performance
ratio is defined as an inverse of the product of execution
time and hardware costs. The ratios are calculated by sum-
ming up the hardware costs in each case†. The dotted lines
in Figs. 4 and 5 show two kinds of the normalized price-
performance ratio. The first is equal to the DiSC price-
performance ratio divided by the CPU processing price-
performance ratio, and the second is is equal to the DiSC
price-performance ratio divided by the Distributed storage
price-performance ratio. In other words, if the normalized
price-performance ratio is larger than 1.0, DiSC is a more
cost-efficient system than other type of processing. For
Wordcount, CPU processing has a better ratio than DiSC.
However, for Egrep, DiSC has a better ratio than CPU pro-
cessing. Egrep remains a well-suited application for an ISC
platform.

3.5 Discussion

In case of CPU processing and Distributed storage, data
transfer time from storage to main memory is dominant to
the total execution time. Since we use 1Gbits Ethernet to
DiSC Endpoints, bandwidth of networked storage device is
as large as that of the local storage, so the Distributed stor-
age cannot get any benefits from the distributed architec-
ture. It means that reducing data transfer in storage device
through ISC works very effectively with distributed archi-
tecture.

However, if the dependency between data across dif-
ferent storage devices exists, DiSC endpoints might need
to get the data from other endpoint through network. We
are working on this feature like shuffle in Hadoop now, but
DiSC architecture mainly focuses on distributed ISC for in-
dependent data because shuffle type of operation can incur
bottleneck in the network.

RAID is one of popular technique to increase through-
put of storage system. In our DiSC, we do not support RAID
technique for throughput improvement, but block-level par-
allel execution in DiSC can increase the total system perfor-
mance in distributed manner.

†Hardware price costs are estimated from Amazon prices.



LETTER
3021

4. Conclusions

This paper proposes DiSC, a new open-source, open-
architecture ISC platform using cost-effective hardware.
Various experiments are conducted, and the performance re-
sults are compared. These results indicate that search type
applications perform better in DiSC. In order to solve the
performance bottleneck problem at the I/O interface when
processing a large amount of data, ISC applications in dis-
tributed systems are very important. The DiSC experimental
results can be also extended to data centers or cloud that pro-
cess large amounts of data for search and filtering workload.

Acknowledgments

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science and ICT (No.
2015R1C1A1A02036524), and by the GRRC program of
Gyeonggi province [Video-Audio Space Convergence Tech-
nology Research Center].

References

[1] D. Park, J. Lee, and S. Hong, “SSD software platform simulator for
in-storage processing,” Journal of KIISE: Computing Practices and
Letters, vol.18, no.8, pp.602–606, 2012.

[2] J. Do, Y.-S. Kee, J.M. Patel, C. Park, K. Park, and D.J. DeWitt, “Query
processing on smart SSDs: Opportunities and challenges,” Proc. 2013
ACM SIGMOD, pp.1221–1230, 2013.

[3] Y. Kang, Y.-S. Kang, E.L. Miller, and C. Park, “Enabling cost-
effective data processing with smart SSD,” 2013 IEEE 29th Sympo-
sium on Mass Storage Systems and Technologies (MSST), May, 2011.

[4] B. Gu, A.S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit: A
framework for near-data processing of big data workloads,” 2016
ACM/IEEE ISCA, pp.153–165, Seoul, 2016.

[5] Apache Mesos, http://mesos.apache.org/
[6] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.

Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” UC Berkeley, 2010.

[7] Marathon, https://github.com/mesosphere/marathon

http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JBGHIF_2012_v18n8_602
http://dx.doi.org/10.1145/2463676.2465295
http://dx.doi.org/10.1109/msst.2013.6558444
http://dx.doi.org/10.1109/isca.2016.23
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center

