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Feature Ensemble Network with Occlusion Disambiguation for
Accurate Patch-Based Stereo Matching

Xiaoqing YE†,††a), Nonmember, Jiamao LI†, Member, Han WANG†, and Xiaolin ZHANG†, Nonmembers

SUMMARY Accurate stereo matching remains a challenging problem
in case of weakly-textured areas, discontinuities and occlusions. In this
letter, a novel stereo matching method, consisting of leveraging feature en-
semble network to compute matching cost, error detection network to pre-
dict outliers and priority-based occlusion disambiguation for refinement,
is presented. Experiments on the Middlebury benchmark demonstrate that
the proposed method yields competitive results against the state-of-the-art
algorithms.
key words: stereo matching, convolutional neural network, patch-based,
occlusion disambiguation

1. Introduction

Despite having been studied for decades, it remains a chal-
lenge to obtain high-accuracy disparities in the field of
stereo matching. In contrast to traditional hand-engineered
algorithms, recent interest is focused on machine learning
strategies to solve such difficulties.

Convolutional neural network (CNN) was first lever-
aged for computing matching cost, which measured the sim-
ilarity of two patches exacted from left and right images [1]–
[4]. Small patch-based network architecture based on binary
classification and followed by multi-step post-processing
achieved state-of-the-art performance [1]. Two sorts of net-
works were investigated in [1] to find an optimized trade-off
between time and accuracy. Between them, the faster net-
work adopted dot product to directly measure the similarity
score of two patches, whereas the accurate architecture re-
quired fully-connected layers to yield the final score. Luo et
al. [5] improved the architecture by means of treating it as a
multi-label classification problem, in which the labels were
all possible disparities. Chen et al. [3] computed two simi-
larity scores separately based on the multi-scale patch pairs
and then a fusion was made for the final decision.

In comparison to the aforementioned methods which
merely utilize CNN in matching cost estimation stage, end-
to-end learning is recently capturing intensive attention [6].
In addition to the matching cost estimation network, another
convolutional neural network is also undertaken for obtain-
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ing the disparity map in place of winner-takes-all (WTA)
strategy [7]. A large synthetic dataset is rendered to train an
end-to-end network with images rather than small patches
as input [8]. The attained disparity maps does not achieve
state-of-the-art performance, yet it is able to recover occlu-
sions, where most patch-based networks fail. Nevertheless,
the end-to-end frameworks require strictly large amount of
dataset and Graphics Processing Unit (GPU) memory. They
are also easy to lose fine details. Thus we follow the patch-
based architecture to learn matching cost due to two advan-
tages. First, though the patch-based features tend to be local,
they are less prone to overfitting. Second, even small dataset
like Middlebury [9] and KITTI [10] are able to provide tens
of millions of training patches.

Nevertheless, poor performance was reported in large
textureless areas, owing to limited local information with
small 11×11 receptive field [1]. 13×13 patches of different
resolutions were taken as input of two unattached subnet-
works [3]. However, the similarity score of each network
was simply fused for final decision. Park et al. [4] enlarged
the receptive field by inserting a per-pixel pyramid pooling
module before the final decision layer. Thanks to the multi-
size pooling unit, larger patches can be taken as input to
learn multi-scale information without introducing the fat-
tening effect. Unfortunately, this network is much slower
and costs more GPU memory compared with [1] due to
dmax times extra computation of the pyramid pooling mod-
ule, where dmax denotes the number of disparity levels. Im-
pelled by the above-mentioned works, we investigate a fea-
ture ensemble network to reach an optimized trade-off be-
tween matching accuracy and computation time.

The main contribution of our work is as follows. First,
we achieve more accurate initial disparity maps based on
the feature ensemble network at negligible extra overhead.
Second, given the raw left disparity map and the left image,
we train a dense outlier detection network to predict errors
in initial disparity maps instead of traditional hand-crafted
left-right consistency (LRC) check. It is indicated that only
the computation of the left image rather than a pair of dispar-
ity maps is required, reducing the computation cost by half.
Third, we further introduce a priority-based strategy to dis-
ambiguate the occlusions in complicate scenes and achieve a
much lower overall error percentage on Middlebury dataset.

2. The Proposed Approach

The proposed method consists of three main steps: match-
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Fig. 1 Framework of the proposed approach. Feature ensemble network
is leveraged to obtain matching cost. Errors detected by outlier detection
network is refined by occlusion disambiguation and weighted median filter.

ing cost computation network, error detection network and
overall refinement (including occlusion disambiguation and
weighted median filter), as is shown in Fig. 1.

2.1 Feature Ensemble Network

In this work, we focus on the patch-based network due to its
robustness and low requirement for large dataset and GPU
memory. In order to preserve fine details, most patch-based
networks discard convolution/pooling layers with strides be-
cause they lead to a loss of resolution. As a result, the re-
ceptive field is restricted to a relatively small size. For ex-
ample, the patch sizes in [1], [3], [5] are 9 × 9, 11 × 11
and 13 × 13, respectively. They are prone to be ambigu-
ous and produce a noisy matching cost in weakly-textured
areas due to limited local context information. In order to
increase the receptive field of the network without losing
fine details, a per-pixel pyramid pooling module with multi-
ple pooling window sizes instead of multi-stride is adopted,
yielding favorable results especially in weakly-textured ar-
eas [4]. However, the pyramid pooling module is inserted
between the fully-connected layers and final decision layer,
i.e., this module has to be recomputed for each possible dis-
parity label, causing a high extra computation cost.

In our feature ensemble network architecture, multi-
pooling is employed as [4] does due to its nonparametric
feature and efficiency in enlarging receptive field. The mod-
ule is further modified to achieve an optimized trade-off be-
tween time and accuracy. Specifically, first to overcome
the problem of high computation cost in [4], the pyramid
pooling is appended to the end of the five cascading feature
extracting convolutions before fully-connected layers rather
than after them. Compared with [4], our pooling module
only needs to be computed once over the disparity range,
reducing computation cost greatly. Second, the aforemen-
tioned operation is also applied to the prior convolution with
the pyramid pooling module being replaced by the combi-
nation of global max- and average-pooling. The multi-layer
and multi-size feature maps are then concatenated to pro-
duce coarse-to-fine descriptors. Note that the stride in all
pooling modules is set to one so as to preserve resolution.
Last, all the fully-connected layers in decision part are sub-
stituted for 1×1 convolutions. Our architecture is illustrated
in Fig. 2. The multi-pooling module is denoted as:

P (F, s, k) = [P (F, s1, k1) , . . . , P (F, sM , kL)] (1)

Fig. 2 Feature ensemble network for correspondence estimation.

Fig. 3 Outlier detection network. Taken the left image and raw disparity
map as input, the network outputs an error probability map.

where F denotes feature maps, s represents different scales
and k is the pooling window size without strides.

2.2 Error Detection Network

The raw disparity map is derived from applying WTA strat-
egy to the matching cost computed by our patch-based net-
work. However, the attained disparity map leaves occlusion
unsolved, since occlusions are invisible in one of the image
pairs where no correspondence can be found. For simplic-
ity we discard complicated cost aggregation and sub-pixel
enhancement [1], [4], but mainly focus on restoring occlu-
sions.

LRC check is widely adopted to detect outliers, which
requires to obtain a pair of disparity maps. The drawbacks
of LRC are two manifolds: one is that some outliers fail to
be detected due to errors existing in both images (i.e., False
Negatives). Another drawback is that some correct pixels in
left disparity map can be marked as errors because of inac-
curate disparities in right map (i.e., False Positives).

In contrast, given the raw left disparity map and left
image as input, we exploit a dense convolutional neural net-
work to detect outliers. The error detection architecture is
shown in Fig. 3. The Conv Block consists of convolutions
followed by batch normalization and a rectified linear unit.
Mean Square Error loss function is adopted to train the net-
work and produce a probability map with the same resolu-
tion. The inputs are normalized to zero mean and unit vari-
ance and the target labels are either 0 or 1. Pixels are labeled
as outliers if their probabilities exceed a threshold.

2.3 Occlusion Refinement

We classify occlusions into two types: the leftmost and in-
ner occlusions. Leftmost occlusions are attributed to right
image lacking the related information and their disparities
can come from either the background or foreground. In-
stead, inner occlusions are generally from the background
occluded by foreground objects. Firstly, rather than sim-
ply filling occlusions with the lowest disparity [11], [12], we
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Algorithm 1 Priority-based inner occlusion refinement
1: for each inner occluded point x and its support region N(x) do
2: if valid points are detected within N(x) then
3: Find the maximum and minimum valid disparity within N(x),

denoted as Dmax and Dmin.

4: Perform maximum suppression by only reserving valid points
whose disparity Dy satisfies Dmax−Dy >DT . Update N(x) and
the corresponding Dmax and Dmin. DT is a preset threshold.

5: if Dmax − Dmin > DT then
6: Classify the valid support points into two clusters: C1 ={

y |Dmax−Dy ≤ DT

}
, C2=

{
y |Dy−Dmin ≤ DT

}
.

7: Compare the similarity of x and C1 and C2 using Eq. (2).
The one with larger similarity is chosen. Go to Step 11.

8: else
9: All valid points belong to the same cluster.

10: end if
11: Assign the median value of the cluster to the occluded point x.
12: else
13: Find points on the periphery of N(x) (denoted as xp) and repeat

Step 2–11. xp is first recovered if the condition in Step 5 is
satisfied, otherwise it is recovered later in left-to-right order.

14: end if
15: end for

compare the similarity of the occluded pixel and the possi-
ble surfaces when multiple surfaces coexist. Secondly, error
propagation is likely to occur in large occluded region due to
erroneous assignment to the first few occluded points. Thus
we introduce a filling priority and first restore outliers whose
neighborhood contains more than one background surface,
since they are prone to cause ambiguity.

The main steps of inner occlusion refinement are pre-
sented in Algorithm 1. Maximum suppression is performed
in Step 4 to remove foreground neighboring points. If mul-
tiple disparity values of different surfaces coexist within the
newly updated support region (i.e., the condition in Step 5 is
satisfied), we select the most probable surface by means of
clustering and similarity comparison in Step 6, 7. Note that
a local region is assumed to involve no more than two back-
ground surfaces for simplicity. The similarity of an outlier x
and the potential surfaces in Step 7 is computed by the aver-
age comparability between x and all the valid points within
a certain cluster, which is defined as

S (x,Ci) =
1
‖Ci ‖0

∑

y∈Ci

exp
(
−Δcxy/λc − Δsxy/λs

)
(2)

where ‖·‖0 denotes l0-norm (i.e., the total number of valid
points in the ith cluster Ci), exp(.) represents the weight
between the occluded point x and one of the valid points y in
Ci. Δcxy and Δsxy are color dissimilarity and spatial distance
between x and y, λc and λs are two constants to balance
the color and spatial effects. In other words, the closer the
color/distance of the occluded point x and the valid points
within a certain cluster, the larger the weight will be. The
cluster with a larger average weight is selected for Step 11.

The leftmost occlusion refinement is analogous to inner
occlusions except that the maximum suppression in Step 4
is discarded, since in this case the disparity can either come
from the background or foreground. We restore leftmost oc-

Fig. 4 Results of each step in the proposed framework. (a) Left image,
(b) raw CNN output, (c) refined disparity map, (d) estimated error proba-
bility map of (b), (e) real error map of (b), (f) ground truth disparity map.

clusions in a right-to-left order opposite to inner occlusions.
Lastly a fast weighted median filter [13] is applied to the re-
covered disparity map so as to further remove small errors.

3. Experiment Results

Evaluations are carried out on the Middlebury benchmark.
We adopt the same patch size 37 × 37 as [4]. Pooling win-
dow size k = [27, 9, 3, 1] and scale vector s = [1, 2]. Param-
eters of the first five convolutions are borrowed from [1] to
initialize the Siamese section in feature ensemble network.
{λc, λs} = {16/255, 14/255} in Eq. (2).

First we report the performance of each step in our ar-
chitecture in Fig. 4. Our feature ensemble network is able
to produce a less noisy disparity map at the CNN output
(Fig. 4 (b)). Outliers can be directly predicted in a single im-
age through error detection network (Fig. 4 (d)) rather than
performing LRC across the left and right disparity maps.
The prediction result is basically consistent with the ground
truth error map (Fig. 4 (e)). After the occlusion disambigua-
tion and filtering, we obtain the refined disparity map with
noise suppressed and most occlusions recovered (Fig. 4 (c)).

Next in order to verify the effectiveness of our match-
ing cost estimation architecture, we first compare the raw
outputs of different convolutional neural networks regard-
less of the post-processing procedures. Algorithms in [1]
and [4] are denoted as MC-CNN-acrt and LW-CNN, re-
spectively. By comparing the upper row of Adirondack and
ArtL in Fig. 5, we can see that our approach (Fig. 5 (c)) out-
performs MC-CNN-acrt by generating more accurate dis-
parity maps with less noise, especially in weakly-textured
areas. This is because the proposed architecture sees a
larger field and incorporates multi-layer context information
whereas MC-CNN-acrt only provides limited local informa-
tion, which is difficult to distinguish true matches from false
pairs when the local region tends to be textureless. Our net-
work achieves comparable results compared with LW-CNN
while being four to ten times faster than it.

The refined results are shown in the lower rows of
Adirondack and ArtL in Fig. 5. Unlike [1], [3], [4] that har-
ness cost aggregations such as SGM [14] to refine the dis-
parity map, we discard them and instead perform occlusion
handling directly to raw disparity maps where error prob-
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Fig. 5 Disparity maps of raw CNN outputs and after refinement (Er-
ror threshold= 1 at half-size). (a) MC-CNN-acrt [1], (b) LW-CNN [4],
(c) Ours. For each subfigure (Adirondack and ArtL), the upper and lower
row corresponds to raw CNN outputs and the refined results, respectively.
Nonocc errors are colored in green and errors in occluded region are in red.

Table 1 The average error percentage of different methods.

Methods
Raw CNN Output After Refinement

Non-occ err All err Non-occ err All err
MC-CNN-fast [1] 25.41% 34.73% 12.06% 21.90%
MC-CNN-acrt [1] 22.55% 32.10% 10.42% 20.07%

LW-CNN [4] 11.82% 21.65% 8.56% 18.08%
The proposed method 11.69% 21.43% 9.98% 16.21%

ability exceeds 0.8. Despite of the multi-step postprocess-
ing, the final disparity maps in MC-CNN-acrt and LW-CNN
still contain many errors in occlusions (colored in red in
Fig. 5 (a)–(b)). Due to the priority-based occlusion handling
and median filter, our refinement is able to recover leftmost
and inner occlusions to a great extent. Note that the remain-
ing errors in ArtL’s leftmost occlusions (marked in red) in
the second row of Fig. 5 (c) are caused by cylinder surface,
thus the restored disparities are mostly within the 4-pixel
error. Since we do not pay special attention to utilizing mul-
tiple methods to smooth the mismatches, our refined results
still have some errors in non-occluded (nonocc) regions.

Apart from the qualitative comparisons, we also quan-
titatively compare error percentage in all and nonocc regions
on Middlebury ‘training dense’ dataset at half resolution
with error threshold equals to 1. As is illustrated in Ta-
ble 1, our algorithm outperforms MC-CNN-acrt both in raw
CNN outputs and final results. Our method even achieves
a lower error rate than LW-CNN in raw CNN outputs with
less computation time. Since we did not focus on finding a
best combination of smoothing parameters via multiple cost
aggregations and sub-pixel enhancement, our performance

in nonocc region is not as good as LW-CNN. More impor-
tantly, our architecture achieves a lowest error rate in all
region, outperforming the other state-of-the-art algorithms.

4. Conclusion

Patch-based learning stereo matching is feasible to imple-
ment since it does not require high GPU memory and large
dataset, but it also fails in weakly-textured areas due to lim-
ited local information. In the letter, we propose a feature en-
semble network and an error detection network, followed by
occlusion handling to fully utilize the multi-layer and multi-
size context information. Experiments demonstrate its com-
petitiveness in weakly-textured areas and occlusions.

Acknowledgments

This work was sponsored by Natural Science Foundation of
Shanghai (No.17ZR1436000).

References
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