
234
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.1 JANUARY 2018

LETTER

A GPU-Based Rasterization Algorithm for Boolean Operations on
Polygons

Yi GAO†, Nonmember, Jianxin LUO†a), Member, Hangping QIU†, Bin TANG†, Bo WU†,
and Weiwei DUAN†, Nonmembers

SUMMARY This paper presents a new GPU-based rasterization algo-
rithm for Boolean operations that handles arbitary closed polygons. We
construct an efficient data structure for interoperation of CPU and GPU
and propose a fast GPU-based contour extraction method to ensure the per-
formance of our algorithm. We then design a novel traversing strategy to
achieve an error-free calculation of intersection point for correct Boolean
operations. We finally give a detail evaluation and the results show that our
algorithm has a higher performance than exsiting algorithms on processing
polygons with large amount of vertices.
key words: GPU, CPU, rasterization, Boolean operation, error-free

1. Introduction

The Boolean operations on planar polygons are frequently
used in spatial analysis. According to the data structures,
the algorithms can be divided into vector data structure al-
gorithm and raster data structure algorithm. The former
uses the geometric analysis to focus on the location relation-
ship among the polygons [1], [2]. Peng et al. [3] proposed a
classification method of edges based on the rotation angle.
Murta [4] realized an improvement of Vatti [2] to handle co-
incident edges. Such algorithms have the advantage of high
precision. However, they demonstrate certain insufficiencies
in the aspects of the complexity of the data structure and the
amount of computation.

The raster data structure can simplify the spatial cal-
culation of the polygons more effectively. Fan et al. [5]
and Wang et al. [6] transformed the Boolean operations on
polygons into discrete pixel operations and effectively im-
proved the performance of the algorithm. However, these
algorithms based on CPU have three main problems: firstly,
the discussion of complex point-inclusion problem is still
inevitable while traversing the discrete pixels; secondly, the
time spent of rasterization based on CPU is too much due
to the serializability of CPU [7]; thirdly, the process of ras-
terization is a transformation process with loss that causes a
certain degree of error [8].

To addressing these problems, this paper presents a
novel algorithm based on GPU rasterization. The algorithm
avoids the complex geometric relationships by using the
pixel mapping relationships. More importantly, the large-

Manuscript received May 29, 2017.
Manuscript revised August 29, 2017.
Manuscript publicized September 29, 2017.
†The authors are with the PLA University of Science and Tech-

nology, Nanjing, P.R. China.
a) E-mail: luojianxin555@163.com

DOI: 10.1587/transinf.2017EDL8119

scale parallel features of GPU can effectively achieve high-
performance computing. Currently, no relevant research is
present that uses this method for Boolean operations on the
polygon. To be specific, the proposed algorithm has the fol-
lowing innovative contributions:

• Constructing an interoperation data structure of CPU
and GPU which enables a parallel operation in GPU
and greatly improves the algorithm efficiency.
• Proposing a simple and fast GPU-based contours ex-

traction algorithm.
• Presenting a traversing strategy which effectively

solves even the problem of intersection points on the
edge and edge overlapping.
• Providing an errorless computation of intersection

point based on this data structure.

2. Data Structure

We design two data structures which are associated through
relationship mapping (Fig. 1).

Raster data structure in GPU Three textures were
used: Tex1 stores the vertex coordinates with 32-bit floats
in R and G channels of each texture fragment. Tex2 stores
the previous vertex coordinates in R and G channels and the
next vertex coordinates in B and A channels. Tex3 stores
the vertex attribute with 8-bit floats in R channel. The first
6-bit describes the fragment value f. The other 2-bit Boolean
data tag1 and tag2, show whether the vertex belongs to outer
or inner contour, using 0 and 1 denote false and true, re-
spectively. A triad (f , tag1, tag2) represents the fragment at-

Fig. 1 Mapping relationship between two data structures

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

LETTER
235

tribute.
Vector data structure in CPU There are various pa-

pers about vector data structures. [2] use boolean data to in-
dicate the intersection point of entry or exit property. [6] use
other pointer to indicate the intersection of another linked
list. This paper combines these two structures, defined as
follows:

vertex = {x, y : coordinates;
tag1, tag2 : boolean;
pre, next, other : pointer; }

,

where x and y denote horizontal and vertical coordinates,
respectively; tag1 and tag2 are the same as in GPU; pre and
next pointers point to the previous and the next vertex; other
pointer points to the intersection of another linked list.

There is a mapping relationship: S ′ = (MVP)S , where
S is the object space coordinate in CPU, S ′ is the screen
space coordinate in GPU, MV is the transformation matrix,
and P is the projection matrix.

3. Extraction of Inner and Outer Contours

Contour extraction includes two steps: polygon rasterization
and contour tracking.

Polygon Rasterization A polygon can be easily ras-
terized into textures in an orthogonal projection camera in
OpenGL or DirectX, which is operated in hardware and ex-
ecuted in parallel. The initial raster value f =0. After ras-
terization, the geometry primitive is assigned correctly. As
shown in Fig. 2, the raster value covered by the first poly-
gon S was assigned to 1 (grey rectangles) and covered by
the second polygon C was assigned to 2 (pink rectangles).
The raster value located in two polygons’ intersection re-
gion was assigned to 3 (green rectangles). Then, the screen
coordinates T1-T7 are interpolated along the segment S 2S 3

(black arrow). Repeating this interpolation process, the ge-
ometry primitive is transformed into raster textures.

Given two arbitrary polygons in Euclidean space
S {S 1, S 2, S 3, S 4, S 5, S 6} and C{C1,C2,C3,C4}, all the ver-
tices of two polygons are arranged as counter-clockwise.
Let (x, y) be the coordinates of any point in space. Then
the Boolean operation of S and C is defined as:

S ∪C = {(x, y, f)| f(x,y) =!0}
S ∩C = {(x, y, f)| f(x,y) = 3}
S −C = {(x, y, f)| f(x,y) = 1}

(1)

Contour Tracking Read all fragments that have f =!0,
and compare each fragment with the f value of the surround-
ing 8 neighbour fragments. As long as there is a fragment
with f=0, the current fragment is the outer boundary frag-
ment. These outer boundary fragments constitute a closed
loop that is the outer contour (Fig. 3 (a)).

Read all fragments that have f=3, and compare each
one with the f value of the surrounding 8 neighbour frag-
ments. As long as there is a fragment with f � 3, the cur-
rent fragment is the inner boundary fragment. These inner

Fig. 2 Two polygons rasterized

Fig. 3 Extraction of: (a) external contour, and (b) internal contour

Fig. 4 The corresponding relations between triad and vertex

boundary fragments form a closed loop that is the inner con-
tour (Fig. 3 (b)).

In GPU parallel architecture, the traversal of 8 neigh-
bourhood for each fragment is independent to each other and
the total computation time is the time of only one of them.
Whereas, in the CPU serial mode, the traversal times of 8
neighbourhood are accumulated [5].

4. Traversing

Each fragment associates with a triad (f, tag1, tag2). The
corresponding relations between triad and vertex are shown
in Fig. 4. The case of (3,1,0) is unable to appear because as
long as f=3, tag2 must be 1. We divide the intersections into
the vertex-intersection and the common-intersection prop-
erty, distinguishing from the entry or exit property [2], [9].

4.1 Contour Compressed

The extracted fragments of inner and outer contours are in-
dexed. As a result of GPU rasterization, there are many re-
dundant data in two contours. The method of distinguishing
is to space mapping one vertex S i(x, y) in object space to
S i
′(x, y) in screen space and calculate the distance of Ts. If

dist(S i
′,Ts) is less than the length of the raster unit l, the

236
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.1 JANUARY 2018

Fig. 5 Illustrations of outer contour traversing and compressed

Fig. 8 Illustrations of S-C difference operation

Fig. 6 Illustrations of S ∪C union operation

current fragment corresponds to the vertex S i. Otherwise,
it is an interpolation. The fragment that corresponds to the
vertex or the intersection was reserved (Fig. 5 yellow block),
while the rest as redundant data were deleted, thus the con-
tour was compressed. This compression method can distin-
guish between the vertex-intersection and an interpolation
very well for the problem of intersection points on the edge
and edge overlapping.

4.2 Traversing Rules

Let assume that R1 and R2 are the copmressed outer and in-
ner contour list of S and C. Note that the default traversing
direction is counter-clockwise direction, unless it is speci-
fied otherwise.

4.2.1 Union

According to the formula(1), the union of two poly-
gons is the compressed outer contour R1. We set S 1

as the starting point and get the union of S and C is
{S 1, I1,C1, I2, S 2, S 3,C3, S 4, S 5, S 6,C4, I3}.

4.2.2 Intersection

According to the formula(1), the intersection only lies on
f=3. Therefore, the traversing rule is to disconnect two con-
tours for the left and right of f ! = 3. We firstly choose I1

Fig. 7 Illustrations of S ∩C intersection operation

as the starting point, and hit the breakpoint then we shift to
R2
′. Repeat these steps until we get a circle (Fig. 7). The

intersection is {I1, I2,C2,C3, S 4, S 6, I3}.

4.2.3 Difference

The difference traversing rule is to disconnect two contours
for the left and right of f = 2 and shift to other chain when
a (3,1,1) is hit. As presented in Fig. 8. We firstly choose
S 1 as the starting point and begin to traverse I1 (3,1,1), then
we shift to R2 and find the next node of I1 is I3. In this
way, we get a circle (the black dashed lines). Afterwards,
we take the break I2 as a new starting point, and then con-
tinue to traverse, getting another circle (the green dashed
lines). Next, we use the same method to traverse and get cir-
cle (the red dashed lines). Thus, the difference between R1

and R2 consists of three parts, {S 1, I1, I3}, {I2, S 2, S 3,C3,C2}
and {S 4, S 5, S 6}.

5. Exact Intersection Calculation

Generally, the exsiting algorithms reduce the raster error by
increasing the resolution. The greater the resolution is, the
smaller raster error.

LETTER
237

Fig. 9 Intersection calculation

Table 1 Running time results of three main stages (ms)

N rasterization extracting traversing
9 0.0003 0.0016 0.0021
35 0.0003 0.0024 0.0035
55 0.0003 0.0027 0.0043

750 0.0126 0.097 0.1589
5510 0.0862 0.1786 0.1957

20,563 0.1431 0.2345 0.3133

According to Fig. 5, we can obtain a resultant chain.
Take the common-intersection I1 example, as shown in
Fig. 9, the calculation of I1 is to find the relevant edges. In
our data structure, S 1 and C1 have their own entity polygon
chain. According to the segment direction formed by I1, S 1

and its next vertex S 2 is S 1S 2, C4 and its next vertex C1 is
C4C1. The relevant edges of I1 are S 1S 2 and C4C1. The
value of I1 is obtained using the corresponding linear equa-
tion of S 1S 2 and C4C1. And so on, for each intersections.

6. Experimental Results and Discussion

We have implemented our algorithms in C++ and GLSL.
All tests were performed on a desktop computer equipped
with Intel Core i5 CPU, 4 GB memory, and NVIDIA
GeForce GT 620M GPU.

The raster resolution was set to 256×256, and the av-
erage running time of the proposed algorithm was tested in
three main stages: rasterization, extracting, and traversing
(see Table 1). N denotes the sum of two polygons’ vertex
numbers.

The results for each stage verify our algorithm is feasi-
ble and effective to some extent. Table 2 lists the comparison
of extraction performance and intersection area error with
Fan [5] and our method, which are both rasterization algo-
rithm. The area error is evaluated based on the area value
of Vatti [2], whose value is 7.5m2. From this table, we can
see that our method has better performance. It is ascribed
to the interoperation data structure which enables a parallel
operation in GPU. The poorer performance of Fan is due to
that the extracting process in CPU serial way is inefficiency.
Meanwhile, our algorithm has no accuracy error, while Fan
even has 0.02% error at resolution 1024×1024. This shows
that our algorithm is not affected by resolution, and can
achieve an error-free calculation of intersection points.

To further verify the overall performance of our algo-
rithm, we hence conduct another experiment. Table 3 lists
the results of our algorithm in comparison with CPU-based
vector algorithm Vatti [2] and Peng [3], and CPU-based ras-

Table 2 Contour extraction performance results and area error statistics

256×256 512×512 1024×1024
Fan our Fan our Fan our

time(s) 15.145 2.132 233.67 7.036 4053.33 22.737
area(m2) 7.525 7.5 7.5083 7.5 7.5015 7.5
Error% 0.33 / 0.11 / 0.02 /

Table 3 Comparison results with several existing algorithms (ms)

N Vatti Peng Fan Our method
9 0.0635 0.0308 0.0062 0.0041
30 0.4336 0.2568 0.0152 0.0062
50 0.8325 0.513 0.0304 0.0073

742 1.3783 1.0745 0.3677 0.2671
2516 1.767 1.5547 1.1323 0.3433

20,363 2.606 2.2791 2.0032 0.6891

terization algorithm Fan [5]. As we expected, the results
also show that the new algorithm outperforms other three
ones, and further strengthens our claim that our algorithm
can improves the algorithm efficiency.

7. Conclusion, Limitations and Future Work

A GPU-based rasterization algorithm for Boolean operation
on polygons is presented. Moreover, two data structures for
GPU and CPU were designed. According to the vertex map-
ping and fragment attribute, the proposed algorithm realizes
contour fragment compression, and enables correct opera-
tions of union, intersection and difference. According to
the vertex order in Boolean computation results, the rele-
vant edge was found, and the intersection point values were
accurately calculated.

Due to the own limitations of rasterization itself, a po-
tential drawback is that the edge distribution of a polygon in
extreme case, such as too many edges within a grid, the effi-
ciency advantage of the proposed algorithm is not obvious.

The algorithm is good at solving two polygons. For
multi-polygons, repeat and compute this algorithm in many
times will affect the efficiency. In the future, we will re-
search on the algorithm for processing multi-polygons si-
multaneously.

Acknowledgements

This research work was supported by Chinese National De-
fense Foundation of Science and Technology (Grant No.
3602027) and Jiangsu Province Science Foundation for
Youths (Grant No. BK20150722).

References

[1] K. Weiler and P. Atherton, “Hidden surface removal using polygon
area sorting,” ACM SIGGRAPH Computer Graphics, vol.11, no.2,
pp.214–222, ACM, 1977.

[2] B.R. Vatti, “A generic solution to polygon clipping,” Commun. ACM,
vol.35, no.7, pp.56–63, 1992.

[3] Y. Peng, J. Yong, H. Zhang, and J. Sun, “Efficient algorithm for
general polygon clipping,” Proc. 6th International Conference on
Computer-Aided Industrial Design and Conceptual Design 2005,

http://dx.doi.org/10.1145/965141.563896
http://dx.doi.org/10.1145/129902.129906

238
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.1 JANUARY 2018

2005.
[4] A. Murta, “A general polygon clipping library,” Advanced Interfaces

Group, Department of Computer Science, University of Manchester,
Manchester, UK, 2000.

[5] J. Fan, W. Kong, et al., “Rapc: A rasterization-based polygon clipping
algoirithm and its error analysis,” Acta Geodaetica et Cartographica
Sinica, vol.44, no.3, pp.338–345, 2015.

[6] R. Wang, X. Liao, et al., “Polygon clipping algorithm based on dual-
strategied tracing and grid partition,” Journal of Graphics, vol.33,
no.6, pp.45–50, 2012.

[7] C. Zhou, Z. Chen, Y. Pian, N. Xiao, and M. Li, “A parallel scheme
for large-scale polygon rasterization on cuda-enabled GPUs,” Trans-
actions in GIS, vol.21, no.3, pp.608–631, 2016.

[8] S. Liao, Z. Bai, and Y. Bai, “Errors prediction for vector-to-raster con-
version based on map load and cell size,” Chin. Geogr. Sci., vol.22,
no.6, pp.695–704, 2012.

[9] Z.-J. Wang, X. Lin, M.E. Fang, B. Yao, Y. Peng, H. Guan, and M. Guo,
“Re2l: An efficient output-sensitive algorithm for computing boolean
operations on circular-arc polygons and its applications,” Comput.
Aided. Design., vol.83, pp.1–14, 2017.

http://dx.doi.org/10.1111/tgis.12213
http://dx.doi.org/10.1007/s11769-012-0544-y
http://dx.doi.org/10.1016/j.cad.2016.07.004

