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Cost Aware Offloading Selection and Resource Allocation for Cloud
Based Multi-Robot Systems

Yuan SUN†a), Student Member, Xing-she ZHOU†, and Gang YANG†, Nonmembers

SUMMARY In this letter, we investigate the computation offloading
problem in cloud based multi-robot systems, in which user weights, com-
munication interference and cloud resource limitation are jointly consid-
ered. To minimize the system cost, two offloading selection and resource
allocation algorithms are proposed. Numerical results show that the pro-
posed algorithms both can greatly reduce the overall system cost, and the
greedy selection based algorithm even achieves near-optimal performance.
key words: computation offloading, cloud computing, multi-robot systems,
user weights

1. Introduction

The integration of cloud technology allows for the design of
high-performance and low-cost multi-robot systems [1], [2].
With the aid of cloud offloading, the computation capa-
bility of robots can be greatly enhanced so that they can
be deployed in extreme environments, such as disaster re-
lief, grasping unknown objects. The energy consumption of
robots also can be reduced and hence they can work longer
than before.

However, offloading also incurs additional cost, and
obtaining cost-efficient offloading schemes is not very easy.
First, if multiple users offload their tasks simultaneously, the
communication interference among them will cause a re-
duction of wireless communication quality, and then delay
the task execution time [3]. Second, unlike public clouds,
private clouds or edge clouds do not have unlimited com-
putation capability [4]. To minimize the system cost while
satisfying task deadlines, transmission powers and cloud re-
sources need to be reasonably allocated.

In existing works on computation offloading, com-
munication interference and cloud resource limitation have
been considered with offloading selection. The differences
among them are that some works only jointly optimize of-
floading selection and communication interference manage-
ment [3], [5], and some works only aim to make optimal re-
source allocation and offloading selection decisions [6]–[8],
while the others [9] jointly consider the three issues.

One limitation among most existing works is that they
assume that system managers always have the same prefer-
ences on different users. In fact, this assumption is not al-
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ways reasonable. Assume that a robot (denoted by A) with
high battery level and a robot (denoted by B) with low bat-
tery level both have an offloading request. From the perspec-
tive of system managers, accepting the offloading request
from B can obtain more benefits, because it can extend the
working time of B, and hence increase the overall system
efficiency.

In this letter, the preferences of system managers, com-
munication interference and cloud resource limitation are si-
multaneously considered in the offloading problem for cloud
based multi-robot systems. This letter has several contribu-
tions. First, we model the preferences of system managers
on robots as user weights, and formulate the offloading prob-
lem into a system cost minimization problem. Second, be-
cause the problem is NP-Hard, two low-complexity offload-
ing selection and resource allocation algorithms are pre-
sented to efficiently solve the problem. Third, through nu-
merical simulations, we show that the proposed algorithms
can give quite good or even near-optimal results.

2. System Model and Problem Formulation

System Model: We assume that there are N mobile robots
working in a disaster site, denoted by a set of N =

{1, 2, . . . ,N}, and each robot has a computation-intensive
task to offload. A central station with a private cloud and
a wireless access point (e.g., WiFi access point) is set up
in the disaster site to make computation offloading possible.
The robots communicate with the central station through the
wireless channel. The central station has a cloud controller,
which collects offloading requests and makes offloading se-
lection and resource allocation decisions.

Communication Model: Similar to previous studies [3],
[5], the wireless channel from the robots to the access point
follows quasi-static block fading. Let L denote the set of
offloaded tasks. Given L, the uplink data rate for robot n to
offload its task over the wireless channel can be computed as
Rn(L) = W log2(1+gnqn/(σ2

n+
∑

i∈L,i�n giqi)) where qn is the
transmission power of robot n, and gn denotes the channel
gain from robot n to the access point, and σ2

n is the thermal
noise power with the link between robot n and the access
point, and W denotes the channel bandwidth.

Computation Model: We let Dn denote the input data size
of task n. Ln denotes the total number of CPU cycles re-
quired to accomplish task n. T d

n denotes the deadline of task
n.
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1) Local computing: We let fn denote the computation
capability (i.e., CPU frequency) that robot n allocates to task
n. Then, the execution time of task n by local computing can
be given by T l

n = Ln f −1
n . According to [4], [5], the energy

consumption of robot n is given by El
n = κLn f 2

n , where κ
is the effective switched capacitance depending on the chip
architecture.

2) Cloud computing: The execution of offloaded task n
includes three phases in sequence: (i) transmitting the input
data of task n to the cloud; (ii) executing the task on the
cloud; (iii) returning the output data to robot n. Similar to
some of existing studies on computation offloading [3], [5],
we choose to ignore the output data receiving phase, because
the output data size is often considerably smaller than the
input data size. Taking an object pose estimation task [10]
as an example, the input data includes a set of images and
the total size of it could be hundreds of kilobytes at least,
while the output data is just the object location and pose,
and takes a few dozens of bytes at most.

Let fc denote the clock frequency of the processing unit
on the private cloud; and let hn denotes the fraction of the
overall processing power assigned to task n. Then, the exe-
cution time of task n by cloud computing can be calculated
as T c

n(L) = Dn/Rn(L)+ Lnh−1
n f −1

c , and the energy consump-
tion of robot n can be calculated as Ec

n(L) = qnDn/Rn(L).

Problem Definition: The preference of the system manager
on robot n is modeled as user weight ρn ∈ (0, 1). We formu-
late the offloading problem into the weighted overall system
cost minimization problem as follows

P1 : min
L,H ,Q

∑
n∈L(1−ρn)Ec

n(L)+
∑

n∈(N\L)
(1−ρn)El

n (1a)

s.t. T c
n(L) <= T d

n ,∀n ∈ L, (1b)

qn <= Qn,∀n ∈ L, (1c)∑
n∈L hn <= 1, (1d)

L ⊆ N , (1e)

whereH = {hn|n ∈ N}, Q = {qn|n ∈ N}. According to (1a),
we find that for minimizing the overall system cost, the of-
floading requests from the robots with larger user weights
is obviously more preferred. Constraint (1b) ensures that
all the tasks are completed before their deadlines, and con-
straint (1c) gives the upper bounds for the transmission pow-
ers, denoted by {Qn|n ∈ N}, and constraint (1d) guarantees
that the total processing power assigned does not exceed the
maximum computation capability of the cloud.

3. The Proposed Algorithms

The decision variableLmakes P1 nonconvex and NP-Hard.
To efficiently obtain a sub-optimal solution, we propose to
solve offloading selection and resource allocation separately.

Resource Allocation: Given the offloaded task set L, P1 is
reduced to the resource allocation problem as follows

P2(L) : min
H ,Q

∑
n∈L(1−ρn)E

c
n(L)+

∑
n∈(N\L)

(1−ρn)E
l
n (2a)

Algorithm 1: Greedy Selection based System Cost
Minimization Algorithm

1 Initialize L[0] = ∅,A[0] = N , and the iteration number i = 0.
2 WhileA[i] is not empty do
3 Foreach m ∈ A[i] do
4 Solve P3(L[i]⋃{m}) to obtain the system cost. If it is

infeasible, set the system cost as +∞.
5 End Foreach
5 If ∃m ∈ A[i] makes P3(L[i]⋃{m}) feasible then
6 Select the task m̃ that can minimize the system cost.
7 A[i+1] = A[i] \ {m̃}, L[i+1] = L[i]⋃{m̃}.
8 i = i + 1.
9 Else Goto 11
10 End While
11 Set the offloaded task set L̃ = L[i] and minimize the system

cost by solving P3(L̃).

s.t. (1b), (1c), (1d),

where H = {hn|n ∈ L}, Q = {qn|n ∈ L}. P2(L) is non-
convex because it has a complicated and non-convex objec-
tive function. To efficiently find its optimal solution, we will
transform it to an equivalent convex problem.

We first introduce three auxiliary variables xn, yn and
zn, and replace qn with ezn . Then, we import a constraint
ezn/Rn(L) <= e−xn and use Dne−xn to replace Ec

n(L) to han-
dle the nonconvexity of Ec

n(L). Finally, we add another con-
straint Rn(L) >= eyn to handle the nonconvexity of T c

n(L).
These lead to

P3(L) : min
H ,X,Y,Z

∑
n∈L

(1−ρn)Dne−xn+
∑

n∈(N\L)

(1−ρn)El
n (3a)

s.t. Dn/e
yn + Lnh−1

n f −1
c <= T d

n ,∀n ∈ L, (3b)

Rn(L) >= eyn ,∀n ∈ L, (3c)

ezn <= Qn,∀n ∈ L, (3d)∑
n∈L hn <= 1, (3e)

ezn/Rn(L) <= e−xn ,∀n ∈ L, (3f)

where X = {xn|n ∈ L}, Y = {yn|n ∈ L},Z = {zn|n ∈ L}.
The objective function (3a) and constraints (3b, 3d, 3e)

are convex, and the convexity of constraints (3c, 3f) is also
proved in [11]. Therefore, P3(L) is a convex problem, and
can be globally solved by interior-point methods [12].

Greedy Offloading Selection: We first develop a greedy
offloading selection mechanism. In this mechanism (see Al-
gorithm 1), we iteratively select one task to offload in each
step until all the tasks are selected or the offloaded task num-
ber reaches its limit. In each iteration, the task that can yield
the smallest system cost is selected to offload. To this end,
P3(L) needs to be solved at most N times in each iteration.
Therefore, the total number of P3(L) problems required to
be solved grows quadratically with N. To further reduce the
computation complexity, we will propose another offloading
selection mechanism.

Individual Sparse Offloading Selection: This offloading
selection mechanism works as follows (see Algorithm 2).
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Algorithm 2: Individual Sparsity based System Cost
Minimization Algorithm

1 Randomly initializeW[0]. Set the maximum iterations as 15,
ε = 10−3, p = 1 and m = 0.

2 Repeat
3 ObtainU[m+1] andV[m+1] by minimizing the upper bounds

J(U,V;W[m]) =
∑N

n=1(w[m]
n u2

n + w
[m]
N+nv

2
n)

4 Update the weightsW[m+1] according to (6a, 6b).
5 m = m + 1.
6 Until convergence or attain the maximum iterations.
7 Calculate the priority coefficients Θ = {θn |n ∈ N}.
8 Sort the tasks in the ascending order of the value of Θ as
θπ1 <= θπ2 <= . . . <= θπN , where π is a permutation of N .

9 Set klow = 0, kup = N.
10 Repeat
11 Set s = 	(klow + kup)/2
.
12 Perform the feasibility test of P3({π1, π2, . . . , πs}). If

feasible, set klow = s; otherwise, set kup = s.
13 Until kup − klow = 1.

14 Set s∗ = klow. The offloaded task set L̃ is obtained as
L̃ = {π1, π2, . . . , πs∗ }.

15 Solve P3(L̃) using interior-point methods to minimize the
overall system cost.

First, we solve an individual sparsity inducing norm mini-
mization problem (Lines 1–6), the solutions of which mea-
sure the violation of the latency and energy consumption
constraints for all tasks. Next, based on the solution,
the priority coefficients Θ = {θn|n ∈ N}, where θn =
(1−ρn)un/

∑
i∈N (1−ρn)ui+(1−ρn)vn/

∑
i∈N (1−ρn)vi, are cal-

culated. The user weights are considered in the coefficients.
The normalizations ensure that the two constraints make
equal contributions to the coefficients. Then, we sort the
tasks in the ascending order according to their priority co-
efficients. Finally, we adopt binary search to progressively
remove the tasks that have the largest coefficients (Lines 9–
13). The remaining tasks form the final offloaded task set L̃.
In this mechanism, the overall number of P3(L) problems
to solve grows logarithmically with N.

The individual sparsity inducing norm minimization
problem is defined as follows

P4 : min
H ,Q,U,V

‖U‖0 + ‖V‖0 (4a)

s.t. T c
n(N) − T d

n <= un,∀n ∈ N , (4b)

Ec
n(N) − El

n <= vn,∀n ∈ N , (4c)

qn <= Qn,∀n ∈ N , (4d)∑
n∈N hn <= 1, (4e)

un >= 0, vn >= 0,∀n ∈ N , (4f)

where U = {un|n ∈ N}, V = {vn|n ∈ N}, and un, vn are
two auxiliary variables used to measure the violation of the
latency and energy consumption constraints for task n, re-
spectively. The objective of P4 is to minimize the constraint
violation for all tasks.

P4 is NP-Hard because of the l0 norms. To solve P4,
we first transform it to the more tractable problem as follows

P5 : min
H ,X,Y,Z,U,V

∑
n∈N

(u2
n + ε

2)p/2 +
∑
n∈N

(v2n + ε
2)p/2 (5a)

s.t. Dn/e
yn + Lnh−1

n f −1
c − T d

n <= un,∀n ∈ N , (5b)

Dne−xn − El
n <= vn,∀n ∈ N , (5c)

ezn <= Qn,∀n ∈ N , (5d)

Rn(N) >= eyn ,∀n ∈ N , (5e)

ezn/Rn(N) <= e−xn ,∀n ∈ N , (5f)

(4e), (4 f ),

where X = {xn|n ∈ N}, Y = {yn|n ∈ N}, Z = {zn|n ∈
N}. The basic transformation idea is to use the smoothed lp

norms to approximate the objective function of P4 [13] and
to use the similar variable substitution tricks as we do for
P2(L) to make the feasible set of P4 convex.

Then, we can develop an iterative reweighted-l2 algo-
rithm to solve P5 (see Lines 1–6 in Algorithm 2). By suc-
cessively minimizing the upper bounds J(U,V;W[m]) of
the objective function (5a), the iterates {(U[m],V[m])}∞m=1
can be obtained. To guarantee the quality of the iterates,
we use the elaborately selected upper bounds [13], given by
J(U,V;W[m]) =

∑N
n=1(w[m]

n u2
n + w

[m]
N+nv

2
n), where

w[m]
n = (p/2)((u[m]

n )2 + ε2)
p
2 −1,∀n = 1, . . . ,N, (6a)

w[m]
N+n = (p/2)((v[m]

n )2 + ε2)
p
2 −1,∀n = 1, . . . ,N. (6b)

4. Numerical Results

System Setting: The robots are randomly located around
the central station, and the coverage radius of the central
station is 300 m. For the shared wireless channel, the back-
ground noise σ2

n is −100 dBm, and the maximum transmis-
sion power Qn is 100 mW. According to the physical inter-
ference model [14], we set the channel gain gn = d−αn , where
dn is the distance between robot n and the central station and
α = 4 is the path loss factor. Each robot has one task to of-
fload. For each task, the number of CPU cycles required is
between 1.0− 1.5× 109, and the input data size ranges from
100−800 KB, and the deadline is between 1−3 seconds. For
robot n, the allocated computation capacity fn ranges from
0.5 − 1.2 GHz, and κ is set as 10−11 [5]. The user weight ρn

is a random value between 0 and 1, and it follows a uniform
distribution U(0, 1).

Simulations: There are two baseline algorithms: the ran-
dom selection based algorithm, which randomly selects
tasks to offload, and the exhaustive search based algorithm,
which can give optimal solutions. In each simulation, the in-
dividual sparsity based algorithm and the random selection
based algorithm both run 100 times to get the average value.

1) Number of tasks: In Fig. 1 (a), we compare the sys-
tem cost achieved by the proposed algorithms and baselines
as the number of tasks increases. From the curves, we find
that the proposed greedy selection based algorithm achieves
near-optimal performance, and the results given by the pro-
posed individual sparsity based algorithm have a certain gap



LETTER
3025

Fig. 1 System cost under different settings. The solid curves correspond to the system cost, while the
dashed curves correspond to the number of offloaded tasks.

with the optimal results. We also find that with the increas-
ing number of tasks, the system cost also goes up. The rea-
son for this is that the communication and computation re-
sources are limited, and only a few offloading requests can
be satisfied.

2) Bandwidth of the wireless channel: We further in-
vestigate the impacts of the bandwidth of the wireless chan-
nel in Fig. 1 (b). We find that the greedy selection based al-
gorithm also gives near-optimal results with different band-
width of the wireless channel, and the individual sparsity
based algorithm with lower-complexity gives quite good re-
sults.

As the bandwidth increases from 5 MHz to 30 MHz,
the number of offloaded tasks goes up from 2 to 5. At the
same time, the system cost is greatly decreased. It indicates
that with the increasing bandwidth, the communication in-
terference among the robots can be mitigated. However,
after the bandwidth grows to a certain critical value (e.g.,
W = 30 MHz in Fig. 1 (b)), if we continue to enlarge the
bandwidth, the system cost does not have a significant re-
duction. It implies that at this point another system parame-
ter (e.g., CPU frequency of the private cloud) might become
the bottleneck, and merely enlarging the bandwidth is not a
wise action.

3) CPU frequency of the private cloud: In Fig. 1 (c),
we evaluate the performance of the proposed algorithms and
baselines with varying computation capacity of the private
cloud. We find that the results given by the greedy selection
based algorithm are very close to the optimal results, and the
individual sparsity based algorithm with lower-complexity
still achieves quite good performance.

From the curves, as the CPU frequency of the private
cloud grows from 5 GHz to 12.5 GHz, the offloaded task
number increases from 3 to 5, and the system cost also
drops. Another observation is that if the CPU frequency
exceeds a certain critical value (e.g., fc = 17.5 Ghz in
Fig. 1 (c)), continuing to raise the CPU frequency does not
bring in obvious benefits. It is the similar to the case that we
find in Fig. 1 (a).

4) Summary: With cloud offloading, quite a proportion
of the system cost can be reduced by the proposed algo-
rithms as compared to local execution. Moreover, the sys-

tem cost reduction is closely related to the ratio of offloaded
tasks. Given the fixed total task number, with more tasks of-
floaded, more system cost can be reduced (see Fig. 1 (b) and
1 (c)).

The proposed greedy selection based algorithm can
achieve near-optimal performance. Although the individual
sparsity based algorithm with lower-complexity has a cer-
tain performance gap (22% on average) with the exhaustive
search algorithm, it is obviously superior to the random se-
lection based algorithm.

5. Conclusions

In this letter, we investigate the computation offloading
problem in cloud based multi-robot systems. Two offloading
selection and resource allocation algorithms are proposed
to minimize the system cost. Numerical results show that
the proposed algorithms can give quite good or even near-
optimal results. For future investigation, we will explore
multiple wireless channels or clouds to further improve cur-
rent cost aware offloading schemes.
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