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Performance Evaluation of Finite Sparse Signals for Compressed
Sensing Frameworks∗

Jin-Taek SEONG†a), Member

SUMMARY In this paper, we consider to develop a recovery algorithm
of a sparse signal for a compressed sensing (CS) framework over finite
fields. A basic framework of CS for discrete signals rather than continu-
ous signals is established from the linear measurement step to the recon-
struction. With predetermined priori distribution of a sparse signal, we
reconstruct it by using a message passing algorithm, and evaluate the per-
formance obtained from simulation. We compare our simulation results
with the theoretic bounds obtained from probability analysis.
key words: compressed sensing, finite fields, signal recovery, probabilistic
decoding

1. Introduction

Over the past few years compressed sensing (CS) theory has
attracted much interest in signal processing and information
theory. A sparse signal in a certain domain is recovered from
a small number of linear measurements [1]. The reconstruc-
tion of a sparse signal is performed through an optimization.
For sparse signals with discrete values, e.g., bit streams for
storage and pixel images, the recovery algorithms developed
for the real-valued system of CS are less sufficient as they
cannot effectively exploit the digitized nature of the source.
This motivates us to design a recovery algorithm of a sparse
signal for CS over finite fields.

The use of CS frameworks from linear codes, e.g.,
Low-Density Parity-Check (LDPC) codes [2], is an emerg-
ing approach as promising since it allows us to provide
several improvements over the conventional CS. Although
meaningful results of CS over finite fields have been cur-
rently shown, almost CS works were studied on based real-
valued system. In other words, while discretization of real-
valued signals for sensing and measurement results in loss of
accuracy, performing operations over finite fields overcomes
this drawback. For CS framework over finite fields, recov-
ery bounds on sparse signals have been presented in [3] and
[4]. The authors in [4] where considers CS framework over
finite fields has shown theoretical results using error expo-
nent technique. The authors derived probability of error us-
ing random sensing matrices. In [3], the authors showed the-
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oretic bounds on reconstruction of sparse signals over finite
fields. The sufficient and necessary conditions on perfect re-
construction for CS frameworks over finite fields have been
shown in [3], where the theoretical recovery bounds over
dense and sparse sensing matrices using a L0 norm mini-
mization are coincided each other. Rather than the studies
of [3] and [4] have mostly theoretical results, the authors in
[5] have presented to exploit parity-check matrices, and lin-
ear decoding based on discrete-valued images. In [6], the
authors have developed F2OMP (Finite Field OMP) as a re-
covery algorithm for images of CS over finite fields which
it was utilized by the classical OMP. In [7], the authors have
proposed a sparse recovery framework with sparse random
network transfer matrices over finite fields to solve the net-
work coding problems. In addition, the work of [8] has pro-
posed to solve a discrete reconstruction problem as a L1 op-
timization by minimizing the sum of weighted absolute val-
ues. And this study has been extended to a symbol detection
problem [9] and a discrete-valued control design [10]. Since
the recovery algorithm proposed in this paper is a variant of
the sum-product algorithm for LDPC codes, its complexity
is O(Nq log q) [15] for the length N of a signal and the size
q of finite field. The linear programming for L1 optimiza-
tion used in [8] has the complexity with the order of O(N3)
[14]. This is a major advantage of our work compared to the
work [8].

In this paper, one measured sample is obtained by the
inner product of a row of the so-called sensing matrix and a
sparse signal. From some measured samples, the sparse sig-
nal can be reconstructed by using a CS recovery algorithm.
This has a strong analogy with the syndrome decoding in the
context of linear codes. In other words, sparse error patterns
are identified from the syndrome equation which is obtained
by multiplying the parity-check matrix to the received signal
vector. From this observation, we aim to utilize the parity-
checking frames as the sensing matrix over finite fields. In
particular, we use the Gallager’s parity-check matrices [2],
and extend its probabilistic decoding (PD) method for CS
context. For instance, low density frames over finite fields
are used for sensing matrices. Then, we can see the pos-
sibility of using this framework for CS of discrete valued
signals. We develop a recovery routine of a sparse signal
which is a PD algorithm utilized of sparseness of the sig-
nal. We also provide extensive verification of this recovery
algorithm with comparison of recently presented theoretic
bounds.
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2. Compressed Sensing Framework over Finite Fields

2.1 System of Interest

In this section, we describe a compressed sensing frame-
work in a finite field of size q as Fq. Let x ∈ FN

q be a signal
vector of length N with sparsity K, A ∈ FM×N

q be a M × N
sensing matrix with N > M. The measured signal y is

y = Ax. (1)

The signal z obtained after passing the q-ary symmetric
channel is

z = y + e. (2)

where e ∈ FM
q is the M × 1 noise vector whose element

follows an independently identical distribution (i.i.d.). The
distribution pϵ of the q-ary symmetric channel for a noise
vector e is defined by

Pr {zi|yi} =
{

1 − ϵ for yi = zi,
ϵ/(q − 1) otherwise,

(3)

where yi and zi are the ith elements of y and z, and ϵ = 0
is the noiseless case. In this paper, we assume that each
element of x follows a probability distribution px with i.i.d.,

Pr
{
x j = θ

}
=

{
1 − δ if θ = 0,
δ/(q − 1) if θ , 0,

(4)

where x j are the jth element of x, δ is the sparsity ratio (=
K/N), and a dummy variable θ ∈ Fq.

In this paper, we use a sparse matrix for A. The gen-
eration of a sparse sensing matrix A follows the Gallager
approach named as a parity-check matrix randomly chosen
from the ensemble of a regular (dc, dv) LDPC codes, where
dc and dv are the number of nonzero entries in the column
and the row of the matrix. Through this work, all arith-
metic operations for multiplication and addition are per-
formed over a finite field.

2.2 Connection to Syndrome Decoding

Error correction is required for reliable communications,
and performed by adding redundant parities to original in-
formation. Suppose that a codeword c ∈ Fn with length n is
chosen from the codebook C over finite fields F. And then,
it is transmitted through a noisy channel, and received as ĉ,
where ĉ = c +w and w ∈ Fn is the additive noise. Using the
received codeword ĉ and the knowledge of the codebook
C, the decoder performs to estimate the correct codeword
c. The codebook C is given by m × n parity-check matrix
H ∈ Fm×n as C = {c ∈ Fn|Hc = 0}.

At the receiver, a syndrome decoder performs the com-
putation of the syndrome in the enabling way: r = Hĉ =
H(c + w) = Hw since Hc = 0. From the syndrome r, it is

desired to find the exact error pattern w by using the calcu-
lated syndrome r and the parity-check matrix H. The error
correction capability of this code Cmainly relies on its mini-
mum distance, which is the minimum Hamming weight (the
number of nonzero elements) of any codeword. The tight
connection between CS and coding theory was reported in
[11] and [12].

3. Probabilistic Decoding Algorithm for Recovery of
Sparse Signals

In this section, we propose a probabilistic decoding (PD)
algorithm for the CS framework over finite fields. The max-
imum a posterior (MAP) detection is used which utilizes
the prior knowledge that the distribution of each element
defined in (4) is known for reconstruction. Then, the recon-
struction problem of x j is defined as

x̂ j = arg max Pr
{
x j = θ

∣∣∣y,A}. (5)

We consider the graphical representation of the recon-
struction problem, which is drawn from a sensing matrix
A by mapping the rows to the measured signal y and the
columns to the sparse signal x with the entries forming the
edges of the graph. The presence of an edge between a sens-
ing node and a signal node represents the nonzero coeffi-
cient of the sensing matrix A. In order to implement the
PD algorithm in the graphical representation, we define the
two extrinsic probabilities as follows: fi j is the probabilistic
message from the ith sensing element yi to the jth signal el-
ement x j; f ji is the probabilistic message from the jth signal
element x j to the ith sensing element xi.

We now discuss several related works. Sarvotham et
al. proposed a belief propagation algorithm for recovery
of real valued sparse signals in [13]. Donoho et al. in [14]
proposed an approximate message passing (AMP) algorithm
for CS with dense Gaussian sensing matrices, where authors
utilized a variant of density evolution that provides a precise
characterization of its performance.

The idea behind the AMP algorithm is based on decod-
ing of nonbinary LDPC codes in Davey and Mackay [15].
The main difference between our proposed PD algorithm
and the work [15] is that we exploit the knowledge of the
prior information of sparse signals for reconstruction. Then,
the initial process of the recovery algorithm is different
as well as exchanging the probabilistic messages between
sensing nodes and signal nodes. In Sect. 2, we set up the
compressed sensing framework over finite fields as the fol-
lowing ways: an unknown sparse signal x is compressed into
a measured signal y, and it is transmitted through the noisy
channel. With the received signal z and a prior distribution
of x, based on this framework, we determine the unknown
sparse signal x by using the proposed PD algorithm.

For recovery of sparse signals, there are four main
steps: i) initialization, ii) update of message fi j, iii) update
of message f ji, and iv) tentative decoding. For the initial-
ization, we set the values of the probabilistic messages for
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Algorithm 1: Proposed Probabilistic Decoding
(PD) Algorithm

Input: Prior probability px

Channel error probability pϵ
Sensing matrix A

Output: Estimated x̂ j

1) Initialization:
Set px and pϵ
Initial message f ji ← px

Set maximum iterations
while Ax̂ = z or Maximum Iterations do

2) Update the message fi j:

Fi j =
(∏

j̃∈L(i)\{ j}Hq f̃ j̃i

)
Hqpϵ

fi j = H−1
q Fv,i j

3) Update the message f ji:
f ji = γpx

∏
ĩ∈M( j)\{i} f̃ĩ j

4) Tentative decoding:
f j = px

∏
i∈M( j) f̃i j

x̂ j = arg max
{
f j

}
return Estimated x̂

all the nodes. The prior probability distribution px of the jth
signal x defined in (4) is used. Also the transition probability
for each sensing node z is as given in (3). This information is
utilized to determine the message fi j. This makes it possible
to the major difference from Davey’s work. In the next step,
we update all the messages fi j as follows. The transformed
version Fi j of the message fi j is calculated

Fi j =

 ∏
j̃∈L(i)\{ j}

Hq f̃ j̃i

Hqpϵ , (6)

where L(i) =
{
j : Ai j , 0

}
denotes the set of indices of x j

that participate in the ith row of the sensing matrix, Hq is the
q×q transform matrix, e.g., the Hardamard transform matrix
or the Fourier transform matrix. In this case, we set the
rearranged message f̃ j̃i corresponding to its coefficient of the
sensing matrix A, which is initially the same with the signal
probability px. And then, using the inverse transformation,
the message fi j is obtained from

fi j = H−1
q Fi j. (7)

The ith sensing node follows the constraint, i.e., yi =∑
j Ai jx j.

In the third step, the computation of the message f ji

from messages fi j is performed by

f ji = γpx

∏
ĩ∈M( j)\{i}

f̃ĩ j, (8)

where M( j) =
{
i : Ai j , 0

}
denotes the set of indices of yi

that participate in the jth column of the sensing matrix, the
message f̃ĩ j is obtained from rearranging the message fĩ j ac-
cording to the coefficient of the sensing matrix, γ is the nor-
malization factor for the total probability. Then f j denotes
the posterior probability of the jth signal node x j, which is
conditioned on the information obtained via yi and px. Then,

the posterior probability is obtained from as follows,

f j = px

∏
i∈M( j)

f̃i j. (9)

The jth signal node x j is then estimated: x̂ j =

arg max
{
f j

}
. The decoder checks if x̂ satisfies the constraint

condition, i.e., Ax̂ = y.

4. Simulation Results and Performance Comparison

In Fig. 1 to 4, we evaluate the performance of our CS frame-
work considered in finite fields. In all simulations, the max-
imum number of iterations is set to 50 for the PD algo-
rithm. We use a regular (dc = 3) sensing matrix A which
was introduced in [2]. In order to demonstrate the proposed
PD algorithm, we generate a sparse signal of length 1200,
N = 1200. For the sparsity ratio δ(= K/N), the compres-
sion ratio ρ(= M/N), and the error probability ϵ of the q-ary
symmetric channel, we obtain the failure probabilities for
reconstruction of CS. Figure 1 shows the performance of our
CS scheme with M = 600, over a finite field of each size:

Fig. 1 Failure probability for recovery of sparse signals with fixed N =
1200, M = 600, and ϵ = 0.1 over q = 2, 4, 16, 256.

Fig. 2 Failure probability for recovery of sparse signals with fixed N =
1200, M = 600, and K = 120 over q = 4, 8, 16, 256.
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q = 2, 4, 16, and 256. In this simulation, we set the error
probability ϵ = 0.1 for the q-ary symmetric channel. With
different sparsity of sparse signals, we evaluate the failure
probability as shown in Fig. 1. We show that as the size of
finite fields increases, the larger number of the sparsity can
be successfully decoded. In Fig. 2, we show the failure prob-
ability with different error probability ϵ. We observe that a
larger finite alphabet is not sensible with the channel noise.
In order for the effect of the number of measurements, we
evaluate the performance of the CS framework and show the
results in Fig. 3.

Figure 4 shows comparison of theoretic bounds with
the simulation results for the failure probability of 10−4

where theoretic bounds obtained from in [3] and Eq. (11)
in [4] which are considered on fixed source signal with the
i.i.d. uniformly sensing matrix. Simulation results as well
as the bounds in [3] are considered sparse sensing matrices,
and are tighter rather than the bounds in [4]. As the dis-
tribution of the element of the sensing matrix approaches
uniformly, the curves of the bounds of [3] move to those of
bounds in [4].

Fig. 3 Failure probability for recovery of sparse signals with fixed N =
1200, ϵ = 0.1, and K = 120 over q = 4, 8, 16, 256.

Fig. 4 Comparisons with theoretic bounds and simulation results, which
are obtained from the cases with the noiseless measurement and N =

1200: dots(simulation results for the failure probability of 10−4), dot lines
(bounds in [4]), solid lines (bounds in [3]).

5. Conclusions

In conclusion, we considered the CS framework over fi-
nite fields. In this framework, low-density frames were
used as the sensing matrices. We proposed a PD algo-
rithm for recovery of sparse signals based the message pass-
ing algorithm which shows very good performance closely
achieving the theoretical bounds in coding theory. This
work allows us to utilize the low-density sensing matrices
to be good reconstruction performance into a CS framework.
Also we evaluated the performance of the proposed PD al-
gorithm in the finite version of the CS framework. The sim-
ulation results show that larger size of finite fields achieves
good reconstruction of sparse signals with respect to differ-
ent compression and sparsity ratios.
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