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Self-Paced Learning with Statistics Uncertainty Prior

Lihua GUO†a), Member

SUMMARY Self-paced learning (SPL) gradually trains the data from
easy to hard, and includes more data into the training process in a self-
paced manner. The advantage of SPL is that it has an ability to avoid bad
local minima, and the system can improve the generalization performance.
However, SPL’s system needs an expert to judge the complexity of data at
the beginning of training. Generally, this expert does not exist in the be-
ginning, and is learned by gradually training the samples. Based on this
consideration, we add an uncertainty of complexity judgment into SPL’s
system, and propose a self-paced learning with uncertainty prior (SPUP).
For efficiently solving our system optimization function, an iterative opti-
mization and statistical simulated annealing method are introduced. The
final experimental results indicate that our SPUP has more robustness to
the outlier and achieves higher accuracy and less error than SPL.
key words: self-paced learning, curriculum learning, uncertainty prior,
simulated annealing

1. Introduction

Inspired by the cognitive mechanism and learning process
of humans, Kumar et al. tried to fuse curriculum updating
in the process of model optimization, and firstly proposed
a self-paced learning (SPL) in [1]. The original SPL model
gave some weight to all samples according to a specific loss
term, and used a general SPL regularization to control the
system optimization.

For avoiding bad local minima and improving the gen-
eralization performance, many SPL methods have been pro-
posed. Meng et al. further investigated the theoretical in-
sights of SPL in [4]. In SPL, one key issue was to get a
better weighting strategy which was determined by a min-
imization function. Specifically, a definition of self-paced
regularization was provided in [2], and three types of self-
paced function were proposed including linear soft weight-
ing, logarithmic soft weighting and mixture weighting. In
[3], Xu et al. designed a probabilistic smoothed weighting
scheme for multi-view clustering, and took into considera-
tion both the complicacy of samples and views. Jiang [8]
combined the self-pace learning by the diversity of data dis-
tribution to improve the system performance.

In these SPL methods, they always ignore one main
aspect, i.e. the self-paced learning method needs to gradu-
ally train from easy to hard by a self-pace manner, and this
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kind of method needs an extra expert to judge the complex-
ity of samples. However, the expert is not available at the
beginning. Based on this observation, we assert that the
judgment of data complexity is not accurate in the begin-
ning. After gradually training the system, the system gradu-
ally becomes smarter, and the judgment of data’s complexity
will be more accurate. Therefore, self-pace learning with
uncertainty prior is proposed in this paper. In our system,
an uncertain prior is modeled into the system optimization
function, and which will be solved by a statistical method.

2. Review of Self-Paced Learning

Given a training dataset D =
{(

xi,yi
)}n

i=1 with n samples,
where xi ∈ Rd is the i-th sample, yi is the optional infor-
mation according to the learning objective (e.g. yi can be
the label of xi in classification model). f(.,W) denotes the
learned model and W = [w1,w2, . . . ,wn] is the model’s pa-
rameter, L

(
yi, f (xi,W)

)
is the function which calculates the

loss of i-th sample. SPL aims to optimize the model from
easy to hard samples gradually in a self-paced manner. The
objective of SPL is to jointly optimize the model parameter
w and the latent sample weights V = [v1, v2, . . . , vn] via a
following minimization problem:

min
W,V

E(W,V; λ) =
∑
i=1

viL
(
yi, f (xi,W)

)
+g (λ, vi) (1)

where g(.) is called the self-paced regularization, and λ is
the penalty parameter that controls the learning pace. Alter-
native convex search (ACS) is generally used for Eq. (1),
which alternatively optimizes W and V while fixing the
other. Specifically, given sample’s weights V, it is a
weighted loss minimization problem that is independent of
function g(.). Moreover, given model parameters W, the op-
timal weight of i-th sample can be obtained via

min
vi

viL
(
yi, f (xi,W)

)
+ g(λ, vi) (2)

since �i = L
(
yi, f (xi,W)

)
is a constant when W is given,

the optimum value of vi is uniquely determined by the cor-
responding minimum function vi�i + g(λ, vi). By gradually
increasing the value λ, more hard samples are included into
the training process in a self-paced manner. The parameter
λ is not static, and is increased for developing the system
maturation. More details of SPL are in [4].
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3. Self-Paced Learning with Uncertainty Prior

Self-paced learning (SPL) gradually includes more data into
the training process in a self-paced manner after increas-
ing the penalty of SPL regularization during optimization.
When implementing this self-paced learning, the first task
is to classify the complexity level of different samples, and
then the sample can be gradually trained according to their
complexities. Therefore, it needs an expert to make this
judgment. However, at the beginning, the system is very
young without a discriminative ability, and progressively
train to become the wiser. On the contrary, the system must
be smarter to judge the complexity of samples. It is con-
tradicting, and seems like a chicken and egg problem. For
solving this problem, we give an uncertainty prior to the
complexity level of samples. This uncertainty prior meets
two criteria as follows,

1) The uncertainty is much when the system is young.
On the contrary, the uncertainty must be little when the
model becomes mature.

2) The uncertainty prior can be easily combined into
the self-pace learning.

Assuming V = [v1, v2, . . . , vn] is the weight that is
learned by the SPL method at a certain parameter λ, we
model the true weight of sample V̂ = [v̂1, v̂2, . . . , v̂n] as a
stochastic variable following a Gaussian distribution when
giving the weight V, which is as follows,

P
(
V̂ |V
)
= N(V, λ−1) (3)

where λ is the parameter that controls the learning pace. The
mean of Gaussian distribution is the weight V, and its devia-
tion is the reciprocal of parameter λ. When system is young,
the value of parameter λ is small. This Gaussian distribution
has a big variance, it means the variable V̂ has a big devia-
tion with the weight V, which indicates the weight V is not
certain to match the complexity of samples. Otherwise, the
variable V̂ has a small deviation with the weight V, which
indicates the weight V is certain to match the complexity of
samples. This character accords with the first criterion of
uncertainty prior. In our method, we should firstly calcu-
late the weight V using the optimization method in SPL at
a certain parameter λ, and then sample the weight V̂. The
loss value of system with the weight V̂ can be calculated as
follows,

E(W, V̂; λ) =
∑

v̂iL
(
yi, f (xi,W)

)
+g (λ, v̂i) (4)

The sampling weight V̂ is accepted with a certain probabil-
ity according to the relationship of loss value. The final goal
is that the relationship of loss value with these two weights
V and V̂ must meet the following criterion,

E(W, V̂; λ) < E (W,V; λ) (5)

which means that the system with the weight V̂ has more
generalization than that with the weight V, i.e. the loss of
system with the weight V̂ is less than that with the weight V.

Finally, our system gradually increases the value λ for devel-
oping the system maturation, and repeats the loop of weight
calculation until the learning pace parameter λ reaches one.

Our processing is based on the common framework of
the self-paced learning. If the loss function is the mean
square loss, our system is the regression with self-paced reg-
ularization. If the loss function is the hinge loss, our sys-
tem is the classification with self-pace regularization. Since
V̂ is a stochastic variable, and could not be explicitly cal-
culated, we sample the value around the weight V using a
Gaussian distribution, and use an approximating inference,
i.e. simulate annealing, to estimate the true weight of sam-
ple V̂. Simulated annealing (SA) is a probabilistic technique
for approximating the global optimum of a given function.
Specifically, it is a heuristic to approximate the global opti-
mization in a large search space. Before the simulate anneal-
ing, we should calculate the solution V in SPL at a certain
parameter λ. Let us use the mean square loss with a soft
linear weighting as an example, which is as follows,

min
W,V

E =
∑

vi‖yi − wixi‖2 + 1
λ

⎛⎜⎜⎜⎜⎜⎝12 ‖v‖22 −
n∑

i=1

vi

⎞⎟⎟⎟⎟⎟⎠ (6)

where it is a standard SPL optimization, and can be solved
using ACS as follows,

a) Fix V, and solve W, it will be simplified as follows,

min
W

∑
vi‖yi − wixi‖2 (7)

which is a traditional MSE regression method, and can
be solved by a gradient-based method or coordinate-based
method.

b) Fix W, and solve V, it will be simplified as follows,

min
v

∑
vi�i+

1
λ

⎛⎜⎜⎜⎜⎜⎝12 ‖v‖22 −
n∑

i=1

vi

⎞⎟⎟⎟⎟⎟⎠, �i = ‖yi − wixi‖2 (8)

which can be solved as below,

vi =

{
1, �i < λ
0, otherwise

(9)

We sample the value V̂ around the weight V using a Gaus-
sian distribution, and use an approximating inference, i.e.
simulate annealing, to estimate the weight of sample V̂. The
pseudo code of our method is shown in Table 1.

4. Experiment and Discussion

In our SPUP method, two parameters need to be tuned, i.e.
the learning pace update ratio θ and the rate of temperature
descent α. In the simulate annealing, the rate of tempera-
ture descent α always sets at 0.99 for slowly decreasing the
temperature in order to achieve the more perfect solution.
Therefore, our system also sets the rate of temperature de-
scent α as 0.99. Next, we choose a real video dataset, i.e.
Hollywood2, to evaluate the system performance when us-
ing different pace update ratios. Hollywood2 was collected
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Table 1 Our SPUP algorithm’s pseudo code

from 69 different Holly-wood movies [6]. It contains 1,707
videos belonging to 12 actions. The improved dense tra-
jectory feature is extracted and further represented by the
Fisher vector. The recognition accuracy of the system keeps
stable, which means the learning pace update ratio is not the
critical parameter for the final system performance. In our
method, we set the learning pace update ratio as 1.03.

4.1 Robustness of Noise and Outlier

A toy dataset with 2 dimensions data is created, and all
data are plotted as 2-dimension points as shown in Fig. 1 (a).
Firstly, the SPL and our SPUP method should select some
random samples as the initial training set, as shown in
Fig. 1 (b). Based on these selected samples, the SPL and
our SPUP method train an initial model, and use this model
to make a judgment about the complexity of all samples.
Secondly, the SPL and our SPUP will choose these easy
samples as shown in Fig. 1 (c) and Fig. 1 (e) respectively.
Thirdly, when the system becomes ever more mature, the
SPL and SPUP system will choose more samples to train
the model. When the initial classifier is distorted by noise
or some outliers, the system will give wrong judgment be-
cause the SPL method uses the initial classifier as an expert,
which is illustrated in Fig. 1 (d). In our SPUP, we give an
uncertainty prior to the weight of initial training data, there-
fore, initial classifier is not critical during judging the com-
plexity of samples, and the system can gradually adapt the
noise and outlier to obtain more reasonable classifier, which

Fig. 1 2-Dimension distribution of a toy dataset and the selection of
training data. (a) the original data; (b) the initial selection; (c–d) the se-
lection with the increase of system maturation using SPL method; (e–f) the
selection with the increase of system maturation using our SPUP method.

is shown in Fig. 1 (f). This experiment result indicates that
SPUP has more robustness to the noise and outlier than the
SPL method.

4.2 Experiment on Three Video Datasets

Our comparison baseline methods include: 1) Random For-
est [7] is a robust bootstrap method that trains multiple
decision trees using randomly selected samples and fea-
tures. 2) AdaBoost [7] is a classical ensemble approach
that combines the sequentially trained “base” classifiers in
a weighted fashion. Samples that are misclassified by one
base classifier are given greater weight when used to train
the next classifier in sequence. 3) Batch-Train represents a
standard training approach in which a model is trained si-
multaneously using all samples; 4) SPL is a method that
trains models gradually from easy to more complex sam-
ples [1]; 5) SPLD is an improved SPL method by fusing the
ease and diverse samples into a general regularizer [8]. Fol-
lowing [8], our method also formalizes the preferences for
both easy and diverse samples into a general regularizer, and
further samples some values around the sample’s weight. At
each iteration, our method uses the simulate annealing to ac-
cept or reject the training data instead directly selecting data
by judging their loss value.

Three representative video datasets are selected to val-
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Table 2 The overall MAP comparison of three video datasets.

idate our method effectiveness, and the performance is eval-
uated using MAP to validate the efficiency of all methods:

Multimedia event detection dataset (MED). This data is
a collection of videos from TRECVID MED13Test, which
consists of about 32,000 Internet videos. This is a total of
3,490 videos from 20 complex events, and the rest are back-
ground videos. For each event 10 positive examples are
given to train a detector, which is tested on about 25,000
videos. The official test split released by NIST (national In-
stitute of Standards and Technology) is used [9]. The goal
of MED is to detect events of interest, e.g. “Birthday Party”
and “parade”, only based on the video content. The task
is very challenging due to complex scenes, camera motion,
occlusions, etc. [10]. A deep convolutional neural network
is trained on 1.2 million ImageNet challenge images from
1,000 classes to represent each video as a 1,000-dimensional
vector. Following [6], the performance is evaluated using
MAP (Mean Average Precision).

Hollywood2 is collected from 69 different Holly-wood
movies [6]. It contains 1,707 videos belonging to 12 actions,
splitting into a training set (823 videos) and a test set (884
videos). The improved dense trajectory feature is extracted
and further represented by the Fisher vector.

Olympic Sports dataset consists of athletes practicing
different sports collected from YouTube. There are 16 sport
actions from 783 clips. We use 649 for training and 134 for
testing as recommended in [5].

Table 2 lists the overall MAP comparison. It is worth
emphasizing that MED dataset is a very challenging prob-
lem, and the MAP of all methods are little low, and our
method achieves 49.5% relative improvement over SPLD is
a notable gain. Random Forest and AdaBoost yield poorer
performance. This observation is in agreement with the
study in literature [9] that SVM is more robust on event de-
tection. In the HollyWood2 and Olympic Sports datasets,
our SPUP achieve 21% and 5.6% improvement respectively.

4.3 System Complexity and Time Cost Analysis

In every iteration, our SPUP method first calculates the map-
ping matrix W and the weight V like SPL method, then
samples some values, and finds the optimal value using the
simulated annealing. Therefore, time costing of our SPUP
method will be more than the SPL method. We use the
MED, HollyWood2 and Olympic Sports datasets as the eval-
uated datasets, which are evaluated with a PC machine run-

Table 3 The time cost when evaluating three video datasets.

ning in an Intel i5-2400, 3.10 GHz CPU with 8.00 GB RAM.
The evaluation metrics include two aspects: training time
and testing time. We compare the time cost during training
and testing, which are shown in Table 3. When comparing
the time cost of training, our SPUP has the largest time cost
among three methods. It is because that our method needs an
extra operation, i.e. simulated annealing, to search the best
optimal value. However, when comparing the time cost of
testing, the time cost of three methods is same. It is because
that the discriminative model is same, and the only differ-
ence is that they have different mapping matrix W. In the
real application, the system always trains the model using
an off-line mode, the training time cost is not critical impor-
tance, and some paralleled techniques, e.g. distributed com-
putation and cloud computation, can be used to improve the
speed of training procedure. Therefore, our SPUP is practi-
cally useful.

5. Conclusion and Discussion

Since the uncertainty is involved in the self-paced learning
(SPL) at the beginning of training, we embed an uncertainty
prior into the optimization function of SPL, and propose
a self-paced learning with uncertainty prior (SPUP). SPUP
considers the true weight of samples as a stochastic variable
with a Gaussian distribution. For solving this minimization
function, an iterative optimization and statistical simulated
annealing method are used. The final experimental results
indicate that our method has more robustness to the noise
and outlier than the SPL. However, our system needs more
iteration time. The computation cost of our system is the
major disadvantage when comparing with the SPL. In fu-
ture, it needs further research how to decrease the computa-
tion cost of training.
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